
Applications of Mathematics

Li Sun; Guoping He; Yongli Wang; Changyin Zhou
An accurate active set Newton algorithm for large scale bound constrained optimization

Applications of Mathematics, Vol. 56 (2011), No. 3, 297–314

Persistent URL: http://dml.cz/dmlcz/141488

Terms of use:
© Institute of Mathematics AS CR, 2011

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/141488
http://dml.cz

56 (2011) APPLICATIONS OF MATHEMATICS No. 3, 297–314

AN ACCURATE ACTIVE SET NEWTON ALGORITHM FOR

LARGE SCALE BOUND CONSTRAINED OPTIMIZATION*

Li Sun, Tai’an and Shanghai, Guoping He, Qingdao,

Yongli Wang, Qingdao, Changyin Zhou, Qingdao

(Received September 22, 2008)

Abstract. A new algorithm for solving large scale bound constrained minimization prob-
lems is proposed. The algorithm is based on an accurate identification technique of the
active set proposed by Facchinei, Fischer and Kanzow in 1998. A further division of the ac-
tive set yields the global convergence of the new algorithm. In particular, the convergence
rate is superlinear without requiring the strict complementarity assumption. Numerical
tests demonstrate the efficiency and performance of the present strategy and its compari-
son with some existing active set strategies.

Keywords: active set, bound constraints, Newton method, strict complementarity

MSC 2010 : 90C30, 90C06

1. Introduction

In this paper, we are concerned with the solution of the following simple bound

constrained minimization:

(1.1) min
l6x6u

f(x),

where x ∈ R
n. The objective function f(x) is assumed to be sufficiently smooth,

l and u are given bound vectors in R
n and l < u.

Algorithms for solving problem (1.1) fall mostly in the active set category. In this

class of methods, a working set is defined to estimate the set of active constraints

at the solution and it is updated from iteration to iteration. Early methods for

*The work was supported in part by the National Science Foundation of China (10571109,
10901094) and Technique Foundation of STA (2006GG3210009).

297

bound constrained problems restrict the changing of the working set by dropping or

adding only one constraint at each iteration [26]. This implies that if there are k 6 n

constraints active at the solution yet the initial point is in the interior of the feasible

region, this method will require at least k iterations to converge. Obviously, it is not

suitable for large scale problems.

In recent years, a number of algorithms have been proposed to add and drop

several constraints in an iteration (see [7], [10], [12], [13], [16], [20], [21], [22], [30]).

The gradient projection method is a constructive method (see [7], [16], [20], [21]).

Moré and Toraldo [21] used the gradient projection method to identify a suitable

working face, and then used the conjugate gradient method to explore the face.

However, its convergence is driven by the gradient projection with the step length

satisfying a sufficient decrease condition and there is no numerical evidence of its

effectiveness in the non-quadratic case. More recently, Hager and Zhang [16] in-

dicated that more constraints could be added and dropped in a single iteration by

using the adaptive nonmonotone projection search. Furthermore, when the objective

function is strongly convex quadratic, their algorithm converges in a finite number

of iterations, even when the strict complementarity assumption does not hold.

In recent years, researches have been done to accelerate the convergence rate.

Many efficient methods such as Newton methods and trust region methods for un-

constrained optimization have been successfully extended to handle the presence of

bounds on the variables [4], [5], [19] and their local superlinear/quadratic conver-

gence have been established [10], [12], [13], [20]. A trust region version of Newton’s

method for bound constrained problems is analyzed in [20]. It also uses a projected

search during the subspace minimization phase, which allows adding more indices

to the active set in one step. Global and superlinear convergence hold without the

strict complementarity assumption.

The affine scaling interior point method of Coleman and Li (see [1], [2]) is a

different approach to problem (1.1). This method is based on a reformulation of the

necessary optimality conditions obtained by multiplication by a scaling matrix. In

a recent work Heinkenschloss et al. [17] analyzed an interior point method without

assuming strict complementarity, but they proved only local convergence.

We finally mention some algorithms based on the active set identification func-

tion. A guessing technique was first employed to predict which bounds are active at

the solution in [10]. This procedure permits fast changes in the working set. The

calculation of search direction dk is based on an identification technique of the set

of active constraints and the solution of KKT-like equation for (1.1). However, in

order to prove the local superlinear convergence, the method in [10] must resort to

a particular-defined multiplier function, which involves solving a product form of

the linear system. Later, Facchinei and Lucidi [13] employed a similar identification

298

technique to estimate the active set. Unlike the algorithms for bound constrained

problems that we have reviewed, it generates iterates that need not be feasible by

employing a differentiable exact penalty function.

In this paper, we propose a new algorithm for the solution of problem (1.1). The

new algorithm is based on the accurate active set identification technique proposed

in [9], [24]. It generates feasible iterates. To compute the direction dk, an identi-

fication technique is employed to predict which bounds are active at the solution.

At each iteration k, we compute two sets of indices Lk, Uk of the variables that we

suppose will be, respectively, at their lower and upper bounds at the solution. We

also compute an estimate F k of the variables we believe to be free. The inactive

variable xF k is updated by the solution of a lower dimensional quadratic bound con-

strained problem while the active variables, xLk and xUk , are updated by subspace

gradient and subspace modified gradient directions. Under mild conditions, the new

algorithm is globally convergent. In particular, the convergence rate is proved to be

superlinear without the strict complementarity assumption.

