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KYB ERNET IK A — VO LUME 4 7 ( 2 0 1 1 ) , NUMBER 4 , PAGES 6 1 2 – 6 2 9

ROBUST CONTROL OF CHAOS IN MODIFIED
FITZHUGH–NAGUMO NEURON MODEL UNDER
EXTERNAL ELECTRICAL STIMULATION
BASED ON INTERNAL MODEL PRINCIPLE

Yuan Jiang and Jiyang Dai

This paper treats the question of robust control of chaos in modified FitzHugh–Nagumo
neuron model under external electrical stimulation based on internal model principle. We
first present the solution of the global robust output regulation problem for output feedback
system with nonlinear exosystem. Then we show that the robust control problem for the
modified FitzHugh–Nagumo neuron model can be formulated as the global robust output
regulation problem and the solvability conditions for the output regulation problem for the
modified FitzHugh–Nagumo neuron model are all satisfied. Then we apply the obtained
output regulation results to the control problem for modified FitzHugh–Nagumo neuron
model. Finally, an output feedback control law is designed for the modified FitzHugh–
Nagumo neuron model to achieve global stability of the closed-loop system in the presence
of uncertain parameters and external stimulus. An example is shown that the proposed
algorithm can completely reject the external electrical stimulation generated from a Van
der Pol circuit.

Keywords: control theory, Lyapunov methods, internal model principle, modified
FitzHugh–Nagumo model, Van der Pol circuit

Classification: 93E12, 62A10

1. INTRODUCTION

Recently, the study of biology at the system level has received considerable attention,
giving rise to the field of “systems biology” [16, 23]. As we know, many problems
in control can be framed as regulation problems, where the goal is to design a
controller that can drive the output of a system that has been perturbed by possibly
unmeasurable disturbances to a constant set point [14]. Output regulation is also
crucial for the functioning of all biological systems, where it is known as homeostasis,
from the simplest bacteria to humans. Not surprisingly, feedback control is essential
in achieving homeostasis. For example, the production of tryptophan which is an
essential amino acid is regulated in bacteria by a series of three feedback loops [35].

Chaos which is a universal phenomenon in nonlinear systems exists in a variety
of neural systems ranging from the simple to complex [24]. Since determining the
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dynamical behavior of an ensemble of coupled neurons is an important problem in
computational neuroscience. So the primary step for understanding this complex
problem is to understand the dynamical behavior of individual neurons. Commonly
used models for the study of individual neurons which display spiking/bursting be-
havior include the modified FitzHugh–Nagumo model. So our studies are based on
the modified FitzHugh–Nagumo model.

The modified FitzHugh–Nagumo model was originally produced by Rinzel in
1987 for exhibiting the qualitative behavior observed in neurons, viz quiescence,
excitability and periodicity [31]. The dynamic equations for the controlled modified
FitzHugh–Nagumo neuron model can be derived as follows:

ż1 = z1 − 1
3z3

1 − z2 + z3 + L(t) + I(u)

ż2 = ε1(z1 + a1 − a2z2)

ż3 = ε2(−z1 + a3 − a4z3).

(1)

The function L(t) represents the external stimulus. From biological point of view,
the variable z1 represents the potential difference between the dendritic spine head
and its surrounding medium, z2 is recovery variable and z3 represents the slowly
moving current in the dendrite. In this model, z1 and z2 together make up a fast
subsystem relative to z3. I(u) is the control input, and a1, . . . , a4, ε1 and ε2 are
positive constants, and the external electrical stimulation L(t) is generated by the
following Van der Pol circuit

ẇ1 = w2 − ς( 1
3w3

1 − w1)

ẇ2 = −w1

(2)

where 1.6 ≤ ς ≤ 2.4. The parameter ς can be treated as a tuning parameter for
adjusting the period of current/voltage cycle. The eigenvalues of the Jacobian matrix
at the origin of (2) are 1

2 (ς ±
√

ς2 − 4). When ς ≥ 2, the eigenvalues are positive;
when 0 < ς ≤ 2, the eigenvalues are complex conjugates with positive real parts.
Thus, the origin is an unstable equilibrium point and there exists a limit cycle.

