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NON-EXCHANGEABLE RANDOM VARIABLES,
ARCHIMAX COPULAS AND THEIR FITTING
TO REAL DATA

Tomáš Bacigál, Vladiḿır Jágr and Radko Mesiar

The aim of this paper is to open a new way of modelling non-exchangeable random
variables with a class of Archimax copulas. We investigate a connection between pow-
ers of generators and dependence functions, and propose some construction methods for
dependence functions. Application to different hydrological data is given.
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1. INTRODUCTION

In recent years copulas turned out to be a promising tool in multivariate modelling,
mostly with applications in actuarial sciences and hydrology.

In short, copula is a function which allows modelling dependence structure be-
tween stochastic variables. The main advantage is that the copula approach can split
the problem of constructing multivariate probability distributions into a part con-
taining the marginal one-dimensional distribution functions and a part containing
the dependence structure. These two parts can be studied and estimated separately
and then rejoined to form a joint distribution function.

Restricting ourselves to bivariate case, copula is a function C : [0, 1]2 → [0, 1]
which satisfies the boundary conditions, C(t, 0) = C(0, t) = 0 and C(t, 1) = C(1, t) =
t for t ∈ [0, 1] (uniform margins), and the 2-increasing property, C(u2, v2)−C(u2, v1)−
C(u1, v2) + C(u1, v1) ≥ 0 for all u1 ≤ u2, v1 ≤ v2 ∈ [0, 1]. Copula is symmetric if
C(u, v) = C(v, u) for all (u, v) ∈ [0, 1]2 and is asymmetric otherwise. By [a, b]
we mean a closed interval with endpoints a and b, while ]a, b[ will denote an open
interval.

There are several approaches how to model exchangeable random variables. Most
of them refer to Archimedean copulas [15], i. e., copulas Cϕ : [0, 1]2 → [0, 1] express-
ible in the form

Cϕ(u, v) = ϕ(−1) (ϕ(u) + ϕ(v)) , (1)

where ϕ : [0, 1] → [0,∞] is a continuous strictly decreasing convex function satisfying
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ϕ(1) = 0, and its pseudo-inverse ϕ(−1) : [0,∞] → [0, 1] is given by

ϕ(−1)(x) = ϕ−1 (min(ϕ(0), x)) . (2)

Among several approaches allowing to fit copulas to real data we recall [5] and
references therein.

The aim of this paper is to open a new way of modelling non-exchangeable random
variables which are related to asymmetric copulas. In the next section we recall
Archimax copulas, a special class of copulas which are non-symmetric, in general.
After some new theoretical results about the structure of Archimax copulas, in
Section 3 we propose new construction methods for one part of this class of copulas.
Section 4 gives a short overview of estimation methods used in the application to
modelling hydrological data in Section 5.

2. ARCHIMAX COPULAS

Since there are much more cases in the nature when we feel the causality among
stochastic processes flows in certain direction rather than the cases when we observe
random variables equally affected by common underlying process, we find symmetry
of the most used copulas quite restrictive. Among few classes of asymmetric copulas,
convenient enough to model non-exchangeable random variables, we focus on the
class of Archimax copulas [2] built up from a convex continuous decreasing function
ϕ : [0, 1] → [0,∞], ϕ(1) = 0, called generator and a convex function A : [0, 1] → [0, 1],
max(t, 1 − t) ≤ A(t) ≤ 1 for all t ∈ [0, 1], called dependence function. Then the
corresponding Archimax copula is given by

Cϕ,A(u, v) = ϕ(−1)

[
(ϕ(u) + ϕ(v))A

(
ϕ(u)

ϕ(u) + ϕ(v)

)]
for all u, v ∈ [0, 1] (3)

(with conventions 0/0 = ∞/∞ = 0, where ϕ(−1) is given by (2)). Observe that
Archimax copulas contains as special subclasses all Archimedean copulas (then A ≡
A∗ = 1) and all extreme value copulas [16], in short EV copulas (then ϕ(t) =
− log(t)). For the weakest dependence function A = A∗,

A∗(t) = max(t, 1− t),

we have Cϕ,A∗ = M , the strongest copula of co-monotone dependence, independently
of the generator ϕ.

