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Abstract. The following time delay system

ẋ = Ax(t) +
r∑

1

bq
∗

i x(t − τi)− bϕ(c∗x(t))

is considered, where ϕ : R → R may have discontinuities, in particular at the origin. The
solution is defined using the “redefined nonlinearity” concept. For such systems sliding
modes are discussed and a frequency domain inequality for global asymptotic stability is
given.
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1. Motivation and problem statement

The present paper starts from two phenomena that have as a consequence insta-

bilities in feedback control systems.

A. Since the very beginning of the automatic control, the actuator dynamics has

been a permanent challenge in control engineering, due to such nonlinearities as

saturation, dead zone or dry friction; an “ever green” echo of these aspects is the

problem of the PIO—Pilot-In the loop-Oscillations. Here Category II PIO is defined

by the presence of series rate or position limits, i.e. of saturation nonlinear func-

tions. Additional phenomena displayed by various mechanical hardware such as dry

friction lead to discontinuous nonlinear functions. Discontinuous nonlinear functions
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transform the mathematical description of the nonlinear systems in differential equa-

tions with discontinuous right hand side; defining the solutions of such equations is

quite a problem. A well known phenomenon associated with discontinuous nonlinear

control systems is that of the sliding modes which are associated also with variable

structure systems, hybrid systems, in general to all systems whose behavior implies

some commutation.

B. Another phenomenon connected with control systems dynamics is supplied by

time lags. A combination, i.e. simultaneous presence of time lags and discontinuous

nonlinearities is not impossible, on the contrary.

Consequently, the purpose of this paper is to consider time lag systems with dis-

continuous nonlinearities from the point of view of stability and sliding modes. The

problem has not been without interest up to now [10] but it is felt that the way

of tackling it here is somehow new. Accordingly, the paper is organized as follows:

first an interesting special structure of time delay systems is introduced; then the

problem of defining the solution for the discontinuous nonlinearity case is considered,

together with the problem of the sliding modes. Finally, global asymptotic stability

is discussed and Popov-like frequency domain inequalities are proposed, some usual

assumptions being relaxed.

2. A class of time delay systems

In the following we shall consider the time delay system

(2.1) ẋ(t) = Ax(t) +

r
∑

1

bq∗i x(t − τi) − bϕ(c∗x(t))

which is obviously a special case of

(2.2) ẋ(t) = Ax(t) +

r
∑

1

Bix(t− τi) − bϕ(c∗x(t))

with Bi = bq∗i being special dyadic matrices. If we consider (2.1) or (2.2) as generated

by the feedback connection of the nonlinear block µ(t) = −ϕ(c∗x(t)) with the linear

block with time delay

(2.3) ẋ(t) = Ax(t) +
r

∑

1

Bix(t− τi) + bµ(t), σ = c∗x

and take Bi = bq∗i , we obtain the class of linear systems discussed in [6] for the case

r = 1 (single delay case). This class is not as narrow as one might think since it
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covers the higher order time delay equations

(2.4) y(n)(t) +
n−1
∑

1

αky
(k)(t) +

r
∑

1

n−1
∑

1

βkiy
(k)(t− τi) = µ(t)

with the corresponding choices of the vectors and matrices.

The converse is also true [6]: if (A, b) is a controllable pair, then (2.3) and (2.4) are

linearly equivalent; this equivalence is concerned only with states. More precisely, if

(A, b) is controllable, there exists T , detT 6= 0, such that Ac = TAT−1, bc = TB. If

we take in (2.3) xc = Tx we find

(2.5) ẋc(t) = Acxc(t) +

r
∑

1

bcq
∗

i xc(t− τi) + bcµ(t), σ = c∗T−1xc.

We may denote q∗i T
−1 = (qc

i )
∗ but c∗T−1 may not have the form corresponding to

the equation unless the transfer function of (2.3), which is invariant with respect to

coordinate changes, is also all-pole. The transfer function is

(2.6) χ(s) = c∗
(

sI −A− b

r
∑

1

q∗i e−sτi

)

−1

b =
c∗(sI −A)−1b

1 −
∑r

1 e−sτiq∗i (sI −A)−1b

and if the rational function c∗(sI − A)−1b is all-pole, then χ(s) is such. Other

properties of this class of systems may be found in [6].