Given a class of external electrical stimulation L(t) = w1, we are interested in
the problem of designing an output feedback controller such that, in the presence of
uncertain parameters and external stimulus, the trajectory of the closed-loop system
starting from any initial state of the modified FitzHugh–Nagumo neuron model and
the controller exists and is globally bounded for all t ≥ 0.

It will be shown in Section 3 that the above problem can be fallen into robust out-
put regulation problem for output feedback systems described in Section 2. There-
fore, we will first describe the robust output regulation problem and present the
solution to this problem in Section 2. In Section 3, we will show that the control
problem for the modified FitzHugh–Nagumo neuron model can be dealt with by the
results in Section 2. Furthermore, we will design an output feedback controller to
solve the above problem with computer simulation in Section 3. Finally, a conclusion
is given in Section 4.

Output regulation problem was first studied for the class of linear time-invariant
systems and was completely solved by the collective efforts of many researchers (see,
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e. g. [6, 14, 22]). A celebrated outcome of their research was what is called the inter-
nal model principle. The internal model principle was initially developed for linear
systems, but its applications have also been extended to some nonlinear control
problems (see, e. g. [7, 8, 20]). In particular, Huang et al. [18, 19] are the pioneering
papers that give the solvability conditions for robust nonlinear output regulation
problem in terms of internal model principle. According to the internal model prin-
ciple, the outputs of a linear dynamic system, namely exosystem, are treated as
deterministic external disturbances. The influence on the system response, which is
caused by exosystem’s disturbances, can be suitably reduplicated on the feedback
path of the closed-loop system.

As we know, various control problems of the FitzHugh–Nagumo neuron model
have been considered extensively. Mishra et al. [28] studied the dynamics of mod-
ified FitzHugh–Nagumo neuron model and investigated bifurcation in the dynam-
ics of two modified FitzHugh–Nagumo neurons coupled to each other through an
electrical coupling. Controlling synchronization between pair of modified FitzHugh–
Nagumo neuron models under external electrical stimulation by a nonlinear control-
ling mechanism is proposed in [29]. Synchronization of FitzHugh–Nagumo neural
systems under external electrical stimulation via the nonlinear control is investigated
in [36]. In [9], a robust adaptive neural network (NN) controller is proposed to re-
alize the synchronization of two gap junction coupled chaotic FitzHugh–Nagumo
neurons under external electrical stimulation. Recently, output feedback control
of FitzHugh–Nagumo model was studied in [34] by employing the internal model
approach. In this paper, we will address the problem of robust control of chaos
in modified FitzHugh–Nagumo neuron model under external electrical stimulation
based on internal model principle. In particular, we will demonstrate how the adap-
tive control method developed recently for nonlinearly parameterized systems in [25]
can be used to solve the problem of global robust output regulation for nonlinear
systems in the output feedback form with unknown parameters and exogenous sig-
nals belonging to a compact set whose bound is unknown. Our result is different
from all the previous works in the following senses. First, our algorithm allows for
the nonlinear systems in the output feedback form with unknown parameters and
exogenous signals belonging to a compact set whose bound is unknown. Second, it
is possible for us to achieve global robust stabilization for the modified FitzHugh–
Nagumo neuron model under external electrical stimulation generated by a Van der
Pol circuit. Third, our algorithm provides a nonlinear internal model for a class of
external stimulus and a nonlinear regulator with complete servocompensation of the
class of external stimulus.