Moreover, it is easy to check that an Archimax copula Cϕ,A is symmetric if and
only if A(t) = A(1 − t) for all t ∈ [0, 1] (i. e., A is symmetric wrt. axis x = 1/2).
Recent results on measuring asymmetry can be found in [4].

Suppose that ϕ is a generator of a copula Cϕ. Then also ϕλ, λ > 1, is a generator
of a copula Cϕλ . As an example recall the Gumbel family of copulas

(
CG

(λ)

)
λ∈[1,∞[

,

generated by generators ϕG
(λ) : [0, 1] → [0,∞], ϕG

(λ)(x) = (− log x)λ, which bears
from the product copula Π generated by ϕG

(1).

Proposition 2.1. Let ϕ : [0, 1] → [0,∞] be a generator of a copula Cϕ. For
any dependence function A, and any λ ≥ 1, the Archimax copula Cϕλ,A is also
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an Archimax copula based on generator ϕ, i. e., Cϕλ,A = Cϕ,B(A,λ) , where B(A,λ) :
[0, 1] → [0, 1] is a dependence function given by

B(A,λ) = A(λ)(t)

[
A

((
t

A(λ)(t)

)λ
)]1/λ

, (4)

with A(λ) : [0, 1] → [0, 1], A(λ)(t) =
(
tλ + (1− t)λ

)1/λ.

P r o o f . Formula (4) is a matter of processing of the equality Cϕλ,A = Cϕ,B(A,λ) .
Indeed,

Cϕλ,A(u, v) = ϕ(−1)

([
(ϕλ(u) + ϕλ(v))A

(
φλ(u)

φλ(u) + φλ(v)

)]1/λ
)

= ϕ(−1)

(ϕ(u) + ϕ(v))

[
φλ(u) + φλ(v)

(φ(u) + φ(v))λ
A

(
φλ(u)

φλ(u) + φλ(v)

)]1/λ
 ,

while

Cϕλ,B(A,λ)(u, v)

= ϕ(−1)

(ϕ(u) + ϕ(v))

[(
φ(u)

φ(u) + φ(v)

)λ

+
(

φ(v)
φ(u) + φ(v)

)λ
]1/λ

A


(

φ(u)
φ(u)+φ(v)

)λ

(
φ(u)

φ(u)+φ(v)

)λ

+
(

φ(v)
φ(u)+φ(v)

)λ




= ϕ(−1)

(ϕ(u) + ϕ(v))

[
φλ(u) + φλ(v)

(φ(u) + φ(v))λ
A

(
φλ(u)

φλ(u) + φλ(v)

)]1/λ
 .

To see that B(A,λ) is indeed a dependence function, note that based on Gumbel
family, we have also CϕG

(λ),A
= CϕG

(1),B(A,λ)
. Due to [2], CϕG

(λ),A
is a copula. Moreover,

for any power p ∈]0,∞[,

CϕG
(λ),A

(up, vp)

= exp

(
−
[(

(− log up)λ + (− log vp)λ
)
A

(
(− log up)λ

(− log up)λ + (− log vp)λ

)]1/λ
)

= exp

(
−p

[(
(− log u)λ + (− log v)λ

)
A

(
(− log u)λ

(− log u)λ + (− log v)λ

)]1/λ
)

=
(
CϕG

(λ),A
(u, v)

)p

,
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i. e., CϕG
(λ),A

is an EV-copula [15, 16]. Due to representation of EV-copulas, there is
a dependence function B : [0, 1] → [0, 1] such that

CϕG
(λ),A

= CϕG
(1),B

and evidently B = BA,λ. �

Dependence functions A(λ), λ ∈ [0, 1], are called Gumbel dependence functions
due to the fact that CG

(λ) = CϕG
(1),A(λ)