The paper is organized as follows. In the next section, some basic definitions and

assumptions are stated. In Section 3, we discuss the construction of the algorithm.

Global convergence of the algorithm is proved in Section 4, and its local convergent

property is given in Section 5. We also give some numerical tests in the last section.

We end this section with a few words on the notation. A superscript k is used

to indicate the iteration number. For simplicity, we often omit the arguments and

write, for example, fk instead of f(xk). If H is an n × n matrix with elements Hij ,

i, j = 1, . . . , n, and I is an index set such that I ⊆ {1, . . . , n}, we denote by HI

the |I| × |I| sub-matrix of H consisting of elements Hij , where i, j ∈ I. If w is an

n-dimensional vector, we denote by wI the sub-vector with components wi, i ∈ I.

Finally, we denote by ‖ · ‖ the Euclidean norm.

2. Problem formulation and preliminaries

In what follows we denote by Ω the feasible set of problem (1.1), that is,

Ω = {x ∈ R
n : l 6 x 6 u}.

To guarantee that no unbounded sequences are produced by the minimization

process, we make the following standard assumption.

Assumption 1. The level set L0 = {x ∈ R
n : f(x) 6 f(x0)} ∩ Ω is compact.

This assumption will be used to guarantee that the algorithm generates a bounded

sequence so that at least one accumulation point exists.

299

A vector x̄ ∈ Ω is said to be a stationary point for problem (1.1), if for every

i = 1, . . . , n,

(2.1)

∇fi(x̄) > 0 ∀ i ∈ L̄,

∇fi(x̄) = 0 ∀ i ∈ F ,

∇fi(x̄) 6 0 ∀ i ∈ U,

where ∇fi(x̄) is the ith component of the gradient vector of f at x̄. We define L̄ :=

{i : x̄i = li}, U := {i : x̄i = ui}, F := {1, . . . , n} \ (L̄∪U). Strict complementarity is

said to hold at x̄, if ∇fi(x̄) > 0 and ∇fi(x̄) < 0, respectively, in the first and third

implication of (2.1).

It is well known that the KKT conditions for x̄ to solve (1.1) are

(2.2)

∇f(x̄) − λ̄ + µ̄ = 0,

λ̄ > 0, (l − x̄)⊤λ̄ = 0,

µ̄ > 0, (x̄ − u)⊤µ̄ = 0,

l 6 x̄ 6 u,

where λ̄ ∈ R
n and µ̄ ∈ R

n are the KKT multipliers.

In view of the definitions of L̄, U , and F , the above KKT conditions are equivalent

to the following system:

(2.3)

{

(li + ui − 2x̄i)∇fi(x̄) > 0 if i ∈ L̄ ∪ U,

∇fi(x̄) = 0 if i ∈ F .

3. Framework of the new algorithm

3.1. The scheme of search direction

In order to make our algorithm suitable for large scale bound constrained problems,

we define the sets of indices L(x), U(x), and F (x) as follows:

L(x) = {i : li 6 xi 6 li + min[̺(x, λ, µ), ς]},(3.1)

U(x) = {i : ui − min[̺(x, λ, µ), ς] 6 xi 6 ui},

F (x) = {1, . . . , n} \ (L(x) ∪ U(x)).

We use the positive scalar ς ∈ (0, τ), where τ = min
i=1,...,m

1

3
(ui − li), to guarantee

that L(x)∩U(x) = ∅, so that F (x) is well defined. Similarly to [9], we introduce the

300

function ̺ : R
3n → [0,∞):

(3.2) ̺(x, λ, µ) :=
√

‖Φ(x, λ, µ)‖,

where the operator Φ: R
3n → R

3n is defined by

Φ(x, λ, µ) :=

∇xL(x, λ, µ)

min(x − l, λ)

min(u − x, µ)

 ,

and

L(x, λ, µ) := f(x) − λ⊤(x − l) − µ⊤(u − x)

is the Lagrangian function of problem (1.1).

It then follows from Theorem 3.7 in [9] that ̺(x, λ, µ) is an identification function

for the active set of a KKT point of (1.1). Furthermore, it can accurately identify

the active constraints in a certain neighborhood of a solution.

In the new algorithm, the variables with indices in L(x) or U(x) are called active

variables, while the variables with indices in F (x) are called inactive variables. The

algorithm uses the limited memory quasi-Newton method to update the inactive

variables, while the active variables go directly to the boundary or go inside the

feasible region.

Now let xk be a current point at iteration k. Consider the sets Lk = L(xk),

Uk = U(xk) and F k = F (xk), and define the directions of the inactive and active

variables by the following statements.

The search direction of the inactive variables dk
F k ∈ R

mk , where mk is the number

of elements in F k, is the optimal solution of the quadratic program

min m(dF k) = ∇fF k(xk)⊤dF k +
1

2
d⊤F kBk

F kdF k(3.3)

s.t. lF k − xk
F k 6 dF k 6 uF k − xk

F k .