3. Extended nonlinearities. Basic theory and sliding modes

We shall refer here to system (2.2); we shall consider that ϕ(σ) may have finite

discontinuities. If we start from the standard point of view of the theory of abso-

lute stability, system (2.2) describes a feedback structure where the nonlinear block

incorporates the discontinuities while the linear time invariant one incorporates the

constant delays. This structure shows that, from the physical point of view, the

differential inclusion approach should allow a correct definition of µ(t) = −ϕ(c∗x(t))

along the solution of the system. It appears now quite natural to introduce

Definition 3.1. By a solution of (2.2) we understand a pair of functions

(x(t), µ(t)) defined on a segment of non-zero measure [t0, t1] and such that x(t)

is absolutely continuous, µ(t) is integrable and

(3.1) ẋ(t) = Ax(t) +

r
∑

1

Bix(t− τi) + bµ(t), σ(t) = c∗x(t); −µ(t) ∈ ϕ(σ(t))

holds a.e. on [t0, t1]. The function µ(t) is called an extended nonlinearity ϕ(σ(t)).
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As shown in [4] system (2.2) may be written as a differential inclusion where the

multi-valued functional f : R×X → R
n reads

(3.2) f(t, φ) = Aφ(0) +

r
∑

1

Biφ(−τi) − bϕ(c∗φ(0)).

The properties of this functional imply that the differential inclusion has a solution

satisfying some initial condition defined on some function space, e.g. C(−τ, 0;Rn),

τ = max
i
τi. If b

∗b 6= 0 then µ(t) is deduced from

−µ(t) = (b∗b)−1b∗
(

ẋ(t) −Ax(t) −
r

∑

1

Bix(t− τi)

)

and clearly −µ(t) ∈ ϕ(σ(t)). In this way we introduce the so-called extended nonlin-

earity. We may now define the sliding modes.

Definition 3.2. Let σ(t) = σ0, where σ0 is a discontinuity point of ϕ(σ), for

t ∈ I ⊆ [t0, t1] Then the solution (x(t), µ(t)), t ∈ I, of (3.1) is said to be in a sliding

mode.

We shall not reproduce here the construction of [4] concerning sliding modes, nor

shall we give its extension to time delay systems (which is not difficult due to the fact

that the right hand side is finite dimensional valued). The following lemma which is

a straightforward extension of Lemma 1.3 of [4] is useful.

Lemma 3.1. Let (x(t), µ(t)) satisfy

(3.3) ẋ(t) = Ax(t) + b

r
∑

1

q∗i x(t− τi) + bµ(t), σ0 = c∗x+ h0µ

with A, qi, b, c, h0, σ0 being constant. Assume the transfer function from the input

µ(t) to the output σ(t) = c∗x(t) + h0µ(t)

(3.4) χ(s) = h0 + c∗
(

sI−A− b

r
∑

1

q∗i e−sτi

)

−1

b = h0 +
c∗(sI −A)−1b

1 −
∑r

1 e−sτiq∗i (sI −A)−1b

satisfies χ(s) 6≡ 0 and either h0 = 0 or σ0 = 0. Then x(t) has its dynamics determined

by the transmission (invariant) zeros of the transfer function χ(s) or it is confined to

an invariant manifold where its dynamics is again determined by the transmission

(invariant) zeros.
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P r o o f. If h0 6= 0 then σ0 = 0 according to Lemma’s assumptions. We deduce

µ(t) = −(1/h0)c
∗x(t), hence x(t) is a solution of

ẋ =
(

A0 −
1

h0
bc∗

)

x(t) +

r
∑

1

bq∗kx(t− τk)

whose characteristic equation reads

det

(

sI −A0 −

r
∑

1

Ake−sτk +
1

h0
bc∗

)

=
1

h0
χ(s) det

(

sI −A0 −

r
∑

1

Ake−sτk

)

and the first case is proved without using the special forms of the matrices Ak.

Let now h0 = 0 and σ0 6= 0. Since c∗x(t) ≡ σ0 = const we have c∗ẋ(t) = 0.

Therefore

c∗A0x(t) + (c∗b)

r
∑

1

q∗kx(t− τk) + (c∗b)µ(t) = 0.