. Observe that the Archimedean copula Cϕλ

is just an Archimax copula based on ϕ and A(λ), Cϕλ = Cϕ,A(λ) , independently
of the generator ϕ. Proposition 2.1 has an important impact for the structure of
Archimax copulas. For any generator ϕ : [0, 1] → [0,∞], classes Aϕλ of Archimax
copulas based on generators ϕλ, λ ∈ [1,∞[, are nested, and Aϕλ $ Aϕµ whenever
1 ≤ µ < λ ≤ ∞, where Aϕ∞ =

⋂∞
λ=1Aϕλ = {M}. Therefore it is important to know

the basic form η of each generator ϕ, ϕ = ηλ with λ ≥ 1, where η : [0, 1] → [0,∞]
is a generator such that for any λ ∈]0, 1[, ηλ is no more convex. Such generators
η will be called basic generators and they correspond to Archimedean copulas Cη

such that for any p > 1, the corresponding Lp-norm ‖Cη‖p > 1 (for more details we
recommend [3, 14]).

Proposition 2.2. Let ϕ : [0, 1] → [0,∞] be a generator. Let

α = inf
{ϕ(x)ϕ′′(x)

(ϕ′(x))2
∣∣ x ∈]0, 1[and ϕ′(x), ϕ′′(x) exist

}
.

Then
η = ϕ1/p, where p =

1
1− α

,

is a basic generator.

P r o o f . The convexity of a generator ϕ(η) is equivalent to the non-negativity of
the derivatives ϕ′′(η′′) in all points where they exist. Let ϕ = ηp, p ≥ 1, where η is
a basic generator. Then η = ϕ1/p, η′ = 1

pϕ1/p−1ϕ′ and

η′′ =
1
p

(
1
p
− 1
)

ϕ
1
p−2(ϕ′)2 +

1
p
ϕ

1
p−1ϕ′′

=
1
p
ϕ

1
p−2

((
1
p
− 1
)

(ϕ′)2 + ϕ′ϕ′′
)
≥ 0

if and only if α ≤ ϕϕ′′/(ϕ′)2, where α = 1 − 1/p, where the last inequality should
be satisfied in each point from ]0, 1[ where ϕ′ and ϕ′′ exist. The result follows. �

Based on Propositions 2.1 and 2.2, we propose to fit Archimax copulas based on
basic generators η only. Thus before choosing the appropriate candidates for fitting
of a generator, one should check their basic forms. The next lemma gives a sufficient
condition for a generator η to be basic.
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Lemma 2.3. Let η : [0, 1] → [0,∞] be a generator and let η′(1−) 6= 0. Then η is a
basic generator.

P r o o f . Due to continuity of η and η(1) = 0, if η′(1−) 6= 0 then α = inf
{

η(x)η′′(x)
(η′(x))2

∣∣
x ∈]0, 1[ and η′(x), η′′(x) exist

}
= 0 and thus p = 1. �

Example 2.4.

(i) For each Gumbel generator ϕG
(λ), the corresponding basic generator is η = ϕG

(1)

(the generator of the product copula).

(ii) The weakest copula C(p) which has minimal Lp-norm, ‖C(p)‖p = 1, p ∈ [1,∞[,
is an Archimedean copula generated by a generator ϕY

(p) : [0, 1] → [0,∞],
ϕY

(p)(x) = (1 − x)p (Y stands for Yager family, see [18], more details on Lp-
norms and copulas can be found in [3]). Again, for any p ∈ [1,∞[, the corre-
sponding basic generator η = ϕY

(1) is unique (generator of the lower Frechet-
Hoeffding bound W ).

(iii) Based on Lemma 2.3 one can quickly check that the families of Clayton, Frank,
Ali–Mikhail–Haq (see [10, 15]), are generated by basic generators only.