Here Bk
F k = P k⊤

0 BkP k
0 is a symmetric positive definite matrix, where P k

0 is the

matrix whose columns are {ei : i ∈ F k}, ei is the ith column of the identity matrix

in R
n×n, Bk is the Hessian matrix. For an arbitrary v ∈ R

n, vF k = (P k
0)⊤v.

To keep the matrix Bk
F k positive, we employ the Modified Cholesky Factorization

(MC) algorithm proposed in § 4.4 in [15].

In our numerical test, we employ the sparse discrete Newton method, see § 4.8

in [15] for more details. It takes advantage of the known sparsity and structure in

the Hessian matrix to reduce the requirements of computation and storage.

301

Finally, we define the search direction of the active variables. We denote the set

Lk ∪ Uk by Ak and partition the active set Ak into three parts,

Ak
1 = {i : (li + ui − 2xk

i)∇fi(x
k) > 0 and {xk

i = li or xk
i = ui}},(3.4)

Ak
2 = {i : (li + ui − 2xk

i)∇fi(x
k) < 0 and {li 6 xk

i 6 li + min[̺(x, λ, µ), ς]

or ui − min[̺(x, λ, µ), ς] 6 xk
i 6 ui}},

Ak
3 = {i : (li + ui − 2xk

i)∇fi(x
k) > 0 and {li < xk

i 6 li + min[̺(x, λ, µ), ς]

or ui − min[̺(x, λ, µ), ς] 6 xk
i < ui}}.

Here Ak
1 is the index set of variables which satisfy the KKT conditions. It is rea-

sonable that we fix the variables with indices in Ak
1 , as the corresponding steepest

descent directions head towards the outside of the feasible region; Ak
2 and Ak

3 are the

sets of active variables where the steepest descent directions move into the interior

or toward the boundary of the feasible region. Thus we can use the steepest descent

directions as a search direction in the former case, and truncate the steepest descent

directions to ensure feasibility in the latter. We have to specify that the definition

of (3.4) divides the active variables into two parts, one that satisfies the KKT condi-

tions and the other that violates the KKT conditions. This kind of division enables

us to obtain the global convergence of the algorithm.

Let P k
j be the matrix whose columns are {ei : i ∈ Ak

j } for j = 1, 2, 3. The search

direction at the kth iteration is defined by

(3.5) dk = P k
0 dk

F k − (P k
2 P k⊤

2 Θk + P k
3 P k⊤

3 Γk)∇f(xk).

Here Θk = diag(θk
1 , . . . , θk

n) and Γk = diag(γk
1 , . . . , γk

n) with

(3.6) θk
i =

0 if i /∈ Ak
2 ,

xk
i − ui

∇fi(xk)
if li 6 xk

i 6 li + min[̺(xk, λk, µk), ς]

and xk
i −∇fi(x

k) > ui,

xk
i − li

∇fi(xk)
if ui − min[̺(xk, λk, µk), ς] 6 xk

i 6 ui

and xk
i −∇fi(x

k) 6 li,

1 otherwise,

302

(3.7) γk
i =

0 if i /∈ Ak
3 ,

xk
i − li

∇fi(xk)
if li < xk

i 6 li + min[̺(xk, λk, µk), ς]

and xk
i −∇fi(x

k) 6 li,

xk
i − ui

∇fi(xk)
if ui − min[̺(xk, λk, µk), ς] 6 xk

i < ui

and xk
i −∇fi(x

k) > ui,

1 otherwise.

It is easy to establish the simple description of dk
Ak ,

(3.8) dk
i =

−∇f(xk) if li 6 xk
i −∇fi(x

k) 6 ui,

li − xk
i if xk

i −∇fi(x
k) 6 li,

ui − xk
i if xk

i −∇fi(x
k) > ui,

where i ∈ Ak. For the purpose of proving the global convergence of the algorithm,

we use dk
Ak in the form of (3.5).

From the definition of the search direction dk, dk
F k , Θ

k, and Γk, we know that

(3.9) li 6 xk
i + dk

i 6 ui

holds for i = 1, . . . , n.

Lemma 3.1. Suppose that dk is defined by (3.5). Then for all k,

(3.10) ∇f(xk)⊤dk 6 0

and the equality holds if and only if dk = 0.

P r o o f. Obviously, dF k = 0 is a feasible solution of the quadratic programming

problem (3.3). Hence,

∇fF k(xk)⊤dk
F k +

1

2
dk⊤

F k Bk
F kdk

F k 6 0,

that is,

∇fF k(xk)⊤dk
F k 6 −

1

2
dk⊤

F k Bk
F kdk

F k .

Since Bk
F k is positive definite, it follows that

∇fF k(xk)⊤dk
F k 6 0,

and the equality holds only if dk
F k = 0.

303

Define

H̃k = P k
2 P k⊤

2 Θk + P k
3 P k⊤

3 Γk,

and let P ∈ R
n×|Ak| be the matrix whose columns are {ei : i ∈ Ak}. Then

(3.11) Hk = P⊤H̃kP.

It is easy to see that Hk is semi-positive definite, and (3.11) gives

(3.12) ∇fAk(xk)⊤dk
Ak = −∇fAk(xk)⊤Hk∇fAk(xk) 6 0.

This implies that (3.10) is true and ∇f(xk)⊤dk = 0 only if dk = 0. �

3.2. The accurate active set Newton algorithm

Now, we are ready to present our algorithm for solving problem (1.1).