2. PROBLEM FORMULATION AND PRELIMINARIES

In this section, we will formulate the control problem and present some preliminaries.
Consider the following uncertain nonlinear systems which can be transformed into
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the output feedback form:

ẋ = F̄ (a)x + Ḡ(y, w, a)y + D̄1(w, a)

ẏ = H̄(a)x + K̄(y, w, a)y + h(a)u + D̄2(w, a)

e = y − q(w, a)

(3)

where (x, y) ∈ Rn, y ∈ R, and u ∈ R are the system states, output and input,
respectively. The error signal e ∈ R is the only measurable variable that can be
used in feedback design. The unknown constant parameter vector a belongs to a
compact set ℘ ⊂ Rq whose bound is unknown. It is assumed that all the functions
in system (3) are sufficiently smooth and D̄1(0, a), D̄2(0, a), and q(0, a) = 0 for all
a ∈ ℘. The exogenous signal w ∈ Rm represents either the disturbance signal or the
reference input or both, which generated from a nonlinear exosystem

ẇ = s(w) (4)

To introduce our problem, let us first make some assumptions in the following.

Assumption 1. There exists a positive definite function V (w) such that

dV

dt
=

∂V

∂w
s(w) ≤ 0, when |w(t)| ≥ W0

where W0 is an unknown positive constant.

Remark 1. Assumption 1 is to say that the flows of vector field s(w) are bounded.
Based on Assumption 1, the periodic solutions of the exosystems can include many
functions, such as harmonic functions and limit cycles of nonlinear dynamic systems.

Assumption 2. For all a ∈ ℘, F̄ (a) is Hurwitz, h(a) is continuous in a and
h(a) > 0.

The global robust output regulation problem that we are going to solve is to find
a finite dimensional system

µ̇ = υ(µ, e(t)), µ ∈ Rs,

u = u(µ, e(t))
(5)

such that the closed-loop system (3)-(5) is globally bounded for any initial condition
x(0) ∈ Rn−1, w(0) ∈ Ω ⊂ Rm and any a ∈ ℘. Moreover, limt→∞ e(t) = 0.

The global robust output regulation problem for output feedback systems has
been studied under various assumptions (see, e. g. [4, 33, 34]). We note that this
formulation is more general than those in that both of these papers require that w
and a belong to some known compact subsets. Here, accounting for the unknown
bound of w(t) and a, we will integrate both adaptive control and robust control
techniques from [27] and [21].

According to the results in reference [13], the output regulation problem of sys-
tems (3) – (4) can be solved only the following assumption is satisfied.
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Assumption 3. There exists $(w, a) with $(0, 0) = 0 such that

∂$

∂w
s(w) = F̄ (a)$ + Ḡ(q(w, a), w, a)q(w, a) + D̄1(w, a) (6)

Thus, the solution of the regulator equations associated with equations (3) and
(4) is given by ($(w, a), q(w, a)) and ι(w, a), where

ι(w, a) = h−1(a)[
∂q(w, a)

∂w
s(w)− H̄(a)$(w, a)

− K̄(q(w, a), w, a)q(w, a)− D̄2(w, a)] (7)

In order to solve the robust output regulation problem, we need an assumption on
the structure of the nonlinear exosystem (4) in the following. In most of the papers
on the robust output regulation of nonlinear systems, for example, [2, 5, 10, 12, 15,
17, 32, 33], the exosystem is linear and the feed-forward term is a polynomial of
the state of the exosystem. More recently, some progresses are reported on output
regulation with nonlinear exosystems (see, e. g. [3, 5, 11, 26, 30, 34, 37, 38]).

Assumption 4. For the exosystem (4), there exists an immersion system

η̇ = Fη + Gγ(Jη)

ι(w, a) = Hη
(8)

where η ∈ Rr, the known matrices F,G,H and J have appropriate dimensions, and
the pair (F,H) is observable, and there exists a positive definite matrix Pη̂ satisfying

Pη̂G + JT = 0, and the nonlinear function γ(Jη) =

 γ1(
Pr

i=1 J1iηi)
...

γm(
Pr

i=1 Jmiηi)

 satisfies

that (v1 − v2)T (γ(v1)− γ(v2)) ≥ 0.

