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Lars-Erik Persson, Lule̊a
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Abstract. We consider a new Sobolev type function space called the space with mul-
tiweighted derivatives W n

p,α, where α = (α0, α1, . . . , αn), αi ∈ R, i = 0, 1, . . . , n, and

‖f‖W n
p,α
= ‖Dn

αf‖p +
n−1∑

i=0
|Di

αf(1)|,

D
0
αf(t) = t

α0f(t), D
i
αf(t) = t

αi
d

dt
D

i−1
α f(t), i = 1, 2, . . . , n.

We establish necessary and sufficient conditions for the boundedness and compactness of
the embedding W n

p,α →֒ W m
q,β
, when 1 6 q < p < ∞, 0 6 m < n.

Keywords: weighted function space, multiweighted derivative, embedding theorems, com-
pactness.

MSC 2010 : 46E35, 46E30

1. Introduction

Let m and n be natural numbers, R be the set of real numbers, 1 6 p, q < ∞,

α = (α0, α1, . . . , αn), αi ∈ R, i = 0, 1, . . . , n, |α| =
n
∑

i=0

αi, I = (0, 1) or I = (1, +∞)

and 1/p + 1/p′ = 1.

Let f : I → R. We define the differential operations Di
αf of order i, 0 6 i 6 n, as

follows:

D0
αf(t) = tα0f(t), Di

αf(t) = tαi
d

dt
Di−1

α f(t), i = 1, 2, . . . , n,
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where each derivative is defined in the generalized sense (see e.g. [6]). The op-

eration Di
αf is called the α-multiweighted derivative of the function f of order i,

i = 0, 1, . . . , n.

Let Wn
p,α = Wn

p,α(I) be the space of functions f : I → R, which has α-

multiweighted nth order derivatives on the interval I and for which the following

norm is finite:

‖f‖W n
p,α

= ‖Dn
αf‖p +

n−1
∑

i=0

|Di
αf(1)|,

where ‖ · ‖p is the usual norm of the space Lp(I), 1 6 p < ∞.

When αi = 0, i = 0, 1, . . . , n − 1, and αn = γ the space Wn
p,α coincides with the

usual Kudryavtsev space Ln
p,γ = Ln

p,γ(I) with the finite norm ‖f‖Ln
p,γ

= ‖tγf (n)‖p +
n−1
∑

i=0

|f (i)(1)| (see [5]).

Besides Wn
p,α, we will consider the space Wm

q,β
and our aim is to obtain necessary

and sufficient conditions for boundedness and compactness of the embedding

(1.1) Wn
p,α →֒ Wm

q,β

when 1 6 q < p < ∞, β = (β0, β1, . . . , βm), βi ∈ R, i = 0, 1, . . . , m, 0 6 m < n.

The embedding (1.1) has been considered in [4], but basically only sufficient con-

ditions for boundedness of the embedding (1.1) have been obtained. In [1] necessary

and sufficient conditions for boundedness and compactness of the embedding (1.1)

have been established when 1 < p 6 q < ∞.

In order not to disturb our proofs of the main results in Sections 3 and 4 we

use Section 2 to present some necessary notation and auxiliary results e.g. from the

papers [4] and [7]. In Section 4 the embedding theorems from Section 3 for the spaces

Wn
p,α(0, 1) have been rewritten to the case of the spaces Wn

p,α(1, +∞).

In this paper we use the following conventions : If i > j, then the sum
j

∑

k=i

is

considered to be equal to zero; and the notation A ≪ B means that A 6 cB, where

the constant c > 0 may depend on unessential parameters.

2. Preliminaries

In [4] the following relation between the α-multiweighted derivative and the β-

multiweighted derivative of the function f was proved:

(2.1) Dk
β
f(t) =

k
∑

i=0

ck,it
µk,iDi

αf(t), k = 0, 1, . . . , m,
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where µk,i =
k
∑

j=0

βj −
i

∑

j=0

αj + i − k, i = 0, 1, . . . , k, k = 0, 1, . . . , m; and the coeffi-

cients ck,i, i = 0, 1, . . . , k − 1, k = 0, 1, . . . , m, are defined by the recurrent formula:

ck,k = 1,

ck,0 = ck−1,0

(k−1
∑

j=0

βj − α0 − k + 1

)

,

ck,i = ck−1,i−1 + ck−1,i

(k−1
∑

j=0

βj −

i
∑

j=0

αj + i − k + 1

)

, i = 1, 2, . . . , k − 1.

Moreover, in [4] it was proved that

(2.2) Dk
αf(t) =

k
∑

j=0

dk,jt
γk,j Dj

β
f(t), k = 0, 1, . . . , m,

where γk,j =
k
∑

i=0

αi −
j

∑

i=0

βi + j − k and dk,j , 0 6 j 6 k < m, are defined analogously

as ck,i, 0 6 i 6 k 6 m.

For 0 < t 6 x and for i, j = 0, 1, . . . , n− 1 we define the following set of functions:

Ki+1,j(t, x) ≡ Ki+1,j(t, x, α)

=

∫ x

t

t
−αi+1

i+1

∫ x

ti+1

t
−αi+2

i+2 . . .