Algorithm 3.2 (AASN)

Step 0. Choose σ ∈ (0, 1

2
), B0

F 0 = ∇2f(x0) and x0 ∈ R
n, where x0 satisfies

l 6 x0 6 u. Compute f(x0), ∇f(x0) and set k = 0.

Step 1. Determine the Lagrange multipliers λk and µk by

λk
i =

{

∇fi(x
k) if xk

i = li,

0 otherwise;

µk
i =

{

−∇fi(x
k) if xk

i = ui,

0 otherwise.

Compute the identification function ̺(xk, λk, µk) by (3.2), Lk = L(xk), Uk = U(xk),

F k = F (xk) by (3.1), let P k
0 be the matrix whose columns are {ei : i ∈ F k}, and set

Bk
F k = P k⊤

0 BkP k
0 .

Step 2. Determine the search direction dk by (3.5). If dk = 0, stop.

Step 3. Find the smallest integer i = 0, 1, . . ., such that

f(xk + 2−idk) 6 f(xk) + σ2−i∇f(xk)⊤dk.

Set αk = 2−i, xk+1 = xk + αkdk.

Step 4. Set Bk+1 = ∇2f(xk+1), k := k + 1, goto Step 1.

We should specify that Lk, Uk, F k in Step 1 could be determined by different

kinds of identification functions, which we will compare in our numerical tests.

304

4. Global convergence analysis

In this section, we will show that Algorithm 3.2 (AASN) is globally convergent.

To this end, we suppose that the following standard assumption holds.

Assumption 2. There exist positive scalars c1, c2 such that for all k = 1, 2, . . . ,

the matrix Bk
F k satisfies

(4.1) c1‖z‖
2 6 z⊤Bk

F kz 6 c2‖z‖
2 ∀ z ∈ R

mk , z 6= 0,

where mk is the number of elements in F k.

Lemma 4.1. If Assumptions 1 and 2 hold and dk is defined by (3.5), then for

xk ∈ Ω there exists a positive scalar c > 0 such that

(4.2) ∇f(xk)⊤dk
6 −c‖dk‖2.

P r o o f. Since Bk
F k is a symmetric positive definite matrix, d

k
F k is the solution

of (3.3) if and only if

li − xk
i = (dk

F k)i ⇒ (∇fF k(xk) + Bk
F kdk

F k)i > 0,

li − xk
i < (dk

F k)i < ui − xk
i ⇒ (∇fF k(xk) + Bk

F kdk
F k)i = 0,

(dk
F k)i = ui − xk

i ⇒ (∇fF k(xk) + Bk
F kdk

F k)i 6 0.

As xk ∈ Ω, each lower (upper) bound of the quadratic program (3.3) is negative

(positive), it follows that

∇fF k(xk)⊤dk
F k +

1

2
(dk

F k)⊤Bk
F kdk

F k 6 ∇fF k(xk)⊤dk
F k + (dk

F k)⊤Bk
F kdk

F k

= (∇fF k(xk) + Bk
F kdk

F k)⊤dk
F k 6 0.

By Assumption 2, we have

(4.3) ∇fF k(xk)⊤dk
F k 6 −c1‖d

k
F k‖2.

From the definition of dk, we conclude that dk
i = 0, if i ∈ Ak

1 . For i ∈ Ak
2 ∪Ak

3 , we

partition the choice of dk
i into four parts.

1) If θk
i = 0 or γk

i = 0, then dk
i = 0 and ∇fi(x

k)dk
i 6 −(dk

i)2.

2) If θk
i = 1 or γk

i = 1, then dk
i = −∇fi(x

k) and ∇fi(x
k)dk

i 6 −(dk
i)2.

3) If θk
i = (xk

i − li)/∇fi(x
k) or γk

i = (xk
i − li)/∇fi(x

k), then dk
i = li − xk

i ,

∇fi(x
k) > xk

i − li, so we obtain ∇fi(x
k)dk

i 6 −(dk
i)2.

4) If θk
i = (xk

i − ui)/∇fi(x
k) or γk

i = (xk
i − ui)/∇fi(x

k), then dk
i = ui − xk

i ,

∇fi(x
k) 6 xk

i − ui, which means ∇fi(x
k)dk

i 6 −(dk
i)2.

Denote c = min(c1, 1). It then follows that (4.2) holds. This completes the proof.

�

305

Lemma 4.2. Suppose that Assumptions 1 and 2 hold, xk ∈ Ω and dk is defined

by (3.5). Then xk is a KKT point of f on Ω if and only if dk = 0.

P r o o f. First we suppose that dk = 0.

If i ∈ Ak, then by (3.5) we have

P k
2 P k⊤

2 Θk∇f(xk) = 0, P k
3 P k⊤

3 Γk∇f(xk) = 0.

Since θk
i 6= 0 for i ∈ Ak

2 and γk
i 6= 0 for i ∈ Ak

3 , it follows that ∇fi(x
k) = 0 for

i ∈ Ak
2 ∪ Ak

3 . For i ∈ Ak
1 , x

k satisfies the first case of (2.3).

To establish that xk is a KKT point of f on Ω, it is sufficient to prove that

∇fi(x
k) = 0 for each i ∈ F k.