(iv) Taking generators from some two-parameter families given in [10], one may
easily verify that

— BB1 generator ϕ(t) = (t−a − 1)b with a > 0, b ≥ 1 gains its basic form
only for b = 1, while BB3 with ϕ(t) = eb(− log t)a −1 and a ≥ 1, b > 0 only
for a = 1. Then, both would result in strict Clayton copula;

— BB2 generator ϕ(t) = eb(t−a−1) − 1 with a > 0, b > 0 is basic for any a, b;

— BB6 generator ϕ(t) =
[
− log(1− (1− t)a)

]b with a ≥ 1, b > 0 reduces to
basic form if b = 1/a;

— each BB7 generator ϕ(t) =
[(

1− (1− t)a
)−b − 1

]1/a with a ≥ 1, b > 0 is
a basic generator.

3. SOME CONSTRUCTION METHODS FOR DEPENDENCE FUNCTIONS

Based on some known dependence functions, it is desirable to be able to construct
new dependence functions to increase the fitting potential of our Archimax copulas
buffer. Recall that for dependence functions A1, . . . , An also their convex sum A =∑n

i=1 λiAi (with
∑n

i=1 λi = 1) is a dependence function. Inspired by the bivariate
construction [11] and based on the recent results [13], consider dependence functions
A1, . . . , An. Then the corresponding EV copulas CA1 , . . . , CAn : [0, 1]2 → [0, 1] are
given by

CAi
(u, v) = exp

(
(log u + log v)Ai

(
log u

log u + log v

))
. (5)
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Take arbitrary two probability vectors (a1, . . . , an), (b1, . . . , bn) ∈ [0, 1]n,
∑n

i=1 ai =∑n
i=1 bi = 1. Then due to [13] the function C : [0, 1]2 → [0, 1] given by

C(u, v) =
n∏

i=1

Ci

(
uai , vbi

)
(6)

is also a copula. Note that EV copulas are characterized by the power stability
C
(
uλ, vλ

)
= (C(u, v))λ for any λ ∈]0,∞[, u, v ∈ [0, 1]. It is then easy to see that C

given by (6) is also an EV copula, and thus there is a dependence function A so that
C = CA. For processing purposes, denote t = log u

log u+log v . Then log v = 1−t
t log u and

log u + log v = log u
t . Moreover,

C(u, v) = exp
(

(log u + log v)A
(

log u

log u + log v

))
= exp

(
log u

t
A(t)

)
. (7)

On the other hand, due to (6),

C(u, v) =
n∏

i=1

exp
((

ai log u + bi
1− t

t
log u

)
Ai

(
ai log u

ai log u + bi
1−t

t log u

))

= exp

(
log u

t

n∑
i=1

(tai + (1− t)bi) Ai

(
tai

tai + (1− t)bi

))
. (8)

Comparing (7) and (8), we see that

A(t) =
n∑

i=1

(tai + (1− t)bi) Ai

(
tai

tai + (1− t)bi

)
. (9)

What was just shown is the following construction method.

Proposition 3.1. Let A1, . . . , An be dependence functions. Then for any proba-
bility vectors (a1, . . . , an), (b1, . . . , bn) ∈ [0, 1]n, also the function A : [0, 1] → [0, 1]
given by (9) is a dependence function.

Observe that the formula (9) can be deduced by induction from the original
formula given in [11], as well as seen as extension of Proposition 3 of [9] dealing with
A1, A2 and α, β ∈ [0, 1]. Then the function A : [0, 1]2 → [0, 1] given by

A(t) = (αt + β(1− t))A1

(
αt

αt + β(1− t)

)
+ ((1− α)t + (1− β)(1− t))A2

(
(1− α)t

(1− α)t + (1− β)(1− t)

)
is a dependence function. Moreover, if (a1, . . . , an) = (b1, . . . , bn), then the formula
(9) turns into the standard convex sum A(t) =

∑n
i=1 aiAi(t). Evidently, this method

allows to introduce asymmetric Archimax copulas even if starting from symmetric
Archimax copulas.
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Example 3.2. Consider dependence functions A1, A2. Let A2 = A(2), see (4),
a1 = a2 = 1/2, b1 = 0, b2 = 1. Then the dependence function A given by (9) does
not depend on A1, and it holds

A(t) =
t

2
+

(2− t)
2

A2

(
t

2− t

)
=

t

2
+

√(
t

2

)2

+ (1− t)2.

