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Geometric mechanics on nonholonomic submanifolds

Olga Krupková

Abstract. In this survey article, nonholonomic mechanics is presented as
a part of geometric mechanics. We follow a geometric setting where the
constraint manifold is a submanifold in a jet bundle, and a nonholonomic
system is modelled as an exterior differential system on the constraint man-
ifold. The approach admits to apply coordinate independent methods, and
is not limited to Lagrangian systems under linear constraints. The new
methods apply to general (possibly nonconservative) mechanical systems
subject to general (possibly nonlinear) nonholonomic constraints, and admit
a straightforward generalization to higher order mechanics and field theory.
In particular, we are concerned with the following topics: the geometry of
nonholonomic constraints, equations of motion of nonholonomic systems on
constraint manifolds and their geometric meaning, a nonholonomic varia-
tional principle, symmetries, a nonholonomic Noether theorem, regularity,
and nonholonomic Hamilton equations.

1 Introduction
Nonholonomic mechanics is concerned with study of systems the motion of which
is subject to constraints on time, positions and velocities. The interest to investi-
gate mechanical systems with holonomic and nonholonomic constraints goes back
to the 19th century, when D’Alembert’s principle of virtual work and Gauss’ prin-
ciple of least action in presence of constraints were considered. It was discovered
that holonomically constrained dynamics can be understood as motions subject
to reactive forces of a gradient form, given by the constraints. As conjectured by
Chetaev in early 30’s of the last century, nonholonomic equations of motion could
have a similar form, but now the reactive forces should take the form of derivatives
with respect to the velocities [9]. Since that time, Chetaev’s equations have been
tested in many situations and on many examples in mechanics and engineering,
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and it turned out that (contrary to the so-called vakonomic equations proposed as
alternative equations of motion), they really do describe motions of nonholonomic
mechanical systems (see e.g. [6], [12]).

Within the classical analysis approach, only Lagrangian systems subject to lin-
ear integrable (semi-holonomic) constraints have been well-understood. In case of
non-integrable, or even non-liner constraints, a satisfactory, complete theory, sim-
ilar to the analytical dynamics of unconstrained systems, has been missing. On
the other hand, during the last 20 years, in connection with the developments
of geometric mechanics and global calculus of variations, methods of differential
geometry and global analysis have turned out be well suited and helpful for un-
derstanding nonholonomic systems. There have been proposed several geometric
models, appropriate in different situations, applicable to Lagrangian systems in
tangent bundles or in jet bundles. It should be stressed, however, that almost all
the work on noholonomic systems is concerned with the case of constraints linear
(affine) in the velocities. The bibliography is very extensive and it is not possible
to list here all important contributions; we refer at least to [2], [7], [10], [11], [13],
[14], [15], [20], [29], [30], [33], [43], [44], [46], [47], [49] and references therein.

In this article we present the nonholonomic mechanics as a part of geomet-
ric mechanics. However, we should emphasize that we follow the setting where a
nonholonomic system is modeled as an exterior differential system on a constraint
manifold (subbundle of a jet bundle) [29], [30], [33], [35], [39], [51] (i.e., motion
equations appear in the “reduced form”, without Lagrange multipliers). This ap-
proach consistently reflects the geometric character of nonholonomic constraints.
It naturally admits to apply coordinate independent methods and transfer stan-
dard concepts and techniques of differential geometry and the calculus of variations
on manifolds to the situation when differential constraints are present. Moreover,
this approach is not limited to Lagrangian systems under linear constraints. In
fact, both Lagrangian and non-conservative systems are treated in a unique way,
and similarly, a unique geometric model of differential constraints (whatever they
are: linear integrable or non-integrable, or nonlinear) is presented. Within this
setting, a generalization to higher-order systems and constraints, and extension of
nonholonomic mechanics to field theory is straightforward [31], [32], [34], [35], [36],
[41], [42]. Remarkably, the new way of treating and understanding nonholonomic
systems brings new methods for investigating concrete examples of nonholonomic
systems, either with linear constraints (see [19]), or with nonlinear constraints
(see [50] for problems of mechanics and engineering and [38] for applications in the
special relativity theory).