If i ∈ F k, we have

(4.4) xk
i > li + min[̺(xk, λk, µk), ς], xk

i < ui − min[̺(xk, λk, µk), ς].

Suppose that there exists an i ∈ F k such that ∇fi(x
k) < 0. Then for sufficiently

small ε > 0, the vector d̃F k defined by

d̃j =

{

0 if j ∈ F k \ {i},

ε if j = i,

satisfies lF k − xk
F k 6 d̃F k 6 uF k − xk

F k and

m(d̃F k) = ∇fi(x
k)ε +

1

2
ε2Bk

ii < 0.

This is impossible, since dk
F k = 0 is the optimal solution of (3.3). We can prove in

a similar way that ∇fi(x
k) cannot be positive. Hence, ∇fi(x

k) = 0 for each i ∈ F k.

This proves that xk is a KKT point of f on Ω.

Now suppose that xk is a KKT point of f on Ω. From (2.3) and (3.4) we know

that Ak
2 = ∅, Ak

3 = ∅. Therefore, dk
Ak = 0.

On the other hand, d = 0 is a feasible solution of the quadratic programming

problem (3.3). Since ∇fF k(xk) = 0 and Bk
F k is a positive definite matrix, it follows

that

m(dF k) =
1

2
d⊤F kBk

F kdF k > 0.

Hence, dk
F k = 0 is the optimal solution of the quadratic programming poblem (3.3),

and dk = (dk
Ak , dk

F k) = 0. �

306

The following theorem shows the global convergence of the Algorithm AASN.

Theorem 4.3. Suppose that Assumptions 1 and 2 hold and f is twice continu-

ously differentiable in Ω. Assume that xk → x̄ and dk is defined by (3.5). Then x̄ is

a KKT point of problem (1.1).

P r o o f. If the sequence {xk} is finite with last point x̄ then by Lemma 4.1 and

Lemma 4.2, x̄ is a KKT point of Problem (1.1). So supposing that the sequence is

infinite, we have that

(4.5) f(xk + αkdk) − f(xk) 6 αk∇f(xk)⊤dk + o‖dk‖2 6 −c‖dk‖2,

where the last inequality follows from Lemma 4.1.

Since the sequence {f(xk)} is decreasing and bounded from below, it follows

from (4.5) that {dk} → 0.

Let x̄ be any accumulation point of {xk} generated by Algorithm AASN. Then

there exists a subsequence {xki}, i = 1, 2, . . . , such that

lim
i→∞

xki = x̄.

Define Ā = {i : x̄i = li or x̄i = ui}. If x̄ is not a KKT point, then there exists

j ∈ Ā such that

(4.6) (lj + uj − 2x̄j)∇fj(x̄) < 0,

or there exists j ∈ F such that

(4.7) ∇fj(x̄) 6= 0.

If (4.6) holds for some j ∈ Ā, then

(4.8) j ∈ Aki

2 .

Since dk → 0, this implies that dki

A
ki

2

→ 0, and from (3.8) it follows that

lim
i→∞

∇fj(x
ki) = 0 if lj 6 xki

j −∇fj(x
ki) 6 uj ,(4.9)

lim
i→∞

lj − xki

j = 0 if xki

j −∇fj(x
ki) 6 lj ,

lim
i→∞

uj − xki

j = 0 if xki

j −∇fj(x
ki) > uj,

which contradicts (4.6) for all sufficiently large i.

307

Now we come to prove that ∇fF (x̄) = 0. We recall that dk
F k is the solution of the

quadratic programming problem

min∇fF k(xk)⊤dF k +
1

2
d⊤F kBk

F kdF k

s.t. lF k − xk
F k 6 dF k 6 uF k − xk

F k .

Since dk → 0, the continuity of the optimal solution of a strictly convex quadratic

programming problem under perturbations (see Proposition 6.1 of [25]) implies that

zero is the optimal solution of

min∇fF (x̄)⊤dF +
1

2
d⊤

F
BF dF

s.t. lF − x̄F 6 dF 6 uF − x̄F .

Hence, ∇fF (x̄) = 0 by a reasoning similar to that used in the proof of Lemma 4.2.

�

5. The local superlinear convergence analysis

In this section we study the local behavior of AASN. The following assumption is

essential for the local fast convergence analysis.

Assumption 3 (SSOSC). Let (x̄, λ̄, µ̄) be a KKT triplet for problem (1.1). We

say that SSOSC holds at x̄ if

(5.1) z⊤∇2f(x̄)z > 0, ∀ z ∈ {z ∈ R
n : zi = 0, i ∈ A+},

where A+ is the strong active set, i.e. the index set of active constraints with positive

multipliers.

Lemma 5.1. Suppose that x̄ is a KKT point of problem (1.1) and Assumption 3

is satisfied. Then there exists a neighborhood Ω1 of x̄ such that, for each x in this

neighborhood Ω1,

L(x) = {i : li = x̄i},(5.2)

U(x) = {i : x̄i = ui},

F (x) = {i : λ̄i = 0 and µ̄i = 0}.

Lemma 5.1 shows that when (x, λ, µ) is sufficiently close to (x̄, λ̄, µ̄), the estimate

of the active set is accurate, see Theorem 2.2 in [9].