Observe that A(1/3) = (1 +
√

17)/6 = 0.85385 and A(2/3) = (1 +
√

2)/3 = 0.80474,
proving the asymmetry of any relevant Archimax copula Cφ,A (recall that Cφ,A is
symmetric if and only if A(t) = A(1− t) for all t ∈ [0, 1]).

Inspired by [1] where construction methods for generators of Archimedean copulas
were discussed, we propose one more new construction method for dependence func-
tion. For a dependence function A, denote by B a [0, 1] → [0, 1] function given by
B(t) = A(t)−1+t. Each such B is characterized by its convexity, non-decreasingness
and boundary conditions

max(0, 2t− 1) ≤ B(t) ≤ t.

The pseudo-inverse B(−1) : [0, 1] → [0, 1] of B is given by

B(−1)(u) = sup{t ∈ [0, 1] |B(t) ≤ u},

and it is characterized by concavity, non-decreasingness and boundary conditions

u ≤ B(−1)(u) ≤ u + 1
2

. (10)

Consider dependence functions A1, . . . , An and related functions B
(−1)
1 , . . . , B

(−1)
n .

Then the convex combination
∑n

i=1 λiB
(−1)
i is concave, non-decreasing and satisfy

the boundary conditions (10), and thus there is a dependence function A such that
its related function B(−1) is just equal to

∑n
i=1 λiB

(−1)
i . This fact proves our next

construction method.

Proposition 3.3. Let A1, . . . , An be dependence functions and let (λ1, . . . , λn) ∈
[0, 1]n be a probability vector. Then the function A : [0, 1] → [0, 1] given by

A(t) =

(
n∑

i=1

λiB
(−1)
i

)(−1)

(t) + 1− t (11)

is a dependence function.

Example 3.4. Consider the extremal dependence functions A1 = A∗ and A2 =
A∗ = 1. Then B1(t) = max(0, 2t − 1) = B∗(t) and B2(t) = t = B∗(t). Moreover,
B

(−1)
1 (u) = u+1

2 and B
(−1)
2 (u) = u. For a fixed λ ∈ [0, 1],(

λB
(−1)
1 + (1 − λ)B(−1)

2

)
(u) =

(
1 − λ

2

)
(u) + λ

2 = B
(−1)
λ (u), and thus Bλ(t) =(

B
(−1)
λ

)(−1)(t) = max
(
0, 2t−λ

2−λ

)
and Aλ(t) = Bλ(t) + 1 − t = max

(
1 − t, 2−2λ+λt

2−λ

)
.

Note that both A1 and A2 are symmetric (wrt. axis x = 1/2), but not Aλ for any
λ ∈

]
0, 1
[
.
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4. ESTIMATION METHOD

Basically there are two main methods recently used for estimating one-parameter
families. One uses various measures of dependence, such as Kendall’s tau through
formal relation with copula parameter θ, the another is based on maximization of a
likelihood function [8]. For general multi-parameter copulas (not e. g. multivariate
normal or pair-copulas) the first method is problematic and to our best knowledge
no satisfactory study has been presented so far. Given a sample of n-dimensional
random vectors X1, . . . ,Xm, here we use pseudo-loglikelihood function

L(θ) =
m∑

i=1

log
(
cθ

(
F1(X1,i), . . . , Fn(Xn,i)

))
employing copula density cθ (which is n-order mixed derivative with respect to all
variables) with vector parameter θ and marginal empirical distribution functions

Fj(x) =
1

m + 1

m∑
i=1

1(Xi,j ≤ x), j = 1, . . . , n,

where 1(·) is the indicator function which yields 1 whenever · is true and 0 oth-
erwise. The marginal empirical distribution functions transform Xi into pseudo-
observations U i, i = 1, . . . ,m. Goodness of fit can be checked by comparing (L2-
norm) squared distances

Sn =
m∑

i=1

(Cn(Ui,1, . . . , Ui,n)− Cθ(Ui,1, . . . , Ui,n))2

between estimated parametric copulas Cθ and empirical copula function

Cn(u1, . . . , un) =
1
m

m∑
i=1

1(Ui,1 ≤ u1, . . . , Ui,n ≤ un), (u1, . . . , un) ∈ [0, 1]n .