Assume for a while that (c∗b) 6= 0. Then µ(t) is obtained from the above equation

and substituted in the equation for x to obtain

ẋ = (I − (c∗b)−1bc∗)

(

A0x(t) +

r
∑

1

Akx(t− τk)

)

.

Using the same approach as previously we obtain the characteristic equation

det

(

sI − (I − (c∗b)−1bc∗)

(

A0 +
r

∑

1

Ake−sτk

))

= (c∗b)−1sχ(s) det

(

sI −A0 −

r
∑

1

Ake−sτk

)

and this case is also proved without making use of the dyadic form of the matrices Ak.

If c∗b = 0 then c∗ẋ(t) = 0 reads c∗A0x(t) = 0: here the special form Ak = bq∗k was

used; we differentiate once more to obtain

c∗A2
0x(t) + (c∗A0b)

r
∑

1

q∗kx(t− τk) + (c∗A0b)µ(t) = 0.

If c∗A0b 6= 0 we may obtain µ(t) and substitute it in the differential equation for x; if

c∗A0b = 0 we obtain c∗A2
0x(t) ≡ 0 and differentiate once more; this process goes on

up to the moment when c∗Ak
0b 6= 0, 0 6 k 6 n− 1; the existence of such a k follows
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from the fact that χ(s) 6≡ 0 and, since h0 = 0, this implies c∗(sI − A0)
−1b 6≡ 0. It

follows that x(t) is confined to a (n− k − 1)-dimensional linear manifold defined by

c∗x = σ0, c∗A0x = 0, . . . , c∗Ak
0x = 0

and satisfies

ẋ = (I − (c∗Ak
0b)

−1bc∗Ak
0)

(

A0x(t) + b

r
∑

1

q∗kx(t− τk)

)

whose characteristic equation is obtained after some computation to be

det

(

sI − (I − (c∗Ak
0b)

−1bc∗Ak
0)

(

A0 + b

r
∑

1

q∗ke−sτk

))

= (c∗Ak
0b)

−1skχ(s) det

(

sI −A0 − b

r
∑

1

q∗ke−sτk

)

.

The proof is thus complete. The basic things are now at hand to discuss stability

results. �

4. Stability results

A. Our main mathematical object to analyze will be here system (2.1) whose

nonlinear function is supposed to satisfy the conditions of [2], [3], [4]: i) it is piecewise

continuous with finite (first kind) discontinuities; ii) it is bounded, i.e. |ϕ(σ)| 6 m,

∀σ ∈ R; iii) it is subject to the pseudo-sector condition

(4.1) ϕ(σ)σ − εσ2 −
ϕ2(σ)

k
> 0, 0 < k 6 +∞

for some ε ∈ [0, k/4), 0 < |σ| 6 mγ0 where γ0 > 0 is defined by the conditions of the

problem.

Remark that (4.1) with finite k will require ϕ(σ) being continuous at σ = 0. In

order to state and prove the main stability result, we recall the basic fact that, for

time delay and distributed parameter systems, the frequency domain inequalities are

obtained using the integral form of the equations and the corresponding result for

nonlinear integral equations. Due to this fact it is useful to reproduce here, without

proofs, the following basic theorem [3].
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Theorem 4.1. Consider a system described by the nonlinear integral equation

(4.2) σ(t) = ̺(t) −

∫ t

0

κ(t− τ)ϕ(σ(τ)) dτ

under the following assumptions: a) ̺, κ ∈ L1(0,∞) ∩ L2(0,∞); b) ˙̺, κ̇ ∈ L1(0,∞);

c)
∫

∞

t
|κ(λ)| dλ ∈ L2(0,∞); d) ϕ : R → R is subject to conditions i)–iii) stated above,

with γ0 being the L
1 norm of κ(t). If there exists a real ϑ such that the frequency

domain inequality

(4.3)
1

k
+ ε|χ(iω)|2 + Re (1 + iωϑ)χ(iω) > 0, ∀ω ∈ R+

holds then lim
t→∞

σ(t) = 0. Here χ(s) is the Laplace transform of κ(t).

