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Abstract. Novikov algebras were introduced in connection with the Poisson brackets of
hydrodynamic type and the Hamiltonian operators in formal variational calculus. In this
note we prove that the underlying Lie algebras of quadratic Novikov algebras are 2-step
nilpotent. Moreover, we give the classification up to dimension 10.

Keywords: Novikov algebra, quadratic Novikov algebra, underlying Lie algebra

MSC 2010 : 17A30

1. Introduction

A Novikov algebra A is a vector space over a field F with a bilinear product

(x, y) 7→ xy for any x, y, z ∈ A satisfying

(xy)z − x(yz) = (yx)z − y(xz),(1.1)

(xy)z = (xz)y.(1.2)

Novikov algebras were introduced in connection with the Poisson brackets of hydro-

dynamic type [1], [4], [5] and the Hamiltonian operators in the formal variational

calculus [7], [8], [9], [10], [11], [12].

The commutator

(1.3) [x, y] = xy − yx for any x, y ∈ A

makes any Novikov algebra A a Lie algebra denoted Lie(A) in what follows. It is

called the underlying Lie algebra of A. A bilinear form f : A × A → F is associative

if and only if

(1.4) f(xy, z) = f(x, yz) for any x, y, z ∈ A.
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The pair (A, f) is called a quadratic Novikov algebra if f is a non-degenerate asso-

ciative symmetric bilinear form on a Novikov algebra A.

It is proved in [13] that (Lie(A), f) is a quadratic Lie algebra and Lie(A) of di-

mension up to 4 is abelian. In this note we show that Lie(A) is 2-step nilpotent.

Then we find that Lie(A) with an isotropic center plays an important role in the

classification. Based on some lemmas, we give the classification up to dimension 10.

Throughout this paper we assume that the algebras are finite dimensional over C.

Obvious proofs are omitted.

2. Preliminary

Let (A, f) be a quadratic Novikov algebra with a basis {e1, e2, . . . , en}. Then the
bilinear form f is completely determined by the matrix F = (fij), where

(2.1) fij = f(ei, ej).

Lemma 2.1 ([2]). Quadratic Novikov algebras are associative.

The ideal N of A is called isotropic if f(x, y) = 0 for any x, y ∈ N and non-

degenerate if f |N×N is non-degenerate. Define N⊥ = {x ∈ A : f(x, y) = 0 for any

y ∈ N} and Z(A) = {x ∈ A : xy = yx = 0 for any y ∈ A}.

Lemma 2.2 ([13]). In the above notation, Z(A) = (AA)⊥.

Let g be a Lie algebra. Then the pair (g, f) is called a quadratic Lie algebra if f

is a non-degenerate symmetric bilinear form on g satisfying

f(x, [y, z]) = f([x, y], z) for any x, y, z ∈ g.

The ideal H of g is called isotropic if f(x, y) = 0 for any x, y ∈ H and non-degenerate

if f |H×H is non-degenerate. Define H⊥ = {x ∈ A : f(x, y) = 0 for any y ∈ H} and
C(g) = {x ∈ g : [x, y] = 0 for any y ∈ g}.

Lemma 2.3 ([6]). Let (g, f) be a quadratic Lie algebra.

(1) C(g) = [g, g]⊥.

(2) Let H be an ideal of g. Then H⊥ is an ideal of g. Furthermore assume that H

is non-degenerate. Then H⊥ is also non-degenerate and g = H ⊕ H⊥.
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Lemma 2.4 ([13]). Let (A, f) be a quadratic Novikov algebra.

(1) (Lie(A), f) is a quadratic Lie algebra.

(2) If dimA 6 4, then Lie(A) is abelian.

3. Underlying Lie algebras of quadratic Novikov algebras

Theorem 3.1. Let (A, f) be a quadratic Novikov algebra. Then [Lie(A), Lie(A)]

⊆ Z(A). As a consequence, Lie(A) is 2-step nilpotent.

P r o o f. For any a, b, c, d ∈ A,

f(a[b, c], d) = f(a, [b, c]d) = f(a, b(cd) − c(bd)) = f((ab)c − (ab)c, d)

= f((ab)c − (ac)b, d) = 0.