However because of computational intensity of simulation related to bootstrap method,
we do not perform GOF test [7] here (unless one would be interested in classifying
copulas according to their competence to describe particular data). Instead, for
comparison purposes we employ model selection criterion, in particular the Bayesian
information criterion defined

BIC = −2L(θ) + k log(m)

where k denotes number of parameters. The model preference grows with decreasing
BIC.

5. APPLICATION

To examine performance of new models we consider two kinds of bivariate (n = 2)
hydrological data. One is constituted by monthly average flow rate of two rivers
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– Danube at Nagymaros (Hungary) {Xi,1}, i = 1, . . . m, and Inn measured at
Schärding (Austria) {Xi,2} (Inn is tributary to Danube, Nagymaros lies about 570
km downstream) comprising m = 660 realisations recorded for 55 years until 1991,
see [17]. Another sequence of m = 113 entries comes from annual summer term
maxima of the Vltava river (Bohemia) flow rate {Xi,1} (measured above the dam
Kamyk until 2007) with corresponding flood volume {Xi,2}, which is total amount
of water run within 8 days starting three days before the corresponding flow rate
peak.

Due to temporal manner of the monthly river discharge, the data were found
not being i.i.d. After filtering the lowest frequencies, seasonal component and ap-
plying AR(1) model, the residuals were tested by Ljung-Box test and test of serial
independence (based on copulas and proposed by [6]) with positive result.

Both bivariate data transformed to unit square are shown in Figure 1.
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Fig. 1. Scatter plot of data after transformation by its marginal

empirical distribution function.

Tables 2 and 3 summarize competition of new construction methods alongside
well-established models (for overview see Table 1, [10, 15]) and related construction
methods [1]. Besides parameters and maximized value of log-likelihood function we
provide the corresponding estimation time and BIC criterion. Parameters were found
by box-constrained optimisation (method L-BFGS-B implemented in R) which, if
failed to find global maximum, was helped by pre-search over a grid. This happens
mostly with more-parameter piece-wise construction of dependence function such as
LPL. Parameters other than bounded by unit interval were rounded to one decimal
place. Values in parentheses are fixed during estimation, square brackets indicate
construction method of dependence function, in particular [bi] denotes biconvex
combination given by Proposition 3.1 for n = 2, [li] represents special case of [bi]
when ai = bi (i = 1, 2), and [inv] refers to Proposition 3.3. So far we implemented
construction procedures for two dependence functions only and their individual pa-
rameters are estimated separately (in advance) from weighting parameters of their
combination.
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family generator ϕθ(t) parameter range limiting case (Archimed.)

Gumbel (− log(t))θ1 [1,∞] {1} Π, {∞} M

Clayton t−θ1 − 1 ]0,∞] {0} Π, {∞} M

Frank − log
“

e−θ1t−1
e−θ1−1

”
< {−∞} W , {0} Π, {∞} M

Joe − log
“
1− (1− t)θ1

”
[1,∞] {1} Π, {∞} M

BB1 (t−θ1 − 1)θ2 ]0,∞]× [1,∞] {0, 1} Π, {∞,∞} M
dependence function Aθ(t) limiting case (EV)

Mixed θ1t2 − θ1t + 1 [0, 1] {0} Π

Gumbel
(logistic)

“
tθ1 + (1− t)θ1

”1/θ1
[1,∞] {1} Π, {∞} M

Hüsler Reiss t ∗ Φ
“

1
θ1

+
θ1

2 log(t/(1−t))

”
+ [0,∞] {1} Π, {∞} M

+(1− t)Φ
“

1
θ1
− θ1

2 log(t/(1−t))

”
Φ is CDF of standard normal

Tawn
(asymmetric
logistic)