The integral equation (4.2) contains a discontinuous nonlinear function; therefore,

in order to define the solution we take the approach of [4]. Since the extended

nonlinearity is obviously integrable, the solution of (4.2) may be considered as the

solution of

(4.4) σ(t) = ̺(t) +

∫ t

0

κ(t− τ)ξ(τ) dτ, ξ(t) = −ϕ(σ(t))

with the extended nonlinearity as previously. To end this section, if ϕ(σ) is discon-

tinuous at σ = 0 then k = ∞ in (4.1) and (4.3). However, the frequency domain

condition is still improved with respect to the standard Popov inequality, due to

the positive term ε|χ(iω)|2; the same improvement might be obtained via a circle

criterion; however, we have here a significant detail—(4.1) holds on a finite interval

only, unlike the standard cases (including that of the circle criterion).

B. We shall turn now to the case of system (2.1) having in mind the line of [3]

where the system is without delays, i.e. qi = 0, i = 1, r. The main problem here is to

obtain lim
t→∞

x(t) = 0. If ϕ(σ) is continuous at 0 it is a standard way that gives not

only the asymptotic behavior (attractiveness of 0) but also Liapunov stability, hence

global asymptotic stability. If ϕ(σ) is discontinuous at 0 then it is still possible to

obtain for (2.1) a result which is analogous to Theorem 3 of [3].

Theorem 4.2. Consider system (2.1) under the following assumptions: a) the

characteristic equation

(4.5) det

(

λI −A−

r
∑

1

bq∗i e−λτi

)

= 0

has all its roots in the left half plane of C, (c∗, A) is an observable pair and there

exists k, 0 6 k 6 n− 1 such that c∗Akb 6= 0; b) ϕ : R → R is such that |ϕ(σ)| 6 m,
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ϕ has a discontinuity at σ = 0 and |ϕ(σ)/σ| > ε > 0 for 0 < |σ| 6 mγ0 where γ0 is

the L1 norm of κ(t) defined previously. Assume also that there exists a real ϑ such

that

(4.6) ε|χ(iω)|2 + Re (1 + iωϑ)χ(iω) > 0, ∀ω ∈ R+

with χ(s) = c∗
(

sI − A − b
r
∑

1
q∗i e−sτi

)

−1

b the transfer function of the linear part

of (2.1), such that all its transmission (invariant) zeros are outside the imaginary

axis iR. Then lim
t→∞

x(t) = 0 for any initial condition (x0, ψ(·)) where ψ is an R
n-

valued function defined on [−τ, 0), τ = max {τ1, . . . , τr}.

P r o o f. Let us mention first that the proof of this theorem, given in [9], makes

largely use of a canonical change of coordinates used in [2], [3] but which goes back

to [1]. Here we shall take an approach that strongly relies on Lemma 3.1 just proved

above. First we use the standard Cauchy formula for time delay systems [5], [8] to

obtain the integral form (4.4). Due to the assumption on the roots of (4.5), both

̺(t) and κ(t) satisfy exponential estimates with strictly negative exponent; therefore

all assumptions of Theorem 4.1 concerning ̺, κ, their derivatives and integrals are

fulfilled; χ(s) of (4.3) is exactly the Laplace transform of Theorem 4.1. Application

of Theorem 4.1 will give lim
t→∞

σ(t) = lim
t→∞

c∗x(t) = 0.

Should ϕ(·) be continuous at 0, σ(t) → 0 would imply ϕ(σ(t)) → 0 and a standard

application of Lemma 18.2 of [8] would give lim
t→∞

x(t) = 0 along with Liapunov

stability. But since ϕ(·) is discontinuous at 0, the trajectory of the system approaches

asymptotically the dynamics of (3.1) with c∗x = 0. We may clearly apply Lemma 3.1

for the case h0 = 0 (the fact that here σ0 = 0 is irrelevant) to find that the dynamics

of x(t) as confined to the (n − k − 1)-dimensional linear manifold—also called “of

the sliding modes”—is given by the system’s invariant zeros which are outside the

imaginary axis iR. Since x(t) is a priori bounded due to the assumption on the roots

of (4.5) and to the boundedness of ϕ(σ), a simple application of Lemma 22.3 of [7]

will give lim
t→∞

x(t) = 0. This ends the proof which is new as compared to that of [9].