It follows that [b, c] ⊆ Z(A) ⊆ C(Lie(A)) since f(a[b, c], d) = f([b, c]d, a). Further-

more, Lie(A) is 2-step nilpotent. �

On the other hand, for a 2-step nilpotent quadratic Lie algebra (A, f), define a

bilinear product on A by xy = 1

2
[x, y] for any x, y ∈ A, then A is a Novikov algebra

by Proposition 2.5 of [3]. Furthermore, (A, f) is a quadratic Novikov algebra.

Thus, to get the classification of Lie(A), it is enough to get the classification of

2-step nilpotent quadratic Lie algebras. Moreover, we have the following well-known

fact:

Proposition 3.2. Let (A, f) be a quadratic Novikov algebra. Then its underlying

Lie algebra Lie(A) is a direct sum Lie(A) = ga⊕gi, where ga is an abelian ideal with

a non-degenerate restriction f on it and gi is an ideal with an isotropic center.

By Proposition 3.2, it is enough to discuss the classification with the additional

condition that the center of the underlying Lie algebra is isotropic. First, we establish

some lemmas.

Lemma 3.3. In the above notation, dim[Lie(A), Lie(A)] 6 1

2
dimLie(A). If

C(Lie(A)) is isotropic, then [Lie(A), Lie(A)] = C(Lie(A)). As a consequence,

dimLie(A) is even.

P r o o f. Since [Lie(A), Lie(A)] ⊆ C(Lie(A)) and (Lie(A), f) is a quadratic Lie

algebra, we have dim[Lie(A), Lie(A)] 6 1

2
dim Lie(A). If C(Lie(A)) is isotropic, by

Lemma 2.3 we have

C(Lie(A)) ⊆ C(Lie(A))⊥ = [Lie(A), Lie(A)].

It follows that C(Lie(A)) = [Lie(A), Lie(A)] and dimLie(A) is even. �
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Lemma 3.4. [Lie(A), Lie(A)] ⊆ AA ⊆ C(Lie(A)) and [Lie(A), Lie(A)] ⊆ Z(A) ⊆
C(Lie(A)). In particular, Z(A) = AA if C(Lie(A)) is isotropic.

P r o o f. It is enough to show that AA ⊆ C(Lie(A)). In fact, for any a, b, c, d ∈ A,

f(a, [b, cd]) = f([a, b], cd) = 0.

It follows that [b, cd] = 0 by the non-degeneracy of f . Namely AA ⊆ C(Lie(A)).

Furthermore if C(Lie(A)) is isotropic, then Z(A) = AA, by Lemma 3.3. �

Theorem 3.5. Let (A, f) be a quadratic Novikov algebra of dimension 6. If

C(Lie(A)) is isotropic, then there exists a basis {ei, fi, 1 6 i 6 3} of Lie(A) such

that the non-zero products are given by [f1, f2] = e3, [f1, f3] = −e2, [f2, f3] = e1

and f(ei, fj) = δij , where 1 6 i, j 6 3.

P r o o f. Since C(Lie(A)) is isotropic, we have dimC(Lie(A)) = 3, and then

there exists a basis {ei, fi, 1 6 i 6 3} of Lie(A) such that {e1, e2, e3} is a ba-
sis of C(Lie(A)) = [Lie(A), Lie(A)] and f(ei, fj) = δij . Since f(fi, [fi, fj]) =

f([fi, fi], fj) = 0, we have

[f1, f2] = ae3, [f2, f3] = be1, [f3, f1] = ce2.

Since f(f3, [f1, f2]) = f(f1, [f2, f3]) = f(f2, [f3, f1]) and dim[Lie(A), Lie(A)] = 3, we

know that a = b = c 6= 0. Replacing ei by 3
√

aei and fi by (1/ 3
√

a)fi, we have a = 1.

�

Theorem 3.6. Let (A, f) be a quadratic Novikov algebra of dimension 8. Then

C(Lie(A)) is nonisotropic.