1− θ2 + (θ2 − θ1)t + [0, 1]×
[0, 1]×
[0,∞]

{0, 0, 1} Π, {1, 1,∞} M

+
“
(θ1t)θ3 + (θ2(1− t))θ3

” 1
θ3

LPL
(linear-
parabolic-
linear)

8><>:
1− 1−b

a t t ≤ a− c
b−a
1−a + 1−b

1−a t t ≥ a + c

At2 + Bt + C otherwise

[0, 1]×
[0, 1]×
[0, 1]

{0, ., .} {1, ., .} {., 1, .} Π

A =
(1−b)

4(1−a)ac
{0.5, 0, 0} M

B =
2(1−b)(2ac−a−c)

4(1−a)ac

C =
2(1+b)ac+(1−b)c2−(b+4c−1)a2

4(1−a)ac

a = θ1, c = θ3 min(a, 1− a)
b = max(a, 1− a)(1− θ2) + θ2

Tab. 1. Overview of parametric families used to construct Archimax

copula.

All procedures are implemented in R and freely available1.

6. CONCLUSION

As seen from our results, given the two different data sets, the newly proposed
construction methods do not give significantly better fit according to the selection
criterion (which penalizes inclusion of additional parameters), however in case of
dependence functions with roughly equal fitting performance they elevate the max-
imized likelihood. Note that the best results for fixed number of parameters are
given by Archimax construction with both generator and dependence function, from
which we may judge that the majority of well-established models in Archimedean
and EV class capture mutually different dependence structure, in other words, they
complement one another. The few exceptions that follow from Proposition 2.1 are
equivalences of Archimedean copula with Gumbel generator and EV copula with
Gumbel dependence function, or equivalence of BB1 and Archimax copula with
Clayton generator and Gumbel dependence function.

In our software actually the estimation of Archimedean part is generally faster
which may evoke a demand for some alternative to Proposition 2.1 in reverse order.

1www.math.sk/wiki/bacigal
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generator dependence function log-lik time criterion
family par. family par. L(θ) [sec] BIC

Gumbel 2.1 278.1 3 -549.8
Clayton 1.2 162.3 2 -318.1
Frank 6.6 255.2 3 -504.0
Joe 2.6 249.2 3 -492.0
BB1 0.1 2.1 278.5 11 -544.0

Mixed 1.00 254.2 5 -502.0
Gumbel 2.1 278.1 16 -549.8
HüslerReiss 1.9 272.0 78 -537.7
LL 0.56 0.70 (0.05) 66.9 1905 -120.9
LPL sym. (0.50) 0.05 0.80 274.0 1540 -528.5
LPL 0.50 0.05 0.80 274.0 3122 -528.5
Tawn 0.92 1.00 2.3 281.9 328 -544.3

Gumbel 2.1 Mixed 0.00 278.1 42 -543.3
Gumbel 1.5 Gumbel 1.5 278.1 36 -543.3
Gumbel 2.1 HüslerReiss 0.2 278.1 410 -543.3
Clayton 0.3 Mixed 1.00 269.1 84 -525.3
Clayton 0.1 Gumbel 2.1 278.5 55 -544.0
Clayton 0.9 HüslerReiss 1.8 272.9 190 -532.9
Frank 2.3 Mixed 0.97 280.8 86 -548.5
Frank 1.4 Gumbel 1.9 280.2 85 -547.4
Frank 1.8 HüslerReiss 1.5 276.1 255 -539.2
Joe 1.4 Mixed 0.98 273.9 81 -534.8
Joe 1.0 Gumbel 2.1 272.0 70 -531.2
Joe 1.0 HüslerReiss 1.9 272.1 348 -531.2
BB1 0.1 2.1 Mixed 0.00 278.5 71 -537.5
BB1 0.1 1.4 Gumbel 1.4 278.5 78 -537.5
BB1 0.1 2.1 HüslerReiss 0.1 278.5 40 -537.5