Remark 2. Assumption 4 bases on the assumption made on the exosystems in
[3], and we can know this is a condition for which the circle criterion in [1] can be
applied. For the Van der Pol circuit, let η = w and choose the matrix parame-

ters as follows: F =
[

2 1
−1 0

]
, G =

[ −2 0
0 0

]
, J =

[
1 0
0 0

]
, H =

[
1 0

]
,

γ1(s) = 1
3s3, γ2(s) = 0, Pη̂ = diag(1/2, 1/4). It can be seen that Assumption 4 is

satisfied.

Since the feed-forward term ι(w, a) in the immersion system model η is unknown,
so we design the following internal model as

˙̂η = (F −KH)(η̂ −Kh−1(a)e) + Gγ(J(η̂ −Kh−1(a)e)) + Ku (9)

where K ∈ Rr such that F0 = F −KH is Hurwitz and there exist positive definite
matrices Pη̂ and Qη̂ satisfying

Pη̂F0 + FT
0 Pη̂ = −Qη̂ (10)
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Remark 3. It is noted that there exist positive definite matrices Pη̂ and Qη̂ sat-
isfying

Pη̂F0 + FT
0 Pη̂ = −Qη̂

Pη̂G + JT = 0.
(11)

In particular, if G and JT are two column vectors, and the pair (F0, G) is controllable,
and the pair (J, F0) is observable, and the triple (F0, G, J) satisfies the strictly
positive real condition Re[−J(jwI − F0)−1G] > 0,∀w ∈ R, then there exists a
solution of (11) from the well known Meyer–Kalman–Yacubovic Theorem.

Attaching (9) to (3) leads to what is called the augmented system in reference
[15]. Furthermore, performing on the augmented system the following coordinate
and input transformation

x̃ = x−$(w, a),

e = y − q(w, a),

η̃ = η − η̂ + Kh−1(a)e.

Finally, we have the model for the control design

˙̃x = F̄ (a)x̃ + G̃(e, w, a)e,

˙̃η = F0η̃ + Gγ(Jη)−Gγ(J(η − η̃)) + Kh−1(a)H̄(a)x̃ + Kh−1(a)K̃(e, w, a)e,

ė = H̄(a)x̃ + K̃(e, w, a)e + h(a)(u− ι(w, a)) (12)

where

G̃(e, w, a)e = Ḡ(q(w, a) + e, w, a)(q(w, a) + e)− Ḡ(q(w, a), w, a)q(w, a),

K̃(e, w, a)e = K̄(q(w, a) + e, w, a)(q(w, a) + e)− K̄(q(w, a), w, a)q(w, a).

System (12) is called an augmented system associated with the given system and
the nonlinear exosystem. It can be shown that G̃(0, w, a) = 0 and K̃(0, w, a) = 0
for all w and a. Therefore, the origin is the equilibrium of system (12). Moreover,
if a feedback control law solves the global robust stabilization problem of the lower
triangular system (12), then the global robust output regulation problem of the given
system and the exosystem is also solvable.

Recall that both w(t) and a are in compact sets whose bounds are unknown. By
Lemma 2.1 in [25],

‖P (a)G̃(e, w, a)e‖2 ≤ θ̄1(w, a)α1(e)e2 ≤ θ1α1(e)e2,

1
h2(a)

‖K̃(e, w, a)e‖2 ≤ θ̄2(w, a)α2(e)e2 ≤ θ2α2(e)e2,

1
h2(a)

‖H̄(a)‖2 ≤ θ3, (13)
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where α1(e) ≥ 1, α2(e) ≥ 1 are smooth known functions and θi ≥ 1, i = 1, . . . , 3, are
unknown constants.