∫ x

tj−1

t
−αj

j dtj dtj−1 . . . dti+1 when i < j,

Ki+1,j(t, x) ≡ Ki+1,j(t, x, α) ≡ 1 when i = j,

Ki+1,j(t, x) ≡ Ki+1,j(t, x, α) ≡ 0 when i > j.

By changing variables, when i < j the following properties of homogeneity of the

functions Ki+1,j can be established:

Ki+1,j(zt, zx)

=

∫ zx

zt

t
−αi+1

i+1

∫ zx

ti+1

t
−αi+2

i+2 . . .

∫ zx

tj−1

t
−αj

j dtj dtj−1 . . . dti+1

= [tk = zτk, dtk = z dτk]

=

∫ x

t

(zτi+1)
−αi+1

∫ x

τi+1

(zτi+2)
−αi+2 . . .

∫ x

τj−1

(zτj)
−αj zj−i dτj dτj−1 . . . dτi+1

= z

j∑

k=i+1

(1−αk)

Ki+1,j(t, x).
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In particular, when x = 1 and t = 1, we have that

Ki+1,j(zt, z) = z

j∑

k=i+1

(1−αk)

Ki+1,j(t, 1),(2.3)

Ki+1,j(z, zx) = z

j∑

k=i+1

(1−αk)

Ki+1,j(1, x),

respectively.

The following integral representation of the α-multiweighted derivative of the func-

tion f ∈ Wn
p,α was proved in [4]:

Di
αf(t) =

n−1
∑

j=i

(−1)j−iKi+1,j(t, 1)Dj
αf(1)(2.4)

+

∫ 1

t

x−αnKi+1,n−1(t, x)Dn
αf(x) dx, i = 0, 1, . . . , n − 1.

By inserting (2.4) into (2.1) when k = m we find that

Dm
β

f(t) =

m
∑

i=i0

cm,it
µm,i

n−1
∑

j=i

(−1)j−iKi+1,j(t, 1)Dj
αf(1)(2.5)

+

m
∑

i=i0

cm,it
µm,i

1
∫

t

x−αnKi+1,n−1(t, x)Dn
αf(x) dx.

For 0 6 i 6 j 6 n − 1 we define:

ki,j = min

{

k : i 6 k 6 j,
k

∑

s=i+1

αs − k = max
i6ξ6j

( ξ
∑

s=i+1

αs − ξ

)}

,

and

Mi,j = max
i6s6j

(

j − s + 1 −

j+1
∑

k=s+1

αk

)

.

For convenience, we denote ki ≡ ki,n−1, Mi = Mi,n−1. Note that Mi > Mi+1 and

M0 = max
06i6n−1

Mi.

Furthermore, for the proof of our main result we need the fact, that for the func-

tions fs(t) = t−α0K1,s(t, 1, α), 0 6 m 6 s 6 n, their multiweighted derivative Dm
β

fs

does not vanish, i.e.

(2.6) Dm
β

fs(t) 6= 0, ∀ t ∈ (0, 1].
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Indeed, let us assume the opposite, i.e. let fs(t) = t−α0K1,s(t, 1, α), 0 6 m 6 s 6

n, be the solutions of the equation

(2.7) Dm
β

f(t) = 0, ∀ t ∈ (0, 1].

Then they can be written as linear combinations of the fundamental solutions:

fi(t) = t−β0K1,i(t, 1, β), i = 0, 1, . . . , m − 1,

of the homogeneous equation (2.7), i.e.

(2.8) fs(t) =

m−1
∑

i=0

cit
−β0K1,i(t, 1, β), ∀ t ∈ (0, 1],

where
m−1
∑

i=0

c2
i 6= 0, ci ∈ R, i = 0, 1, . . . , m − 1.

Taking α-multiweighted derivative of order k, k = 0, 1, . . . , m−1, from both parts

of (2.8), we have that

(2.9) Dk
αfs(t) =

m−1
∑

i=0

ciD
k
α(t−β0K1,i(t, 1, β)), ∀ t ∈ (0, 1].

Using (2.2) and taking into account that dk,k ≡ 1, 0 6 j 6 k < m, from (2.9)

for k, 0 6 k < m, we obtain that

(2.10) Dk
αfs(t) =

k
∑

j=0

(−1)jdk,jt
γk,j

m−1
∑

i=j

ciKj+1,i(t, 1, β) =

k
∑

j=0

(−1)jdk,jcjt
γk,j ,

since Kj+1,j(t, 1, β) = 1 and Kj+1,i(t, 1, β) = 0, i = j + 1, j + 2, . . . , m − 1.

On the other hand a straightforward calculation shows that

(2.11) Dk
αfs(t) = Dk

α(t−α0K1,s(t, 1, α)) = (−1)kKk+1,s(t, 1, α),

k = 0, 1, . . . , m − 1; s = m, m + 1, . . . , n.

Thus, from (2.10) and (2.11) we obtain that

(−1)kKk+1,s(t, 1, α) =
k

∑

j=0

(−1)jdk,jcjt
γk,j ,

k = 0, 1, . . . , m − 1; s = m, m + 1, . . . , n.
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In particular, when t = 1 we get the following system of equations of order m:

k
∑

j=0

(−1)jdk,jcj = 0, k = 0, 1, . . . , m − 1.