308

Theorem 5.2. Suppose that Assumptions 1 and 2 hold, f is twice continuously

differentiable with Lipschitz continuous Hessian matrices and (x̄, λ̄, µ̄) is a KKT pair

for problem (1.1) which satisfies Assumption 3. Then the sequence {xk} generated

by AASN converges to x̄, and the rate of convergence is superlinear.

P r o o f. We notice that in the bound constrained optimization problem, the

gradients of active constraints are linearly independent at x̄, that is, linear indepen-

dence assumption is always satisfied. As (x̄, λ̄, µ̄) is a KKT pair for problem (1.1)

that satisfies Assumption 3, it follows that (x̄, λ̄, µ̄) is an isolate KKT point.

From Lemma 5.1 we know that for every xk ∈ Ω1 the accurate active set is

identified. That is, none of the bounds in Lk and Uk is eventually active at the

solution and xk
Lk = x̄L̄, x

k
Uk = x̄U .

Hence, for xk ∈ Ω1, the quadratic programming problem can be written as

min m̃(dF k) = ∇fF (x̄L̄, xk
F

, x̄U)⊤dF +
1

2
d⊤

F
Bk

F
dF(5.3)

s.t. lF − xk
F

6 dF 6 uF − xk
F
.

Since none of the bounds in problem (5.3) is eventually active at the solution, it

follows that

dk
F

= −Bk−1

F
∇fF (x̄L̄, xk

F
, x̄U)

and dk
F
is just the Newton direction for solving the system of equations

∇fF (x̄L̄, xk
F
, x̄U) = 0.

Hence, from classical results on Newton methods, we have that

lim
k→∞

‖xk + dk − x̄‖

‖xk − x̄‖
= lim

k→∞

‖xk
F

+ dk
F
− x̄F ‖

‖xk − x̄‖
= 0.

Then by using Taylor’s expansions of f(xk + dk) and f(xk) at x̄, similarly to

Remark 3.1 in [8], we finally obtain that

f(xk + dk) − f(xk) −
1

2
∇f(xk)⊤dk 6 o(‖dk‖2).

Therefore, the assertion on the acceptance of the unit step size follows from the

fact that σ < 1

2
. �

309

6. Numerical tests

Now, we will deal with numerical tests of AASN. In AASN, we choose σ = 10−1 in

all runs. The code is written in MATLAB with double precision. For each problem,

the termination condition is the Euclidean norm of the search direction below 10−5,

namely, ‖dk‖ 6 10−5. We have also included additional two stopping flags, that is,

the maximum iteration ITmax = 1000 in the main loop and the maximum iteration

number ITinner = 25 in the line search loop. For each test function, we use the same

initial value x0.

We employ the technique from [11] for generating bound constrained optimization

problems with known characteristics. Through this kind of strategy, the number and

position of the active constraints, the Lagrange multipliers, and the shape of the

feasible region can be easily controlled, see [11] for more details.

The accurate active set identification function employed in AASN can also be

defined by

(6.1) ̺(x, λ, µ) =

0 if r(x, λ, µ) = 0,

1

log(r(x, λ, µ))
if r(x, λ, µ) ∈ (0, 0.9),

−1

log(0.9)
if r(x, λ, µ) > 0.9,

where

r(x, λ, µ) = ‖∇f(x) − λ + µ‖ + |λ⊤e| + |µ⊤e| + ‖[−λ]+‖

+ ‖[−µ]+‖ + ‖[l − x]+‖ + ‖[u − x]+‖.

We write [x]+ for the vectormax{0, x}, where the maximum is taken componentwise,

and e⊤ = (1, 1, . . . , 1), e ∈ R
n.

First, we compare AASN with two different accurate identification functions (6.1)

and (3.2) with the test problems chosen from [3] and [27]. The dimensions of the

test problems range from 5000 to 20000. Displayed in Table 1 are the CPU times to

obtain the solutions through AASN with (6.1) and (3.2), which are denoted by CPUr

and CPUp, respectively. In addition, we also list the iteration number ITr and ITp

as well as the number of the function evaluation IFr and IFp for AASN with (6.1)

and (3.2).

Numerical results demonstrate that both the identification functions work well.

Now we list other two different active set identification functions.

310

No. n CPUr CPUp IF/ITr IF/ITp FFr FFp

P1 10000 5.8750 5.8280 20/10 20/10 −2.6442e+004 −2.6442e+004

P2 20000 192.5620 175.9210 275/64 249/59 2.1777e−013 1.2333e−013

P3 10000 24.6870 21.7350 312/67 280/70 1.2814e−013 7.7706e−014

P4 10000 8.3590 9.3280 106/29 122/31 7.8455e−007 4.0860e−007

P5 20000 47.0000 44.2650 121/30 101/25 6.7026e−017 6.4218e−016

P6 5000 3.7970 3.8900 250/53 248/52 5.4971e−018 1.9420e−021

P7 10000 23.7650 19.1720 337/67 258/55 4.6383e−017 1.3018e−016

P8 5000 15.7660 13.5630 997/182 887/164 1.6490e−014 2.0461e−016

P9 10000 54.7030 75.6410 934/161 1264/215 1.0365e−014 4.1858e−013

P10 5000 8.5780 8.7650 517/86 517/86 6.9789e−014 2.1284e−017

Table 1. Comparison of AASN with (6.1) and (3.2).