The aim of the present article is to survey, in a consistent way, some of the recent
results on first order mechanical systems. After a brief introduction to the standard
geometric theory of first order mechanical systems in jet bundles (to be found e.g.
in [29] or [40]) we turn to include nonholonomic constraints into the picture. We
are concerned with the geometry of nonholonomic constraints, equations of motion
of nonholonomic systems on constraint manifolds and their geometric meaning,
including also the case of “implicit equations”, a nonholonomic variational princi-
ple, symmetries of nonholonomic systems and a nonholonomic Noether theorem,
and finally we discuss regularity of nonholonomic equations, and nonholonomic
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Hamilton equations. We note that there are also other interesting topics studied
within nonholonomic mechanics, not included in this article, as e.g. the inverse
variational problem in the nonholonomic setting [3], [39], nonholonomic reduction
in presence of symmetries [4], [5], [8], integrability of nonholonomic systems and
Hamilton-Jacobi theory [1], nonholonomic mechanics on Lie algebroids [11], [17],
[44], etc.

2 Mechanical systems in jet bundles
Compared to the classical approach, geometric methods bring a new quality into
the study of mechanical systems. The geometric language leads to an elegant and
transparent formulation of results. It is important that concepts and formulas
can be introduced in an intrinsic (coordinate independent) form: this is not only
convenient for computations, but clarifies the geometric content and enables to
distinguish between local and global results.

In this section we introduce structures for mechanics on fibred manifolds. We
shall deal with both Lagrangian and nonconservative, generally time-dependent
systems, the dynamics of which is described by systems of second order ordinary
differential equations. In our approach, geometric concepts related with differential
equations on manifolds play a central role. For more detailed exposition we refer
to [21], [23], [48], and especially to the book [28] devoted to higher-order mechanics.

2.1 Basic structures

Throughout the paper we consider smooth manifolds and mappings. In coordinate
formulas summation over repeated indices applies.

A smooth mapping Y → X between differentiable manifolds is called submer-
sion if its rank is equal to dimX at each point y ∈ Y . A surjective submersion
π : Y → X is called a fibred manifold. The manifold X is called base, Y total space,
and the map π itself projection. The submanifold π−1(x) of Y , where x ∈ X, is
called fibre over x. In case that all the fibres are diffeomorphic to each other, we
speak about a bundle over X.

We shall consider fibred manifolds where dimX = 1. This means that if X is
connected, it is diffeomorphic either to R or S1. We denote dimY = m+ 1, hence
m denotes the dimension of the fibres. From the definition of submersion it follows
that to every point y ∈ Y there exists a chart (V, ψ) on Y and (U,ϕ) on X such
that V is a neighbourhood of y, U = π(V ), and the coordinate functions are of the
form ϕ = (t), ψ = (t, qσ), 1 ≤ σ ≤ m. Charts of this kind are called fibred charts.
Mostly we shall assume that X = R: in this case we choose t on R to be a global
coordinate.

When dealing with dynamics of mechanical systems, we are concerned with a
special kind of mappings between the base and the total space, called sections.
By a section of the fibred manifold π : Y → X one means a (smooth) mapping
γ : X → Y , defined possibly on an open subset W of X, such that π◦γ = idW . Also,
it is necessary to work with quantities dependent on first or higher derivatives of the
corresponding sections. A precise mathematical setting is based on the concept of
a jet manifold. We say that sections γ1 and γ2 defined on an open set W ⊂ X have
contact of order one at a point x ∈W if γ1(x) = γ2(x), and if there is a fibred chart
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around γ1(x) = γ2(x) such that the derivatives of the components γσ
1 = qσγ1ϕ

−1

and γσ
2 = qσγ2ϕ

−1 of the sections γ1 and γ2 at the point ϕ(x) coincide. The
latter condition does not depend on the choice of fibred coordinates. In this way
there arises an equivalence relation: the equivalence class can be easily visualized
as a family of sections passing through the same point y ∈ Y and possessing the
same tangent vector. The equivalence class containing a section γ is called the
1-jet of γ at x and is denoted by J1

xγ. Collecting all the equivalence classes for
all the points x ∈ X one obtains a set naturally endowed with a structure of a
smooth manifold of dimension 2m + 1, denoted by J1Y , and called the first jet
prolongation of the fibred manifold π : Y → X. Moreover, the manifold J1Y is
fibred over X (the fibred projection is denoted by π1) as well as over Y (with the
projection denoted by π1,0). Consequently, one has on J1Y coordinates, associated
with fibred coordinates on Y . They are denoted by (t, qσ, q̇σ). The construction
can be easily generalized to obtain higher-order jets: For every x ∈ X one considers
equivalence classes of sections passing through the same point over x and having
at x the same derivatives up to the order r. In this way one gets a manifold JrY ,
called the manifold of r-jets of local sections of π, or briefly the r-jet prolongation
of π. Similarly as in the first-order case, one has on JrY coordinates naturally
associated with fibred coordinates on Y denoted by (t, qσ, qσ