Solving this system of equations when k = 0, we have that d0,0c0 = 0. Since

d0,0 = 1, it yields that c0 = 0. Furthermore, by successively solving the system for

k = 1, 2, . . . , m − 1 (note that dk,k 6= 0), we get that ck = 0, k = 0, 1, . . . , m − 1.

However, by our assumption, ck, k = 0, 1, . . . , m − 1, can not be equal to zero

simultaneously. This contradiction shows that (2.6) holds.

Moreover, we need upper and lower estimates for the functions Ki+1,j(t, 1) when

0 < t 6 1 and Ki+1,n−1(1, t) when 1 6 t < ∞, 0 6 i 6 j 6 n − 1. In [2] there

were obtained upper and lower estimates for the functions ui(t) = tα0K1,i(t, 1,−α),

i = 0, 1, . . . , n − 1. Below we give three statements about estimates for the func-

tions Ki+1,j(t, 1) and Ki+1,j(1, t), which follow from these results. Moreover, for

convenience we use the following equalities:

min
i6s6j

(

α0 +

s
∑

k=i+1

(1 − αk)

)

= min
i6s6j

[

α0 + j − i + 1 −

j+1
∑

k=i+1

αk −

(

j − s + 1 −

j+1
∑

k=s+1

αk

)]

= α0 + j − i + 1 −

j+1
∑

k=i+1

αk − Mi,j .

Lemma 2.1. Let 0 6 i 6 j 6 n − 1. Then

Ki+1,j(t, 1) ≪ t
j−i+1−

j+1∑

k=i+1

αk−Mi,j

|ln t|li,j , t ∈ (0, 1],

where li,j is the number of k, ki,j + 1 6 k 6 j, such that
k
∑

s=ki,j+1

(αs − 1) = 0, if

ki,j < j, and li,j = 0, if ki,j = j.

Lemma 2.2. Let 0 6 i 6 n− 1. Then there exists δ, 0 < δ < 1, such that for any

t ∈ (0, δ] the following estimate

Ki+1,n−1(t, 1) ≫ t
n−i−

n∑

k=i+1

αk−Mi

holds.
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Lemma 2.3. Let 0 6 i 6 n − 1. Then

t−αnKi+1,n−1(1, t) ≪ tMi−1|ln t|li , t > 1,

where li is the number of k, i + 1 6 k 6 ki − 1, such that
ki−1
∑

s=k

(αs − 1) = 0 when

ki > i + 1, and li = 0 when ki = i + 1.

We also recall the following Lemma by T. Andô [3]:

Lemma 2.4. Every linear integral operator, acting from Lp to Lq, where 1 6 q <

p < ∞, is compact.

Consider the following integral operators:

(2.12) KiD
n
αf(t) = tµm,i

∫ 1

t

x−αnKi+1,n−1(t, x)Dn
αf(x) dx, i = i0, i0 + 1, . . . , m,

acting from Lp(0, 1) to Lq(0, 1).

From the results in [7] we have the following:

Lemma 2.5. Let 1 6 q < p < ∞. The integral operators (2.12) are bounded

from Lp(0, 1) to Lq(0, 1) if and only if

Bn = max
i06i6m

max
i6j6n−1

Bn
i,j < ∞,

where

Bn
i,j =

{
∫ 1

0

(
∫ 1

t

|x−αnKj+1,n−1(t, x)|p
′

dx

)q(p−1)/(p−q)

(2.13)

×

(
∫ t

0

|sµm,iKi+1,j(s, t)|
q ds

)q/(p−q)

× d

(
∫ t

0

|sµm,iKi+1,j(s, t)|
q ds

)}(p−q)/pq

.
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3. Embedding theorems for the space Wn
p,α(0, 1)

Denote i0 = min{i : 0 6 i 6 m, cm,i 6= 0}, where cm,i, i = 0, 1, . . . , m, are defined

as in (2.1).

Our main result in this paper reads:

Theorem 3.1. Let I = (0, 1), 1 6 q < p < ∞ and 0 6 m < n. Then the following

conditions are equivalent:

i) the embedding (1.1) is bounded;

ii) the embedding (1.1) is compact;

iii)

(3.1) |β| − |α| + n − m +
1

q
> max

{1

p
, Mi0

}

.

P r o o f. First we prove that i) ⇒ ii).

Assume that i) holds, i.e., for all f ∈ Wn
p,α the following estimate

‖f‖W m

q,β
6 c‖f‖W n

p,α

holds. Then, by the definition of the norm in the space Wm
q,β
, the following estimate

(3.2) ‖Dm
β

f‖q 6 c‖f‖W n
p,α

holds, where c > 0 does not depend on f ∈ Wn
p,α.

Now we take a set L of functions from Wn
p,α such that for all f ∈ L:

(3.3) Dj
αf(1) = 0, j = 0, 1, . . . , n − 1.