In ALBFGS [30],

L(x) = {i : xi 6 li + ai(x)∇fi(x)},(6.2)

U(x) = {i : xi > ui + bi(x)∇fi(x)},

F (x) = {1, . . . , n} \ (L(x) ∪ U(x)),

where ai(x) and bi(x) are nonnegative continuous functions such that if xi = li or

xi = ui then ai(x) > 0 or bi(x) > 0, respectively.

In ASNA [10],

L(x) =
{

i : x 6 li + min
[

ςc(x)ai(x)λi(x),
ui − li

3

]}

,(6.3)

U(x) =
{

i : x > ui − min
[

ςc(x)bi(x)µi(x),
ui − li

3

]}

,

F (x) = {1, . . . , n} \ (L(x) ∪ U(x)),

where ς is a positive constant; a(x), b(x), and c(x) are the functions,

a(x) = α − l + x, b(x) = β + u − x, c(x) = f(x0) − f(x).

We remark that α and β are arbitrarily fixed before starting the algorithm; λ(x) and

µ(x) are the multiplier functions [10]. The identification functions (6.2) and (6.3)

belong to the approximation identification function.

Secondly, test results on 10 problems are listed. Different identification func-

tions (6.2), (6.3) will be employed in AASN, the subscripts m and f denote the test

results of AASN with (6.3) and (6.4) respectively in Tab. 2.

311

No. CPUm CPUf IF/ITm IF/ITf FFm FFf

P1 12.8750 10.0630 35/11 30/10 −2.6442e+004 −2.6442e+004

P2 125.5630 120.8120 179/46 182/47 8.0222e−016 2.1777e−013

P3 30.4060 239.2500 184/48 1021/193 4.4443e−014 1.4659e−013

P4 14.5000 9.5780 169/39 155/36 2.3096e−015 4.9272e−016

P5 106.3280 100.2810 233/53 217/49 9.6295e−016 9.2125e−016

P6 4.2660 4.2350 279/56 285/60 5.0090e−013 2.8948e−021

P7 17.7820 16.7970 255/55 257/54 3.0064e−016 4.6730e−019

P8 18.4380 31.4520 1236/201 2156/300 1.9870e−018 5.6397e−013

P9 69.3290 62.3370 1142/206 1041/203 1.6346e−021 1.7052e−012

P10 35.1560 25.3960 2059/250 1660/236 1.7745e−017 6.9989e−014

Table 2. Numerical results of AASN with (6.2) and (6.3).

Numerical tests show that (3.1), (6.1), (6.2), and (6.3) are indeed “good” estimates

of L̄, F . We can see that the accurate identification technique is efficient. It should

be noted that the superlinear convergence of ASNA occurs under the assumption

of strict complementarity, while the same results of AASN can be obtained without

this assumption.

In ASNA, the search direction dk
Ak of the active variables is defined by

(6.4) dk
i =

{

xk
i − li if i ∈ Lk,

xk
i − ui if i ∈ Uk.

However, we found that this simple modification can, in some cases, increase IF

and IT, especially IF. This indicates that this form of dk
Ak in (6.4) cannot provide

sufficient decrease as compared with dk
Ak in (3.8).

7. Conclusions

An accurate active set Newton method is analyzed in this paper. The active set

strategy which belongs to the accurate active set identification allows quick change in

the working set. It is suitable for solving large scale problems. We divide the active

variables into two parts, the one that satisfies the KKT conditions and the other

that violates the KKT conditions. This kind of division enables us to obtain the

global convergent property of our algorithm. Numerical results show that AASN is

practical and efficient.

We know that Support Vector Machine (SVM) training may be posed as a large

quadratic program with bound constraints and a single linear equality constraint.

The active set strategies discussed in this paper are closely related to decomposition

methods currently popular for SVM training [14], [18]. Consequently, how to extend

the active set strategies to SVM remains to be considered in the future.

312

Acknowledgement. We would like to thank Professor Y.L. Lai for his consid-

erable help in the preparation of this paper, and thank the anonymous referees for

their helpful comments.

References

[1] T.F. Coleman, Y. Li: On the convergence of interior-reflective Newton methods for
nonlinear minimization subject to bounds. Math. Program. 67 (1994), 189–224.

[2] T.F. Coleman, Y. Li: An interior trust region approach for nonlinear minimization
subject to bounds. SIAM J. Optim. 6 (1996), 418–445.

[3] A.R. Conn, N. I.M. Gould, Ph. L. Toint: Testing a class of methods for solving min-
imization problems with simple bounds on the variables. ACM Trans. Math. Softw. 7
(1981), 17–41.

[4] A.R. Conn, N. I.M. Gould, Ph. L. Toint: Global convergence of a class of trust region
algorithms for optimization with simple bounds. SIAM J. Numer. Anal. 25 (1988),
433–460.

[5] A.R. Conn, N. I.M. Gould, Ph. L. Toint: Correction to the paper on global conver-
gence of a class of trust region algorithms for optimization with simple bounds. SIAM
J. Numer. Anal. 26 (1989), 764–767.