1 , q
σ
2 , . . . , q

σ
r ). Instead

of qσ
1 and qσ

2 one often writes q̇σ and q̈σ. From the definition of Jr
xγ (which is a

point in JrY ) one can see that the values of the coordinate functions at Jr
xγ can

be regarded as the coefficients of the r-th order Taylor polynomial of the mapping
γ around x. The manifold JrY is fibred over X, Y , and all JsY , s = 1, . . . , r − 1.
The corresponding projections are denoted by πr : JrY → X, πr,0 : JrY → Y ,
πr,s : JrY → JsY , where s < r. For simplicity of notations, we also write J0Y = Y .
In this paper we mostly use the first and second jet prolongations, J1Y and J2Y .

If γ is a section of π : Y → X then the mapping x → Jr
xγ is a section of

the fibred manifold πr : JrY → X; it is called the r-jet prolongation of γ and
denoted by Jrγ. It is important to note that a section of πr need not be of the
form of an r-jet prolongation of a section of π. A section δ of πr such that δ = Jrγ
is called holonomic. For example, in fibred coordinates, a section of J1Y is a
mapping δ(t) = (t, fσ(t), gσ(t)) while a holonomic section takes the form J1γ(t) =
(t, fσ(t), dfσ/dt).

Remark 1. Classical mechanics is often modeled on fibred manifolds of the form
π : R ×M → R, where M is a manifold of dimension m (called the configuration
space). In this case J1Y = R× TM , J2Y = R× T 2M and sections of π are graphs
of curves c : R →M .

In fibred manifolds, there are distinguished vector fields and differential forms,
adapted to the fibred and prolongation structure.

A vector field ξ on Y is called π-projectable if there exists a vector field ξ0 on
X such that Tπ.ξ = ξ0 ◦ π, and π-vertical if it projects onto a zero vector field on
X, i.e., Tπ.ξ = 0. In fibred coordinates, projectable vector fields have their ∂/∂t
component dependent on t only, and vertical vector fields have this component
equal to zero.
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Similarly one defines a πr,s-projectable or a πr,s-vertical vector field on JrY ,
where r > s.

Local flows of projectable vector fields transfer sections into sections. Con-
sequently, π-projectable vector fields on Y can be naturally prolonged to vector
fields on JrY . The procedure is as follows: Let ξ be a π-projectable vector field, ξ0
its projection, and denote {φu} and {φ0u} the corresponding local one-parameter
groups. For every u, the mapping φu is an isomorphism of the fibred manifold
π meaning that π ◦ φu = φ0u ◦ π. Then for every section γ, the composition
γu = φu ◦ γ ◦ φ−1

0u is again a section and we can define the r-jet prolongation of
φu by Jrφu(Jr

xγ) = Jr
φ0u(x)(φuγφ

−1
0u ). Then Jrφ is a local flow corresponding to

a vector field on JrY , denoted by Jrξ and called the r-jet-prolongation of ξ. The
vector field Jrξ is both πr-projectable and πr,s-projectable for 0 ≤ s < r, and its
πr-projection, (resp. πr,s-projection) is ξ0 (resp. ξ, resp. Jsξ, 1 ≤ s ≤ r − 1). In
fibred coordinates, where

ξ = ξ0(t)
∂

∂t
+ ξσ(t, qν)

∂

∂qσ
, (1)

one has for 1 ≤ k ≤ r

Jrξ = ξ0
∂

∂t
+ ξσ ∂

∂qσ
+

r∑
k=1

ξσ
k

∂

∂qσ
k

, where ξσ
k =

dξσ
k−1

dt
− qσ

k

dξ0

dt
. (2)