P r o o f. Assume that C(Lie(A)) is isotropic. By Lemma 3.3, dimC(Lie(A)) = 4,

and then there exists a basis {ei, fi, 1 6 i 6 4} of A such that {e1, e2, e3, e4} is a
basis of C(Lie(A)) = [Lie(A), Lie(A)] and f(ei, fj) = δij . Since f([fi, fj], fi) =

f([fi, fj ], fj) = 0, we have

[f1, f2] = a3

12e3 + a4

12e4, [f1, f3] = a2

13e2 + a4

13e4,

[f1, f4] = a2

14
e2 + a3

14
e3, [f2, f3] = a1

23
e1 + a4

23
e4,

[f2, f4] = a1

24e1 + a3

24e3, [f3, f4] = a1

34e1 + a2

34e2.

Since f([fi, fj ], fk) = f([fj , fk], fi) = f([fk, fi], fj), we have

a3

12 = a1

23 = −a2

13, a4

12 = a1

24 = −a2

14,

a4

13
= a1

34
= −a3

14
, a4

23
= a2

34
= −a3

24
.
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Let

B =









0 0 0 a3
12 a4

12 a4
13

0 −a3
12

a4
12

0 0 a4
23

a3
12 0 −a4

13 0 −a4
23 0

a4
12

a4
13

0 a4
23

0 0









.

It is easy to check that

detBijkl = 0, 1 6 i < j < k < l 6 6.

Here Bijkl = (ci(B), cj(B), ck(B), cl(B)), where ci(B) denotes the ith-column of B.

It follows that dim[Lie(A), Lie(A)] < 4. This is a contradiction. �

Theorem 3.7. Let (A, f) be a quadratic Novikov algebra of dimension 10. If

C(Lie(A)) is isotropic, then there exists a basis {ei, fi, 1 6 i 6 5} of Lie(A) such

that the non-zero products are given by [f1, f2] = e3, [f1, f3] = −e2, [f2, f3] = e1,

[f1, f4] = e5, [f1, f5] = −e4, [f4, f5] = e1 and f(ei, fj) = δij , where 1 6 i, j 6 5.

P r o o f. Since C(Lie(A)) is isotropic, we have dimC(Lie(A)) = 5, and then

there exists a basis {ei, fi, 1 6 i 6 5} of A such that {e1, e2, e3, e4, e5} is a basis of
C(Lie(A)) = [Lie(A), Lie(A)] and f(ei, fj) = δij .

Without loss of generality, assume that [f1, f2] 6= 0. Suppose that k1e1 + k2e2 +

k3[f1, f2] = 0. Then k1 = f(k1e1, f1) = f(k1e1 + k2e2 + k3[f1, f2], f1) = 0. Similarly,

k2 = 0, and then k3 = 0. That is, e1, e2, [f1, f2] are linearly independent. We can

replace e3 by [f1, f2] since f([f1, f2], fi) = 0 for i = 1, 2. By the identity (1.4), we

have

[f1, f3] = −e2 + ae4 + be5, [f2, f3] = e1 + ce4 + de5.

Replace e1 by [f2, f3] and e2 by −[f1, f3]. Clearly f is non-degenerate restricted on

the linear subspace spanned by e1, e2, e3, f1, f2, f3. Consider the orthogonal comple-

ment to this linear subspace. We can assume that

(3.1) f(ei, fj) = δij , [f1, f2] = e3, [f1, f3] = −e2, [f2, f3] = e1.

Since dim[Lie(A), Lie(A)] = 5, we can assume that [f1, f4] 6= 0. That is,

[f1, f4] = a1e2 + a2e3 + a3e5 6= 0.

By the identities (1.4) and (3.1), a1 = a2 = 0. Moreover, we can assume that

[f1, f4] = e5 by replacing e5 by ae5 and f5 by a−1f5. Furthermore, we have

[f1, f5] = −e4, [f4, f5] = e1.

Also we have [fi, fj] = 0 for i = 2, 3 and j = 4, 5. In fact, assume that [f2, f4] =

ae1 + be3 + ce5. Then a = f(ae1, f1) = f(ae1 + be3 + ce5, f1) = f([f2, f4], f1) =

f(f2, [f4, f1]) = 0. Similarly, b = c = 0. Then the theorem follows. �
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Remark 3.8. It is easy to check that the above quadratic Lie algebras are in-

decomposable, i.e., they can’t decompose into the orthogonal direct sum of two

non-degenerate Lie ideals. Thus any quadratic Novikov algebra on these quadratic

Lie algebras is indecomposable since any ideal of a Novikov algebra is a Lie ideal of

the underlying Lie algebra.
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