Remark also that, in comparison with the standard results, here the use of

Lemma 22.3 of [7] combined with the boundedness of the solution allowed to relax

the minimal phase assumption which is standard for the sliding mode system by

replacing it with the hyperbolicity of the transmission zeros.

C. Following [3] we may give an extension of the previous theorem which is also

an extension of Theorem 4 there.
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Theorem 4.3. Assume all conditions of Theorem 4.2 being fulfilled, except that a

simple zero of χ(s) is allowed. Then x(t) approaches asymptotically the stationary set

(4.7) S =

{

x ∈ R
n : x =

(

A+ b

r
∑

1

qi

)

−1

bξ, ξ ∈ [ϕ(0−), ϕ(0+)]

}

.

P r o o f. Since all assumptions of Theorem 4.2 are valid, except that about

the transmission zeros, application of this theorem gives boundedness of all state

variables and σ(t) ≡ c∗x(t) → 0. Let k ∈ [0, n− 1] be the positive integer such that

c∗Akb 6= 0. Following [1], [2], [3] we perform two successive changes of coordinates

aiming at having σ, σ′, . . . , σ(k−1) as the first k state variables ξi, i = 1, . . . , k; ξk+1

is the only state variable whose equation contains both the nonlinearity and time

delay terms and the remaining variables account for the dynamics defined by the

transmission zeros. Denote by v1 the vector formed by ξ1 = σ, . . ., ξk = σ(k−1) and

by v2 the vector formed by ξk+2, . . . , ξn whose dynamics is given by the transmission

zeros and is without delays. Let Q and T be the nonsingular matrices of the two

successive changes of coordinates and denote by x̂ the resulting state vector whose

components are v1, ξk+1, v2. We shall obtain finally the following system

ξ̇i = ξi+1, i = 1, . . . , k,(4.8)

ξ̇k+1 =
c∗Ak+1b

c∗Akb
ξk+1(t) + ξk+2(t) − (c∗Akb)

(

ϕ(ξ1(t)) −
r

∑

1

q∗j (TQ)−1x̂(t− τj)

)

,

v̇2 = A21v1(t) + ̺k+2ξk+1(t) +A22v2

where v1(t) → 0, ξk+1(t) → 0 either from Lemma 3.1 or by applying successively the

lemma of Barbălat [7]. We have thus the system

v̇2 = A22v2 + f2(t), f2(t) → 0

where A22 has a simple zero eigenvalue. A change of coordinates is performed in this

system by z2 = T2v2 with detT2 6= 0 to obtain the structure

ζ̇k+2 = ψk+2(t), ż3 = A3z3 + f3(t)

where the scalar ζk+2 and the vector z3 are the components of z2; also the scalar

function ψk+2(t) and the vector function f3(t) are the components of the vector

function Tf2(t) that approaches asymptotically 0 since f2(t) is such. Also A3 has

its eigenvalues outside the imaginary axis, hence by the same Lemma 22.3 of [7]

z3(t) → 0, being bounded as all state variables. For the bounded state variable

ζk+2 we are in position to apply Lemma 22.4 of [7] to obtain that for every pair of
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numbers ε > 0 (arbitrarily small) and T0 > 0 (arbitrarily large) there exists T1 > 0

(sufficiently large) such that

|ζk+2(t+ ϑ) − ζk+2(t)| 6 ε, ∀t > T1, 0 6 ϑ 6 T0

which shows that ζk+2(t) approaches asymptotically a constant value.

Summarizing, it follows that x(t) approaches asymptotically for t → ∞ some

constant vector. But the constant solutions of the system (2.1) correspond, according

to the definition of the extended nonlinearity, to the constant solutions of (3.1)

associated with the discontinuity at 0 and this gives exactly the set (4.7). This

completes the proof.

5. Conclusions

In this paper we have shown a simple way of extending the idea of the solution

for quasi-linear or almost linear systems with discontinuous nonlinearity to time

delay systems. This is based mainly on the feedback structure where the “good”

subsystem is linear and time invariant (with lumped or distributed parameters) while

the “unpleasant” one is nonlinear and possibly discontinuous. Using these results

the extension of some stability results to the class of systems considered is obtained.
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