[6] J.E. Dennis, J. J. Moré: A characterization of superlinear convergence and its applica-
tion to quasi-Newton methods. Math. Comput. 28 (1974), 549–560.

[7] Z. Dostál: A proportioning based algorithm with rate of convergence for bound con-
strained quadratic programming. Numer. Algorithms 34 (2003), 293–302.

[8] F. Facchinei: Minimization of SC1 functions and the Maratos effect. Oper. Res. Lett.
17 (1995), 131–137.

[9] F. Facchinei, A. Fischer, C. Kanzow: On the accurate identification of active con-
straints. SIAM J. Optim. 9 (1998), 14–32.

[10] F. Facchinei, J. Júdice, J. Soares: An active set Newton algorithm for large-scale non-
linear programs with box constraints. SIAM J. Optim. 8 (1998), 158–186.

[11] F. Facchinei, J. Júdice, J. Soares: Generating box-constrained optimization problems.
ACM Trans. Math. Softw. 23 (1997), 443–447.

[12] F. Facchinei, S. Lucidi: Quadratically and superlinearly convergent algorithms for the
solution of inequality constrained minimization problems. J. Optimization Theory Appl.
85 (1995), 265–289.

[13] F. Facchinei, S. Lucidi, L. Palagi: A truncated Newton algorithm for large scale box
constrained optimization. SIAM J. Optim. 12 (2002), 1100–1125.

[14] R.E. Fan, P.H. Chen, C. J. Lin: Working set selection using second order information
for training support vector machines. J. Mach. Learn. Res. 6 (2005), 1889–1918.

[15] P.E. Gill, W. Murray, M.H. Wright: Practical Optimization. Academic Press, London,
1981.

[16] W.W. Hager, H. Zhang: A new active set algorithm for box constrained optimization.
SIAM J. Optim. 17 (2006), 526–557.

[17] M. Heinkenschloss, M. Ulbrich, S. Ulbrich: Superlinear and quadratic convergence of
affine-scaling interior-point Newton methods for problems with simple bounds without
strict complementarity assumption. Math. Program. 86 (1999), 615–635.

[18] S. S. Keerthi, E.G. Gilbert: Convergence of a generalized SMO algorithm for SVM
classifier design. Mach. Learn. 46 (2002), 351–360.

[19] M. Lescrenier: Convergence of trust region algorithms for optimization with bounds
when strict complementarity does not hold. SIAM J. Numer. Anal. 28 (1991), 476–495.

313

[20] C. J. Lin, J. J. Moré: Newton’s method for large bound-constrained optimization prob-
lems. SIAM J. Optim. 9 (1999), 1100–1127.

[21] J. J. Moré, G. Toraldo: On the solution of large quadratic programming problems with
bound constraints. SIAM J. Optim. 1 (1991), 93–113.

[22] Q. Ni, Y. Yuan: A subspace limited memory quasi-Newton algorithm for large-scale
nonlinear bound constrained optimization. Math. Comput. 66 (1997), 1509–1520.

[23] J. Nocedal, S. J. Wright: Numerical Optimization. Springer, New York, 2006.
[24] C. Oberlin, S. J. Wright: Active set identification in nonlinear programming. SIAM

J. Optim. 17 (2006), 577–605.
[25] G.Di Pillo, F. Facchinei, L. Grippo: An RQP algorithm using a differentiable exact

penalty function for inequality constrained problems. Math. Program. 55 (1992), 49–68.
[26] B.T. Polyak: The conjugate gradient method in extremal problems. U.S.S.R. Comput.

Math. Math. Phys. 9 (1969), 94–112.
[27] K. Schittkowski: More Test Examples for Nonlinear Programming Codes. Lecture Notes

in Economics and Mathematical Systems, Vol. 282. Springer, Berlin, 1987.
[28] L. Sun, G. P. He, Y. L. Wang, L. Fang: An active set quasi-Newton method with pro-

jected search for bound constrained minimization. Comput. Math. Appl. 58 (2009),
161–170.

[29] L. Sun, L. Fang, G. P. He: An active set strategy based on the multiplier function or
the gradient. Appl. Math. 55 (2010), 291–304.

[30] Y.H. Xiao, Z. X. Wei: A new subspace limited memory BFGS algorithm for large-scale
bound constrained optimization. Appl. Math. Comput. 185 (2007), 350–359.

Authors’ addresses: L. Sun (corresponding author), College of Information Sciences and
Engineering, Shandong Agricultural University, 271018 Ta’ian, P.R.China, and Department
of Mathematics, Shanghai Jiaotong University, No. 800 Dong Chuan Road, 200240 Shang-
hai, P.R.China, e-mail: sunlishi@hotmail.com; G. He, College of Information Science and
Engineering, Shandong University of Science and Technology, 266510 Qingdao, P. R.China,
e-mail: hegp@263.net; Y. Wang, College of Information Science and Engineering, Shandong
University of Science and Technology, 266510 Qingdao, P. R.China, e-mail: wylyb@263.net;
C. Zhou, College of Information Science and Engineering, Shandong University of Science
and Technology, 266510 Qingdao, P.R.China, e-mail: zhoucy@sdust.edu.cn.

314

		webmaster@dml.cz
	2020-07-02T13:06:49+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