Gum–Cla 0.99 279.0 95 -538.5
Gum–Fra 0.46 278.7 53 -537.9
Gum–Joe 1.00 278.1 14 -536.7
Cla–Fra 0.00 256.2 335 -492.9
Cla–Joe 0.01 263.8 188 -508.1
Fra–Joe 0.74 271.8 64 -524.1
BB1–Gum 1.00 278.5 43 -537.5
BB1–Cla 1.00 278.5 14 -537.5
BB1–Fra 1.00 278.8 440 -537.5
BB1–Joe 1.00 278.5 16 -538.1

[li] Mix–Gum 0.00 278.1 29 -536.7
[inv] 0.00 278.1 322 -536.7
[bi] 0.05 0.00 280.8 364 535.6
[li] Mix–Hüs 0.10 276.3 314 -533.1
[inv] 0.00 272.6 2049 -525.7
[bi] 0.05 0.00 281.1 687 536.2
[li] Gum–Hüs 0.71 278.5 125 -537.5
[inv] 1.00 278.1 624 -536.7
[bi] 0.92 0.99 279.2 1059 -532.4

Tab. 2. Estimation summary for 2 rivers flow rate. Families

denoted by [bi] and [li] (special case with ai = bi) refers to new

construction method from Proposition 3.1 while [inv] to

Proposition 3.3.
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generator dependence function log-lik GOF
family par. family par. L(θ) Sn

Gumbel 4.8 128.4 -252.1
Clayton 4.5 94.0 -183.3
Frank 18.4 123.9 -243.1
Joe 6.2 112.1 -219.5
BB1 0.3 4.3 129.5 -249.5

Mixed 1.00 66.5 -128.3
Gumbel 4.8 128.4 -252.1
HüslerReiss 5.0 128.7 -252.7
LL 0.50 0.50 (0.05) 57.3 -105.2
LPL sym. (0.50) 0.00 0.50 112.4 -215.3
LPL 0.50 0.00 0.50 112.4 -210.6
Tawn 1.00 1.00 4.8 128.4 -242.6

Gumbel 2.8 Mixed 1.00 128.6 -247.8
Gumbel 2.2 Gumbel 2.2 128.4 -247.2
Gumbel 3.1 HüslerReiss 1.3 128.9 -248.3
Clayton 2.0 Mixed 1.00 108.5 -207.5
Clayton 0.3 Gumbel 4.3 129.5 -249.6
Clayton 0.3 HüslerReiss 4.5 129.9 -250.5
Frank 10.0 Mixed 1.00 128.5 -247.6
Frank 4.0 Gumbel 3.2 131.3 -253.1
Frank 4.0 HüslerReiss 3.2 131.9 -254.4
Joe 3.4 Mixed 1.00 117.7 -225.9
Joe 1.0 Gumbel 4.8 128.4 -247.4
Joe 1.0 HüslerReiss 5.0 128.7 -247.9
BB1 0.3 2.5 Mixed 1.00 129.8 -245.4
BB1 0.3 1.7 Gumbel 2.5 129.5 -244.8
BB1 0.2 2.2 HüslerReiss 1.7 130.0 -245.8

Gum–Cla 1.00 128.4 -242.6
Gum–Fra 1.00 128.4 -242.6
Gum–Joe 1.00 128.4 -242.6
Cla–Fra 0.00 106.0 -197.8
Cla–Joe 0.00 112.1 -210.0
Fra–Joe 0.00 112.1 -210.0
BB1–Gum 1.00 129.4 -244.6

[li] Mix–Gum 0.00 128.4 -242.6
[inv] 0.00 128.4 -242.6
[bi] 0.00 0.00 128.4 -237.9
[li] Mix–Hüs 0.00 128.7 -243.2
[inv] 0.00 128.7 -243.2
[bi] 0.00 0.00 128.7 -238.5
[li] Gum–Hüs 0.22 128.7 -243.2
[inv] 0.26 128.6 -243.4
[bi] 0.86 0.92 129.7 -240.5

Tab. 3. Estimation summary for summer flood data.
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