Let Vx̃ = x̃T P (a)x̃, where

P (a)F̄ (a) + F̄T (a)P (a) = −I,

then using 2bc ≤ db2 + d−1c2 there exists an unknown constant θ4 such that

V̇x̃ = −‖x̃‖2 + 2x̃T P (a)G̃(e, w, a)e

≤ −3
4
‖x̃‖2 + 4‖P (a)G̃(e, w, a)e‖2

≤ −3
4
‖x̃‖2 + 4θ1α1(e)e2

≤ −3
4
‖x̃‖2 + θ4α1(e)e2 (14)

noting that

2x̃T P (a)G̃(e, w, a)e ≤ 1
4
‖x̃‖2 + 4‖P (a)G̃(e, w, a)e‖2

Let Vη̃ = η̃T Pη̂ η̃, where Pη̂F0 + FT
0 Pη̂ = −Qη̂, then there exist unknown positive

real constants θ5 and θ6 such that

V̇η̃ = −η̃T Qη̂ η̃ + 2η̃T Pη̂[Kh−1(a)H̄(a)x̃ + Kh−1(a)K̃(e, w, a)e]

+ 2η̃T Pη̂G(γ(Jη)− γ(J(η − η̃)))

≤ −3
4
λmin(Qη̂)‖η̃‖2 +

8‖Pη̂K‖2

λmin(Qη̂)
‖h−1(a)H̄(a)‖2‖x̃‖2

+
8‖Pη̂K‖2

λmin(Qη̂)
‖h−1(a)K̃(e, w, a)e‖2

≤ −3
4
λmin(Qη̂)‖η̃‖2 +

8‖Pη̂K‖2

λmin(Qη̂)
θ3‖x̃‖2 +

8‖Pη̂K‖2

λmin(Qη̂)
θ2α2(e)e2

≤ −3
4
λmin(Qη̂)‖η̃‖2 + θ5‖x̃‖2 + θ6α2(e)e2 (15)

noting that

2η̃T Pη̂Kh−1(a)H̄(a)x̃ ≤ 1
8
λmin(Qη̂)‖η̃‖2 +

8‖Pη̂K‖2

λmin(Qη̂)
‖h−1(a)H̄(a)‖2‖x̃‖2,

2η̃T Pη̂Kh−1(a)K̃(e, w, a)e ≤ 1
8
λmin(Qη̂)‖η̃‖2 +

8‖Pη̂K‖2

λmin(Qη̂)
‖h−1(a)K̃(e, w, a)e‖2.
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It follows from Assumption 4 that Pη̂G = −JT , and thus we have

2η̃T Pη̂G(γ(Jη)− γ(J(η − η̃)))

= −2(Jη − J(η − η̃)))T (γ(Jη)− γ(J(η − η̃))) ≤ 0. (16)

From previous discussions

ė = H̄(a)x̃ + K̃(e, w, a)e + h(a)(u− ι(w, a))

= H̄(a)x̃ + K̃(e, w, a)e + h(a)(u−Hη)

= H̄(a)x̃ + K̃(e, w, a)e + h(a)(u−Hη̃ −Hη̂ + HKh−1(a)e). (17)

We now design control u as

u = −rρ(e)e− (3 +
‖H‖2

λmin(Qη̂)
)e− Θ̂l̃(e) + Hη̂,

ṙ = ρ(e)e2 (18)

where r is a time-varying design parameter, ρ(e) ≥ 1 and l̃(e) are smooth functions to
be determined, Θ̂ is adaptive coefficient. Then we have the resultant error dynamics

ė = H̄(a)x̃ + K̃(e, w, a)e + h(a)
[
− rρ(e)e−

(
3 +

‖H‖2

λmin(Qη̂)

)
e− Θ̂l̃(e)

−Hη̃ + HKh−1(a)e
]
. (19)

Then for Ve = 1
2h(a)e

2 there exist unknown positive real constants θ7, θ8 and θ9 such
that

V̇e ≤ −rρ(e)e2 + θ7‖x̃‖2 + θ8α2(e)e2 + θ9e
2 − eΘ̂l̃(e) +

1
4
λmin(Qη̂)‖η̃‖2 (20)

noting that

1
h(a)

eH̄(a)x̃ ≤ e2 +
1
4
‖h−1(a)H̄(a)‖2‖x̃‖2,

1
h(a)

eK̃(e, w, a)e ≤ e2 +
1
4
‖h−1(a)K̃(e, w, a)‖2e2,

−eHη̃ ≤ ‖H‖2

λmin(Qη̂)
e2 +

1
4
λmin(Qη̂)‖η̃‖2,

HKh−1(a)e2 ≤ e2 +
1
4
‖HKh−1(a)‖2e2.