It is obvious that L is a subset of the spaceWn
p,α. For any F ∈ Lp(0, 1) there exists

a unique function f ∈ L as a solution of the equation Dn
αf(t) = F (t) with initial

condition (3.3). Therefore, due to the fact that ‖f‖W n
p,α

= ‖F‖p, the operator Dn
α

establishes an isometry between the subspace L ⊂ Wn
p,α and the space Lp(0, 1).

Let
m

∑

i=i0

cm,ix
−αn tµm,iKi+1,n−1(t, x) = K(t, x).

Then, for all f ∈ L, the expression (2.5) has the following form:

Dm
β

f(t) =

∫ 1

t

K(t, x)Dn
αf(x) dx = KDn

αf(t).
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Using this expression in (3.2), for all f ∈ L we have that

‖KDn
αf‖q 6 c‖Dn

αf‖p,

or

‖KF‖q 6 c‖F‖p,

which means that the operator K is bounded from Lp to Lq. In our case 1 6 q <

p < ∞, and, thus, by Lemma 2.4, the integral operator K is compact from Lp to Lq.

Since the first sum in (2.5) is finite-dimensional, the expression (2.5), as an operator,

is compact from Wn
p,α to Lq. Hence, the embedding (1.1) is compact, i.e. ii) holds.

Next we prove that iii) ⇒ i). Let iii) hold. According to (2.1) for f ∈ Wn
p,α when

t = 1 we have that

(3.4)
m−1
∑

k=0

|Dk
β
f(1)| ≪

n−1
∑

k=i0

|Dk
αf(1)|.

From (2.5) and (3.4) it follows that the embedding (1.1) is bounded whenever

(3.5)

∫ 1

0

|tµm,iKi+1,j(t, 1)|q dt < ∞, i = i0, i0 + 1, . . . , m; j = i, i + 1, . . . , n − 1,

and the integral operators (2.12) are bounded from Lp(0, 1) to Lq(0, 1).

By using Lemma 2.1 for 0 6 i 6 j 6 n − 1 we find that

∫ 1

0

|tµm,iKi+1,j(t, 1)|q dt ≪

∫ 1

0

t
q
[

µm,i− max
i6s6j

( s∑

k=i+1

αk+i−s
)]

|ln t|qli,j dt.

The last integral converges, if, for i0 6 i 6 j 6 m 6 n−1, the following conditions

hold:

µm,i − max
i6s6j

( s
∑

k=i+1

αk + i − s

)

+
1

q
> 0,

i.e.

|β| − |α| + n − m +
1

q
> max

i6s6j

( s
∑

k=i+1

αk − s

)

−

n
∑

k=i+1

αk + n(3.6)

= max
i6s6j

(

n − s −

n
∑

k=s+1

αk

)

.

Since Mi0 > max
i6s6j

(

n − s −
n
∑

k=s+1

αk

)

for i0 6 i 6 j 6 n − 1, due to (3.1) the

conditions (3.6) hold for all i = 0, 1, . . . , m, j = i, i + 1, . . . , n − 1, and we conclude

that (3.5) holds.
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To prove boundedness of the integral operators (2.12) due to Lemma 2.5 we es-

timate each integral in Bi,j . By using the properties (2.3) of homogeneity of the

functions Ki+1,j , we find that

∫ t

0

|sµm,iKi+1,j(s, t)|
q ds = [s = tz, ds = t dz](3.7)

= tµm,iq+1

(
∫ 1

0

|zµm,iKi+1,j(tz, t)|q dz

)

= t
µm,iq+1+q

j∑

k=i+1

(1−αk)
(

∫ 1

0

|zµm,iKi+1,j(z, 1)|q dz

)

.

Moreover, due to (3.5), we know that the last integral converges. By using now

the assumptions of our theorem, we find that

|β| − |α| + n − m +
1

q
=

m
∑

k=0

βk −

i
∑

k=0

αk + i − m + n − i −

n
∑

k=i+1

αk +
1

q

> Mi0 > n − j −
n

∑

k=j+1

αk.

Thus

µm,i + j − i −

j
∑

k=i+1

αk +
1

q
> 0

or

1 + qµm,i + q

j
∑

k=i+1

(1 − αk) > 0,

and, consequently,

d

(
∫ t

0

|sµm,iKi+1,j(s, t)|
q ds

)

= c · d

(

t
1+qµm,i+q

j∑

k=i+1

(1−αk)
)

(3.8)

= c1 · t
q
(

µm,i+
j∑

k=i+1

(1−αk)
)

dt,

where

c =

∫ 1

0

|sµm,iKi+1,j(s, 1)|q ds, c1 = c ·

(

1 + qµm,i + q

j
∑

k=i+1

(1 − αk)

)

,

i = i0, i0 + 1, . . . , m, j = i, i + 1, . . . , n − 1.
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Putting (3.7) and (3.8) into (2.13), we find that

Bn
i,j ≪

{
∫ 1

0

t

(

q
(

µm,i+
j∑

k=i+1

(1−αk)
)

+1
)

q(p−q)+q
(

µm,i+
j∑

k=i+1

(1−αk)
)

×

(
∫ 1

t

|x−αnKj+1,n−1(t, x)|p
′

dx

)q(p−1)/(p−q)

dt

}(p−q)/pq

=

{
∫ 1

0

t

(

µm,i+
j∑

k=i+1

(1−αk)+1/p
)

pq/(p−q)

×

(
∫ 1

t

|x−αnKj+1,n−1(t, x)|p
′

dx

)q(p−1)/(p−q)

dt

}(p−q)/pq

.

