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1. Introduction

The theory of amenable groups and semigroups began in the early twentieth cen-

tury with the work of Banach, when he showed that there exists an invariant mean on

the set of all bounded real valued functions on R [1]. Von Neumann then showed that

for high enough dimension, the rotation group of the n-sphere has free subgroups on

two generators [14]. This elaborated on a previous result of Hausdorff, which shows

that no mean, which is invariant under all rotations of the 2-sphere, exists on the set

of bounded functions on the 2-sphere [10]. Von Neumann proved that if a group G

contains a free subgroup on two generators, then G is nonamenable [14]. The con-

verse of this result has been shown to be false in general. In particular, Olshanskii

has constructed an example of a nonamenable group which contains no free sub-

group on two generators [15]. Examples of amenable groups and semigroups include

all commutative semigroups (in particular all abelian groups), all finite groups, and

all solvable groups. Examples of nonamenable groups and semigroups include any

free group or semigroup of rank two or higher. For more on amenable groups and

semigroups, see [2], [5], [7], [8], [9].

It is well known that if a semigroup S is the ascending union of right amenable

semigroups, then S is right amenable [2]. In [4], the author constructs an example
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of a right amenable semigroup which is the ascending union of subsemigroups, none

of which are right amenable. However, the semigroup constructed in [4] is not can-

cellative. It is known that any subgroup of an amenable group is also amenable [5].

Thus, if a group G is the ascending union of nonamenable subgroups, then G is

nonamenable. There are many such results about amenability which are true for

groups, but false for semigroups in general. Yet, while many of these results are false

for semigroups in general, many of them are true not only for groups, but also for

cancellative semigroups. For example:

• If S is a cancellative semigroup which contains a free subgroup on two genera-

tors, then S is nonamenable.

• A cancellative semigroup S is right amenable if and only if for each ε ∈ (0, 1),

and for each finite, nonempty subset H ⊆ S, there exists a finite, nonempty

subset E ⊆ S such that for each h ∈ H , |E ∩ Eh|/|E| > ε [3], [6], [13].

• If S is a cancellative semigroup and P(S) is the power set of S, then S is right

amenable if and only if there exists a finitely additive, right invariant measure

m : P(S) → [0, 1] which is normed by S [12], [16].

• If every finitely generated subsemigroup of a cancellative semigroup S is right

amenable, then S is right amenable [6].

• If S is a finite cancellative semigroup, then S is right amenable [2], [3], [6].

Thus, one can ask the question: If a cancellative semigroup S is the ascending

union of subsemigroups, none of which are right amenable, then is it necessary for S

not to be right amenable? In this paper, we show that the answer to this question

is no by constructing an even stronger example. Namely, we construct an example

of an amenable group which is the ascending union of submonoids, none of which

are right amenable (note that by the above statement, none of the submonoids are

themselves groups).

2. An amenable ascending union of nonamenable monoids

In this section we construct an example of an amenable group which is the ascend-

ing union of submonoids, none of which are right amenable. The following lemma is

proved in [2].

Lemma 2.1. Let S and Q be semigroups. If S is right amenable, and f : S → Q

is a semigroup homomorphism onto Q, then Q is right amenable.

In [11], Hochster constructs an example of an amenable groupH which is generated

by the free semigroup S2 on two generators. Let S∗

2 denote the free monoid on two

generators. Let D be the weak product of infinitely many copies of H with itself.

688



That is, D is the group such that each element of D is an infinite sequence of elements

from H such that all but finitely many terms in the sequence are the identity element

of H .

Theorem 2.1. The group D is the amenable ascending union of submonoids,

none of which are right amenable.

P r o o f. Let n ∈ Z with n > 1. For each j = 1, 2, 3, . . . , n, let Bj = H , and for

each j ∈ Z with j > n+1, let Bj be the identity element 1H of the groupH . Let Jn =
∞∏

j=1

Bj . For each j = 1, 2, 3, . . . , n, let Aj = H . Let An+1 = S∗

2 . For each j ∈ Z with

j > n+2, let Aj be the identity element 1H of the groupH . LetKn =
∞∏

j=1

Aj . Clearly,

D is the ascending union of the subgroups J1 ⊆ J2 ⊆ J3 ⊆ J4 ⊆ . . . ⊆ Jn ⊆ . . ..

Since 1H ∈ S∗

2 , Jn ⊆ Kn for each n > 1, which implies that
∞⋃

n=1

Jn ⊆
∞⋃

n=1

Kn.

Since S∗

2 ⊆ H , Kn ⊆ Jn+1 for each n > 1, which implies that
∞⋃

n=1

Kn ⊆
∞⋃

n=1

Jn.

Thus, D =
∞⋃

n=1

Jn =
∞⋃

n=1

Kn. In particular, D is the ascending union of submonoids

K1 ⊆ K2 ⊆ K3 ⊆ K4 ⊆ . . . ⊆ Kn ⊆ . . ..

Since H is amenable, it follows that for each n > 1, Jn is amenable [2]. Since D is

the ascending union of the amenable subgroups J1 ⊆ J2 ⊆ J3 ⊆ J4 ⊆ . . . ⊆ Jn ⊆ . . .,

it follows that D is amenable [2].

Let n > 1. Let ϕn : Kn → S∗

2 be the projection map from Kn onto its n + 1st

coordinate. It is straitforward to check that ϕn is a semigroup homomorphism onto

S∗

2 . Since S∗

2 is not right amenable, it follows by Lemma 2.1 that Kn is not right

amenable. �

3. Concluding remarks

Note that the example D constructed above in this paper, as well as the example

constructed in [4], contain a free subsemigroup on two generators. In [6], Frey proves

that if S is a right amenable, cancellative semigroup which does not contain a free

subsemigroup on two generators, then every subsemigroup of S is right amenable.

Thus, if S is a cancellative semigroup which does not contain a free subsemigroup on

two generators, and S is the ascending union of subsemigroups, none of which are

right amenable, then S is not right amenable.
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