Let

V = βVx̃ + Vη̃ + Ve +
1
2
γ−1
Θ (Θ̂−Θ)2 +

1
2
r2 (21)
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where β ≥ 4
3 (θ5 + θ7 + 1) is chosen, and γΘ is a positive real constant. Then

V̇ ≤ −3
4
β‖x̃‖2 + βθ4α1(e)e2 − 3

4
λmin(Qη̂)‖η̃‖2 + θ5‖x̃‖2 + θ6α2(e)e2

− rρ(e)e2 + θ7‖x̃‖2 + θ8α2(e)e2 + θ9e
2 − eΘ̂l̃(e) +

1
4
λmin(Qη̂)‖η̃‖2

− γ−1
Θ Θ̃ ˙̂Θ + ṙr (22)

Let Θ = βθ4 + θ6 + θ8 + θ9, which is an unknown constant and

˙̂Θ = eγΘ l̃(e) (23)

where l̃(e) is a function of e given by

l̃(e) = α1(e)e + 2α2(e)e + e (24)

Note that l̃(e) is a continuous function of e. This property is guaranteed by the fact
that α1(e) and α2(e) are smooth functions of e and the fact α1(0) = 0 and α2(0) = 0.
Then

V̇ ≤ (ṙ − ρ(e)e2)r − 1
2
λmin(Qη̂)‖η̃‖2 − 3

4
β‖x̃‖2 + θ5‖x̃‖2 + θ7‖x̃‖2

+ Θ[α1(e)e2 + α2(e)e2 + α2(e)e2 + e2]− eΘ̂l̃(e)− γ−1
Θ Θ̃ ˙̂Θ

≤ (ṙ − ρ(e)e2)r − 1
2
λmin(Qη̂)‖η̃‖2 − 3

4
β‖x̃‖2 + θ5‖x̃‖2 + θ7‖x̃‖2

+ eΘl̃(e)− eΘ̂l̃(e)− γ−1
Θ Θ̃ ˙̂Θ

≤ (ṙ − ρ(e)e2)r − 1
2
λmin(Qη̂)‖η̃‖2 − 3

4
β‖x̃‖2 + θ5‖x̃‖2 + θ7‖x̃‖2

+ eΘl̃(e)− eΘ̂l̃(e)− eΘ̃l̃(e)

≤ (ṙ − ρ(e)e2)r − 1
2
λmin(Qη̂)‖η̃‖2 − 3

4
β‖x̃‖2 + θ5‖x̃‖2 + θ7‖x̃‖2 (25)

It follows from (18), and we have

V̇ ≤ −1
2
λmin(Qη̂)‖η̃‖2 − 3

4
β‖x̃‖2 + θ5‖x̃‖2 + θ7‖x̃‖2 (26)

It follows from

β ≥ 4
3
(θ5 + θ7 + 1),

and we have

− 3
4
β‖x̃‖2 + θ5‖x̃‖2 + θ7‖x̃‖2 ≤ −‖x̃‖2 (27)
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Substituting (27) into (26), we obtain

V̇ ≤ −1
2
λmin(Qη̂)‖η̃‖2 − ‖x̃‖2 (28)

Therefore we can conclude that ‖x̃‖ ∈ L2 ∩L∞, ‖η̃‖ ∈ L2 ∩L∞ and e ∈ L2 ∩L∞,
and the variable Θ̂ is bounded. The boundedness of η̂ follows from the boundedness
of η̃ and w. Therefore we can conclude that all the variables in the closed-loop
control system are bounded. Furthermore, together with the derivatives of x̃, η̃ and
e are bounded, by invoking Barbalat’s lemma, we have limt→∞ x̃ = 0, limt→∞ η̃ = 0
and limt→∞ e = 0. The result of this section is summarized in the following.