Since (p − 1)/p = 1/p′ we conclude that

Bn
i,j ≪

{
∫ 1

0

(

t
µm,i+

j∑

k=i+1

(1−αk)+1/p

(3.9)

×

(
∫ 1

t

|x−αnKj+1,n−1(t, x)|p
′

dx

)1/p′
)pq/(p−q)

dt

}(p−q)/pq

.

Using again the properties (2.3) of homogeneity of the functions Ki+1,j and

Lemma 2.3, we obtain that

(
∫ 1

t

|x−αnKj+1,n−1(t, x)|p
′

dx

)1/p′

(3.10)

= t−αn+1/p′

(
∫ 1/t

1

|x−αnKj+1,n−1(t, tx)|p
′

dx

)1/p′

= t
−αn+1/p′+

n−1∑

k=j+1

(1−αk)
(

∫ 1/t

1

|x−αnKj+1,n−1(1, x)|p
′

dx

)1/p′

≪ t
−1/p+

n∑

k=j+1

(1−αk)
(

∫ 1/t

1

|xp′(Mj−1)|lnx|p
′lj dx

)1/p′

,

j = i0, i0 + 1, . . . , n − 1.

Since

∫ ∞

1

xp′(Mj−1)|lnx|p
′lj dx < ∞ when Mj <

1

p
, j = i0, i0 + 1, . . . , n − 1,
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from (3.10) for small enough t > 0 we have that

(
∫ 1

t

|x−αnKj+1,n−1(t, x)|p
′

dx

)1/p′

(3.11)

≪











































t

n∑

k=j+1

(1−αk)−Mj

|ln t|lj if Mj >
1

p
,

t

n∑

k=j+1

(1−αk)−1/p

if Mj <
1

p
,

t

n∑

k=j+1

(1−αk)−1/p

|ln t|lj+1/p′

if Mj =
1

p
.

From (3.9) and (3.11) we get that

(3.12) Bn
i,j ≪











































































(
∫ 1

0

t

(

µm,i+
j∑

k=i+1

(1−αk)+1/p−Mj

)

pq/(p−q)

|ln t|lj ·pq/(p−q) dt

)(p−q)/pq

if Mj > 1/p,

(
∫ 1

0

t

(

µm,i+
j∑

k=i+1

(1−αk)
)

pq/(p−q)

dt

)(p−q)/pq

if Mj < 1/p,

(
∫ 1

0

t

(

µm,i+
j∑

k=i+1

(1−αk)
)

pq/(p−q)

|ln t|(lj+1/p′)pq/(p−q) dt

)(p−q)/pq

if Mj = 1/p.

From (3.12) it follows that Bn
i,j , i0 6 i 6 m, i 6 j 6 n − 1, will be finite if

µm,i +

n
∑

k=i+1

(1 − αk) +
1

p
− Mj >

q − p

pq
,

or

(3.13) |β| − |α| + n − m +
1

q
> Mj when Mj >

1

p
,

and

µm,i +

n
∑

k=i+1

(1 − αk) >
q − p

pq
,

or

(3.14) |β| − |α| + n − m +
1

q
>

1

p
when Mj 6

1

p
.
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Since the left-hand sides of (3.13) and (3.14) are the same and do not depend on i,

j, and the quantities Mi do not increase with the index i = i0, i0 + 1, . . . , n − 1, the

quantity Bn = max
i06i6m

max
i6j6n−1

Bn
i,j will be finite, if (3.1) holds. Consequently, iii)

implies i).

To complete the proof it is sufficient to prove that ii) ⇒ iii), so we assume that

ii) holds. Then the embedding (1.1) is bounded, and (3.2) holds for every f ∈ Wn
p,α.

Let us put f0(t) = t−α0K1,n−1(t, 1). Then Dn
αf0(t) = 0 when t ∈ (0, 1) and

Di
αf0(1) = 0, i = 0, 1, . . . , n − 2, |Dn−1

α f0(1)| = 1. Consequently, f0 ∈ Wn
p,α and

‖f0‖W n
p,α

= 1. Hence, (3.2) implies that

‖Dm
β

f0‖q 6 c.

Due to (2.6) this yields that ‖Dm
β

f0‖q > 0. By using (2.1), we have that

(3.15)

∫ 1

0

∣

∣

∣

∣

m
∑

i=i0

(−1)icm,it
µm,iKi+1,n−1(t, 1)

∣

∣

∣

∣

q

dt 6 cq.

Since, due to Lemma 2.2, Ki+1,n−1(t, 1) ≫ t
n−i−

n∑

k=i+1

αk−Mi

, 0 6 i 6 n−1, for small

enough t > 0, then

tµm,iKi+1,n−1(t, 1) ≫ t|β|−|α|+n−m−Mi , i = i0, i0 + 1, . . . , m,

for small enough t > 0. By our condition cm,i0 6= 0 and Mi0 > Mi, i0 6 i 6 m,

this yields that when Mi0 > 1/p the order of the integrand in (3.15) is not less

than t|β|−|α|+n−m−Mi0 . Therefore, the function t(|β|−|α|+n−m−Mi0
)q is integrable in

a neighbourhood of t = 0 and this is equivalent to the following condition

(3.16) |β| − |α| + n − m +
1

q
> Mi0 .

Now let us take the function f1(t) = tn−|α|−ε/p, where 0 < ε < 1. Then

Dn
αf1(t) =

n−1
∏

j=0

(

n − j −
n

∑

k=j+1

αk −
ε

p

)

t−ε/p.

Consequently, f1 ∈ Wn
p,α. By making some calculations we find that

Dm
β

f1(t) =
m−1
∏

i=0

( i
∑

k=0

βk − |α| + n − i −
ε

p

)

t|β|−|α|+n−m−ε/p.
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Since we have finite many factors in the product, there exists ε0 > 0 such that, for

each ε ∈ (ε0, 1),
m−1
∏

i=0

( i
∑

k=0

βk − |α| + n − i −
ε

p

)

6= 0.

Due to the continuous embedding (1.1) it must hold that Dm
β

f1 ∈ Lq(0, 1), but this

is possible if and only if

|β| − |α| + n − m −
ε

p
+

1

q
> 0 for all ε ∈ (ε0, 1).

Hence, by letting ε → 1, we have that

(3.17) |β| − |α| + n − m +
1

q
>

1

p
.

Let Mi0 < 1/p. We suppose that

(3.18) |β| − |α| + n − m +
1

q
−

1

p
= 0.

We consider the following set of the functions:

fε(t) = cεt
−α0

∫ 1

t

K1,n−1(t, x)x−αnχ0,ε(x)x−ε/p dx, ε0 < ε < 1,

where cε is a constant and χ0,ε(·) denotes the characteristic function of the interval

(0, ε).

Since Dn
αfε(t) = cε(−1)nχ(0,ε)(t)t

−ε/p, we have fε ∈ Wn
p,α for all ε ∈ (0, 1).

We choose a constant cε such that ‖fε‖W n
p,α

= ‖Dn
αfε‖p = 1. Then

cε = (1 − ε)1/pε(ε−1)/p.

We now prove that the set of functions fε, 0 < ε < 1, converges weakly to zero

when ε → 0. By definition of the space Wn
p,α it follows that it is isometric to

the space Lp(I) × R
n. Therefore, (Wn

p,α)∗ = (Lp(I) × R
n)∗ = Lp′(I) × R

n. Since

Di
αfε(1) = 0, i = 0, 1, . . . , n − 1, we have, according to Hölder’s inequality, for each

G = (g, a) ∈ Lp′(I) × R
n:

|〈fε, G〉| =

∣

∣

∣

∣

∫ 1

0

Dn
αfε(t)g(t) dt

∣

∣

∣

∣

= cε

∣

∣

∣

∣

∫ ε

0

t−ε/pg(t) dt

∣

∣

∣

∣

6 cε

(
∫ ε

0

t−ε dt

)1/p(∫ ε

0

|g(t)|p
′

dt

)1/p′

=

(
∫ ε

0

|g(t)|p
′

dt

)1/p′

.
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Hence, it follows that 〈fε, G〉 → 0 when ε → 0 for all G ∈ (Wn
p,α)∗. Therefore, due

to the compactness of the embedding (1.1), the set of functions fε, 0 < ε < 1, when

ε → 0 converges strongly to zero in Wm
q,β
. Moreover, by using (2.1), (2.4) and (2.5),

we have that

Dm
β

fε(t) =

m
∑

i=i0

cm,it
µm,iDi

αfε(t)(3.19)

=

m
∑

i=i0

(−1)icm,it
µm,i

∫ 1

t

Ki+1,n−1(t, x)x−αn χ0,ε(x)x−ε/p dx.

Now we prove that for i = i0, i0 + 1, . . . , m and for all ε ∈ (0, 1), the estimate

(3.20)

∫ 1

0

∣

∣

∣

∣

tµm,i

∫ 1

t

Ki+1,n−1(t, x)x−αn χ0,ε(x)x−ε/p dx

∣

∣

∣

∣

q

dt < ∞,

holds.

By changing variables, due to Lemma 2.3 we get that

∫ 1

0

∣

∣

∣

∣

tµm,i

∫ 1

t

Ki+1,n−1(t, x)x−αn−ε/p dx

∣

∣

∣

∣

q

dt(3.21)

≪

∫ 1

0

∣

∣

∣

∣

t
µm,i−αn−ε/p+1+

n−1∑

k=i+1

(1−αk)
∫ 1/t

1

zMi−1−ε/p|ln z|li dz

∣

∣

∣

∣

q

dt.