Theorem 2.1. Suppose that there exist positive definite matrices Pη̂ and Qη̂, and
a nonzero constant vector K ∈ Rr, such that F0 = F − KH is Hurwitz. For the
uncertain nonlinear system (3) , satisfying Assumption 1− 4, then the control input
(18), the adaptive law (23) and the nonlinear internal model (9) solve the global
robust output regulation problem with nonlinear exosystem (4).

3. SOLVABILITY OF THE PROBLEM FOR MODIFIED FITZHUGH–NAGUMO
NEURON MODEL

In order to formulate the control problem of the modified FitzHugh–Nagumo neuron
model described in Section 1 into the robust output regulation problem described
in Section 2. Let us first note that the system (1) with I(u) = 0 has been studied
the bursting mechanism in exciting systems in [31]. Nevertheless, performing the
following simple coordinate transformation

x1 = z2 − a1
a2

x2 = z3 − a3
a4

e = y = z1

u = I(u)− a1
a2

+ a3
a4

(29)

gives
ẋ1 = −ε1a2x1 + ε1y

ẋ2 = −ε2a4x2 − ε2y

ẏ = −x1 + x2 + (1− 1
3y2)y + L(t) + u

e = y.

(30)

Next, to take into account the variation of the system parameters, let Ω = (a2 >
0, a4 > 0, ε1 > 0, ε2 > 0) and Ω̄ = (ā2, ā4, ε̄1, ε̄2) denote the actual and nominal value
of the system parameters, respectively. Then Ω = Ω̄ + a for some a ∈ R4 where a
represents the parameter variation from its nominal value. The external electrical
stimulation L(t) = w1 is generated by the following Van der Pol circuit

ẇ1 = w2 − ς

(
1
3
w3

1 − w1

)
ẇ2 = −w1
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where 1.6 ≤ ς ≤ 2.4.
Our objective is to design an output feedback controller such that, in the presence

of large parameter variations and external stimulus L(t) = w1, the trajectory of the
closed-loop system starting from any initial state of the modified FitzHugh–Nagumo
neuron model and the controller exists and is globally bounded for all t ≥ 0, and all
the plant states (y, x1, x2) converge to zero, that is, (z1, z2, z3) converge to (0, a1

a2
, a3

a4
)

as t →∞.
It is easy to see that V (w) = 1

2w2
1 + 1

2w2
2 satisfies

dV

dw
= −1

2
w2

1 −
1
6
ςw4

1 ≤ 0, 1.6 ≤ ς ≤ 2.4 (31)

which satisfies Assumption 1.
Now, let x = (x1, x2), and thus we have

F̄ (a) =
[
−ε1a2 0

0 −ε2a4

]
, Ḡ(y, w, a) =

[
ε1 −ε2

]T , H̄(a) =
[
−1 1

]
,

K̄(y, w, a) = 1− 1
3y2, h(a) = 1, D̄1(w, a) = D̄2(w, a) = 0, and q(w, a) = 0.

It can be seen that (30) is in the form of (3) with (x1, x2) = x viewing y = z1

as the output, and the control problem described in Section 1 is the robust output
regulation problem in Section 2. To apply the results of Section 2 to solve the control
problem of the modified FitzHugh–Nagumo neuron model, we need to verify that the
modified FitzHugh–Nagumo neuron model satisfies Assumption 2-4. It can seen that
F̄ (a) is a Hurwitz matrix and h(a) > 0, which satisfies Assumption 2. The solution
of the regulator equations can be easily calculated as $1(w, a) = 0, $2(w, a) = 0,
y(w, a) = 0 and ι(w, a) = −w1. Thus Assumption 3 is also satisfied. For the Van
der Pol circuit, let η = w and choose the matrix parameters as in Remark 2, then
Assumption 4 is satisfied. We have verified that the modified FitzHugh–Nagumo
neuron model satisfies all the assumptions needed to solve the global robust output
regulation problem in Section 2, so we can apply the approach in Section 2 to design
a dynamic output feedback controller for modified FitzHugh–Nagumo neuron model.