Since Mi0 < 1/p and Mi 6 Mi0 , i = i0, i0 + 1, . . . , m, for all ε ∈ (0, 1) we have that

Mi − 1 − ε/p < 0, i = 0, 1, . . . , m. Therefore,

∫ 1/t

1

zMi−1−ε/p|ln z|li dz 6

∫ 1/t

1

|ln z|li dz 6
1

t
|ln t|li ,

and, hence, from (3.21) it follows that

∫ 1

0

∣

∣

∣

∣

tµm,i

∫ 1

t

Ki+1,n−1(t, x)x−αn−ε/p dx

∣

∣

∣

∣

q

dt(3.22)

≪

∫ 1

0

t

(

µm,i−αn−ε/p+
n−1∑

k=i+1

(1−αk)
)

q

|ln t|qli dt.

Moreover, according to (3.18) we have that

µm,i − αn −
ε

p
+

n−1
∑

k=i+1

(1 − αk) > −
1

q
, ∀ ε ∈ (0, 1).
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Consequently, the last integral in (3.22) converges and this fact yields the esti-

mate (3.20).

Further, by taking the norm in (3.19) we get that

‖Dm
β

fε‖q(3.23)

= cε

(
∫ 1

0

∣

∣

∣

∣

m
∑

i=i0

(−1)icm,it
µm,i

∫ 1

t

Ki+1,n−1(t, x)x−αn−ε/pχ0,ε(x) dx

∣

∣

∣

∣

q

dt

)1/q

= cε

(
∫ ε

0

∣

∣

∣

∣

m
∑

i=i0

(−1)icm,it
µm,i

∫ ε

t

Ki+1,n−1(t, x)x−αn−ε/p dx

∣

∣

∣

∣

q

dt

)1/q

.

In (3.23) first we change variables t → εt in the outer integral, next we change

variables x → εx in the inter integral, and taking into account the relation (3.18),

we find that

‖Dm
β

fε‖q = ε|β|−|α|+n−m+1/q−1/pTε = Tε,

where

Tε = (1 − ε)1/p

(
∫ 1

0

∣

∣

∣

∣

m
∑

i=i0

(−1)icm,it
µm,i

∫ 1

t

Ki+1,n−1(t, x)x−αn−ε/p dx

∣

∣

∣

∣

q

dt

)1/q

.

Due to (3.20) this yields that Tε < ∞ for all ε ∈ (0, 1). Moreover,

T0 = lim
ε→0

Tε

= lim
ε→0

(1 − ε)1/p

(
∫ 1

0

∣

∣

∣

∣

m
∑

i=i0

(−1)icm,it
µm,i

∫ 1

t

Ki+1,n−1(t, x)x−αn−ε/p dx

∣

∣

∣

∣

q

dt

)1/q

=

(
∫ 1

0

∣

∣

∣

∣

m
∑

i=i0

(−1)icm,it
µm,i

∫ 1

t

Ki+1,n−1(t, x)x−αn dx

∣

∣

∣

∣

q

dt

)1/q

=

(
∫ 1

0

|Dm
β

(t−α0K1,n(t, 1))|q dt

)1/q

6= 0,

since, according to (2.6), Dm
β

(t−α0K1,n(t, 1)) 6= 0 for almost every t ∈ (0, 1]. Con-

sequently, ‖Dm
β

fε‖q 6→ 0 when ε → 0, that is, fε does not converge to zero in Wm
q,β

when ε → 0. The contradiction obtained shows that strict inequality occurs in (3.17)

when Mi0 < 1/p, that is,

|β| − |α| + n − m +
1

q
>

1

p
,

which together with (3.16) gives (3.1).

The proof is complete. �
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Now on the interval I = (0, 1) when αk = 0, k = 0, 1, . . . , n − 1, αn = γ, βi = 0,

i = 0, 1, . . . , m − 1, and βm = υ we consider the Kudryavtsev spaces Ln
p,γ and Lm

q,υ,

respectively. Then Mi0 = max
i06s6n−1

(n − s − γ) = n − γ − i0. Hence, Theorem 3.1

implies the following new information about the embedding between these spaces

and the spaces with multiweighted derivatives:

Corollary 3.1. Let 0 6 m < n and 1 6 q < p < ∞. Then the following

conditions are equivalent:

i) the embedding Ln
p,γ →֒ Wm

q,β
is bounded;

ii) the embedding Ln
p,γ →֒ Wm

q,β
is compact;

iii) |β| − γ + n − m + 1/q > max
{

n − γ − i0, 1/p
}

.

Corollary 3.2. Let 0 6 m < n and 1 6 q < p < ∞. Then the following

conditions are equivalent:

i) the embedding Wn
p,α →֒ Lm

q,υ is bounded;

ii) the embedding Wn
p,α →֒ Lm

q,υ is compact;

iii) υ − |α| + n − m + 1/q > max
{

Mi0 , 1/p
}

.

4. Embedding theorems for the space Wn
p,α(1,∞)

The connection between the spaces Wn
p,α(0, 1) and Wn

p,α(1,∞) can be seen by

making the change of variable x = 1/t. In this way every function f ∈ Wn
p,α(1,∞)

can be transformed into a function f̃(x) = f(1/x) from the space Wn
p,α̃

(0, 1), where

α̃ = (α̃0, α̃1, . . . , α̃n), α̃n = −αn+2−2/p, α̃i = −αi+2, i = 1, 2, . . . , n−1, α̃0 = −α0.

Moreover,

‖Dn
αf‖p,(1,+∞)

=

(
∫ +∞

1

|Dn
αf(t)|p dt

)1/p

=

(
∫ +∞

1

∣

∣

∣
tαn

d

dt
tαn−1

d

dt
. . . tα1

d

dt
tα0f(t)

∣

∣

∣

p

dt

)1/p

=

(
∫ 1

0

∣

∣

∣
x−αn

d

x−2dx
x−αn−1

d

x−2dx
. . . x−α1

d

x−2dx
x−α0f

(1

x

)∣

∣

∣

p dx

x2

)1/p

=

(
∫ 1

0

∣

∣

∣
x−αn+2−2/p d

dx
x−αn−1+2 d

dx
. . . x−α1+2 d

dx
x−α0f

(1

x

)∣

∣

∣

p

dx

)1/p

=

(
∫ 1

0

∣

∣

∣
xα̃n

d

dx
xα̃n−1

d

dx
. . . xα̃1

d

dx
xα̃0 f̃(x)

∣

∣

∣

p

dx

)1/p

= ‖Dn
α̃f̃‖p,(0,1),

and Di
α̃
f(1) = Di

αf(1), i = 0, 1, . . . , n − 1.
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Analogously, from the space Wm
q,β

(1, +∞) we can pass to the space Wm

q,β̃
(0, 1).

Then the embedding (1.1) is equivalent to the embedding:

Wn
p,α̃(0, 1) →֒ Wm

q,β̃
(0, 1),

and all notions and statements for the spaceWn
p,α̃

(0, 1) can be rewritten for the space

Wn
p,α(1, +∞).

Therefore,

M̃i = max
i6s6n−1

(

n − s −

n
∑

k=s+1

α̃k

)

= max
i6s6n−1

(

n − s −
n−1
∑

k=s+1

(−αk + 2) + αn − 2 +
2

p

)

= max
i6s6n−1

(

−

(

n − s −

n
∑

k=s+1

αk

)

+
2

p

)

= −Mi +
2

p
,

whereMi = min
i6s6n−1

(

n − s −
n
∑

k=s+1

αk

)

, i = 0, 1, . . . , n − 1.

Since |β̃| =
m−1
∑

i=1

(−βi + 2) − β0 − βm + 2 − 2/q = −|β| + 2m − 2/q and |α̃| =

−|α| + 2n− 2/p, from the condition (3.1) we have that

|β̃| − |α̃| + n − m + 1/q = |α| − |β| + 2m − 2n + n − m +
1

q
−

2

q
+

2

p
(4.1)

= |α| − |β| + m − n −
1

q
+

2

p
> max

{1

p
, M̃i0

}

.

In the case M̃i0 = −Mi0 + 2/p > 1/p, this is equivalent to Mi0 < 1/p and

from (4.1) it follows that

|α| − |β| + m − n −
1

q
+

2

p
> −Mi0 +

2

p
,

i.e.

|β| − |α| + n − m +
1

q
< Mi0 when Mi0 <

1

p
.

In the case M̃i0 6 1/p, that isMi0 > 1/p, from (4.1) we get that

|α| − |β| + m − n −
1

q
+

2

p
>

1

p
,
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i.e.

|β| − |α| + n − m +
1

q
<

1

p
when Mi0 >

1

p
.

Hence, the condition

|β̃| − |α̃| + n − m +
1

q
> max

{1

p
, M̃i0

}

will be changed into the condition

|β| − |α| + n − m +
1

q
< min

{1

p
,Mi0

}

.

Thus, from Theorem 3.1 and Corollary 3.1, Corollary 3.2, respectively, we obtain

the following results:

Theorem 4.1. Let I = (1, +∞), 1 6 q < p < ∞ and 0 6 m < n. Then the

following conditions are equivalent:

i) the embedding (1.1) is bounded;

ii) the embedding (1.1) is compact;

iii) |β| − |α| + n − m + 1/q < min
{

Mi0 , 1/p
}

.

In the space Ln
p,γ(1, +∞) we have thatMi0 = 1−γ. Therefore, we get the following

results:

Corollary 4.1. Let I = (1, +∞), 0 6 m < n and 1 6 q < p < ∞. Then the

following conditions are equivalent:

i) the embedding Ln
p,γ(I) →֒ Wm

q,β
(I) is bounded;

ii) the embedding Ln
p,γ(I) →֒ Wm

q,β
(I) is compact;

iii) |β| − γ + n − m + 1/q < min
{

1 − γ, 1/p
}

.

Corollary 4.2. Let I = (1, +∞), 0 6 m < n and 1 6 q < p < ∞. Then the

following conditions are equivalent:

i) the embedding Wn
p,α(I) →֒ Lm

q,υ(I) is bounded;

ii) the embedding Wn
p,α(I) →֒ Lm

q,υ(I) is compact;

iii) υ − |α| + n − m + 1/q < min
{

Mi0 , 1/p
}

.
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