Let K = [4, 1]T , then we have

F0 =
[
−2 1
−2 0

]
, Qη̂ =

[
2 0
0 0

]
, Pη̂ = diag(1/2, 1/4).

Based on the control algorithm proposed in Section 2, we can obtain the internal
model, the control input, and the adaptive law are designed as follows

˙̂η1 = −2(η̂1 − 4e) + (η̂2 − e)− 2
3
(η̂1 − 4e)3 + 4u,

˙̂η2 = −2(η̂1 − 4e) + u,

u = −re[(1 + e2)2 + 1] + η̂1 − 4e,

ṙ = e2[(1 + e2)2 + 1] (32)

In the simulation, assume the nominal value of the parameters in the modi-
fied FitzHugh–Nagumo neuron model are ā2 = 0.02, ā4 = 0.03, ε̄1 = 0.3, ε̄2 = 0.1.



Robust control of chaos in modified FitzHugh–Nagumo neuron model 623

Specifically, the parameter variation a is assumed to be a = (0.08, 0.07, 1, 1). Let
the initial condition be x(0) = [0.5, 1]T , y(0) = −0.5, η̂(0) = [0, 0]T , w(0) = [1,−1]T

and r(0) = 0. The response of the open-loop system with initial condition x(0) =
[0.5, 1]T , y(0) = −0.5 and w(0) = [1,−1]T is shown in Figure 1. Figure 2 shows the
phase portrait of the Van der Pol circuit. Figure 3 shows the profile of the system
states of the open-loop system. Figure 4 shows the profile of the system states of
the closed-loop system. It can be observed that they converge to zero. As shown in
the Figures 5 and 6, the disturbances are successfully reproduced by the designed
internal model. Figures 7 and 8 show the profiles of the adaptive control gain r(t)
and controller u, respectively.
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Fig. 1. Phase portrait of modified FitzHugh–Nagumo neuron model

under external electrical stimulation L(t) = w1.

To make the problem more interesting, we could let the parameter ς to be uncer-
tain. To characterize the uncertainty, let 1.6 ≤ ς ≤ 2.4. Due to the space limit, we
only show the simulation results under ς = 2.

4. CONCLUSION

In this paper, an algorithm is proposed to design a dynamic output feedback con-
troller for the modified FitzHugh–Nagumo neuron model in the presence of external
electrical stimulation. We first present the solution of the global robust output reg-
ulation problem for an output feedback system with nonlinear exosystem. Then we
apply the obtained output regulation results to a control problem for the modified
FitzHugh–Nagumo neuron model. Moreover, a dynamic output feedback control
law is designed such that the external electrical stimulation can be asymptotically
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Fig. 2. Phase portrait of the Van der Pol circuit.
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Fig. 3. Time response of the system states of the open-loop system.

rejected while maintaining the global stability of the closed-loop system. Simula-
tion results illustrate the effectiveness of our algorithm. The proposed algorithm
can be used in many applications, e. g. active vibration control, and the avoid-
ance of nonharmonic distortion in nonlinear circuits. In the future research, we
will consider to design an output feedback controller for the modified FitzHugh–



Robust control of chaos in modified FitzHugh–Nagumo neuron model 625

0 20 40 60 80 100
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

time(sec)

x
1

x
2

y

Fig. 4. Time response of the system states of the closed-loop system.
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Fig. 5. The external electrical stimulation F (t) = w1 and its estimate

(dash-dotted line: w1; solid line: η̂1 − 4e).

Nagumo neuron model by subjecting it under the following electrical stimulation
L(t) = (A/W ) cos(Wt). Here, A represents the magnitude of the stimulus and W
refers to the frequency of given stimulus.
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Fig. 6. w2 and its estimate (dash-dotted line: w2; solid line: η̂2 − e)
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