Above
d

dt
=

∂

∂t
+ q̇σ ∂

∂qσ
+ q̈σ ∂

∂q̇σ
+

...
q σ ∂

∂q̈σ
+ . . . (3)

denotes the total derivative operator.
A differential k-form η on JrY is called πr-horizontal (resp. πr,s-horizontal) if it

vanishes whenever at least one of its arguments is a πr-vertical (resp. πr,s-vertical)
vector field. A k-form η on JrY is called contact if for every section γ of π

Jrγ∗η = 0 . (4)

Putting

ωσ = dqσ − q̇σdt, ω̇σ = dq̇σ − q̈σdt, . . . , ωσ
r−1 = dqσ

r−1 − qσ
r dt (5)

1 ≤ σ ≤ m, we obtain a family of local contact 1-forms on JrY . Remarkably,
the contact ideal on JrY is locally generated by these one-forms and their exterior
derivatives. We also note that one-forms (5) can be completed to a basis of linear
forms

(dt, ωσ, . . . , ωσ
r−1, dq

σ
r ) (6)

well adapted to the structure of JrY . Working in coordinates, it is much more
convenient to use this basis instead of the canonical basis (dt, dqσ, . . . , dqσ

r ).
We have an important property of differential forms in jet bundles: Every k-

form η on JrY , if lifted to Jr+1Y , admits a unique and invariant decomposition
into two parts such that in the adapted basis the first and the second part contains
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wedge products of exactly k − 1 and k basic contact forms (5), respectively. We
write

π∗r+1,rη = hη + p1η, π∗r+1,rη = pk−1η + pkη (7)

if k = 1 and k ≥ 2, respectively. hη is a horizontal form on Jr+1Y , called the
horizontal part of η, piη is then called the i-contact part of η (we also speak about
a i-contact form). Note that for a function f we get hdf = df

dtdt.

2.2 Fibred mechanics

In what follows, let us consider a fibred manifold π : Y → R with dimY = m+ 1,
and fibred coordinates denoted by (t, qσ), where t is a global coordinate on R.

A dynamical form of order r is defined to be a 2-form E on JrY which is
1-contact, and horizontal with respect to the projection onto Y . In fibred coordi-
nates E = Eσω

σ ∧ dt, where E1, . . . , Em are functions on an open subset of JrY .
Dynamical forms are appropriate objects to represent systems of ordinary differ-
ential equations on manifolds. In this paper we shall be interested in (at most)
second-order ODE’s. Then E is defined on J2Y and its components Eσ depend
upon t, qν , q̇ν , q̈ν (1 ≤ σ, ν ≤ m). Equation E = 0 determines a submanifold of J2Y
of codimension m. A section γ of π is called a path of E if it satisfies E ◦ J2γ = 0.
In fibred coordinates this is a system of m (possibly implicit) second order ODE’s

Eσ

(
t, γν(t),

dγν

dt
,
d2γν

dt2

)
= 0, 1 ≤ σ ≤ m (8)

for components of γ.
In what follows it will be sufficient to restrict to the case of so-called J1Y -

pertinent dynamical forms that are distinguished by a significant property: the
corresponding dynamics proceeds in the manifold J1Y (sometimes called the evo-
lution space).

Given a dynamical form E, we say that a 2-form α defined on an open subset
U ⊂ J2Y is an extension of E on U if E|U = p1α. E is called pertinent with respect
to J1Y if around every point in J2Y it has a local extension α that is projectable
onto an open subset of J1Y . A second order dynamical form E is pertinent with
respect to J1Y if an only if

Eσ = Aσ(t, qρ, q̇ρ) +Bσν(t, qρ, q̇ρ)q̈ν . (9)

Then every local projectable extension of E takes the form

α = Aσω
σ ∧ dt+Bσνω

σ ∧ dq̇ν + F, (10)

where F is a 2-contact 2-form on an open subset of J1Y . The class [α] of 2-forms
(10) is then called the (first-order) Lepage class of the dynamical form E. The
corresponding ODE’s are affine in the second derivatives (accelerations),

Aσ

(
t, γρ(t),

dγρ

dt

)
+Bσν

(
t, γρ(t),

dγρ

dt

) d2γν

dt2
= 0. (11)
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Equations (11) can be represented in a form of a Pfaffian system, or vector distri-
bution ∆ on J1Y , called dynamical distribution of E [27], [32], as follows:

∆ = span{iξα |where ξ runs over all vertical vector fields on J1Y }
= span{Aσdt+ Fσνω

ν +Bσνdq̇
ν , Bσνω

σ},
(12)

where Fσν are the components of F .
Remarkably, ∆ need not have a constant rank, and need not be completely

integrable. We say that a dynamical form E is regular if around every point in J1Y
it has a dynamical distribution which is everywhere of rank one [26], [27]. It can be
shown that every regular dynamical form E has a unique global rank one dynamical
distribution. It is locally annihilated by 2m one-forms ωσ and Aσdt+Bσνdq̇

ν , or,
equivalently, spanned by one vector field

ζ =
∂

∂t
+ q̇σ ∂

∂qσ
−BσνAν

∂

∂q̇σ
. (13)

This geometrical model is used to study non-conservative time-dependent me-
chanical systems, to classify ODE’s according to their dynamical properties, to
study structure of solutions of both regular ODE’s and ODE’s “in implicit form”
(non-representable by a vector field), to generalize Hamilton’s equations to non-
variational and non-regular equations, to study transformations of ODE’s, and
symmetries and first integrals, to develop exact integration methods based on sym-
metries and transformations (eg. generalized Liouville and Jacobi theorem of the
calculus of variations), to study relations between variational and non-variational
equations (the inverse problem of the calculus of variations, the problem of exis-
tence of variational multipliers), and much more (see eg. [24], [28], [32], [37], [40]
and references therein).

Let us now turn to variational equations.
By a Lagrangian of order r, r ≥ 1, we mean a horizontal form λ on JrY . In

fibred coordinates a Lagrangian reads λ = Ldt, where L is a function on an open
subset of JrY . To every Lagrangian there exists a unique 1-form θλ on J2r−1Y
such that hθλ = λ and p1dθλ is a dynamical form [21]. The 1-form θλ is called
the Lepage equivalent or the Cartan form of λ, and the related dynamical form
Eλ = p1dθλ is then called the Euler-Lagrange form of λ. We shall be mostly
interested in first order Lagrangians. In this case λ = Ldt where L depends upon
t, qσ, and q̇σ, 1 ≤ σ ≤ m, and

θλ = Ldt+
∂L

∂q̇σ
ωσ, Eλ =

( ∂L
∂qσ

− d

dt

∂L

∂q̇σ

)
ωσ ∧ dt . (14)

The components of Eλ are familiar as Euler-Lagrange expressions, and equations
for paths of an Euler-Lagrange form are called Euler-Lagrange equations. We note
that the same Euler-Lagrange form can arise from different Lagrangians, possibly
even of different orders. Such Lagrangians are called equivalent; it is known that
Lagrangians λ1 of order r and λ2 of order k ≥ r are equivalent iff around every
point there is a function f of order k−1 such that λ2 = λ1 +hdf (where, precisely,
on the place of λ1 one has to consider its lift by the projection πk,r).
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Let us recall some important properties of Euler-Lagrange dynamical forms
[26], [28]. First, every second order Euler-Lagrange form is J1Y -pertinent, since
the Euler-Lagrange expressions are affine in the second derivatives. This means
that Eλ on J2Y is represented by a Lepage class [α] defined on J1Y . Moreover,
the Lepage class has a distinguished representative, independent upon the choice
of a particular Lagrangian for E = Eλ, as follows:

Theorem 2. Given an Euler-Lagrange form E on J2Y , the associated Lepage class
contains a unique global and closed representative αE , defined on J1Y . The 2-form
αE can be expressed by means of the Euler-Lagrange expressions as follows:

αE = Eσω
σ ∧ dt+

1
4

(∂Eσ

∂q̇ν
− ∂Eν

∂q̇σ

)
ωσ ∧ ων +

∂Eσ

∂q̈ν
ωσ ∧ ω̇ν

= Aσω
σ ∧ dt+

1
4

(∂Aσ

∂q̇ν
− ∂Aν

∂q̇σ

)
ωσ ∧ ων +Bσνω

σ ∧ dq̇ν ,

(15)

where

Aσ =
∂L

∂qσ
− d′

dt

∂L

∂q̇σ
, Bσν = − ∂2L

∂q̇σ∂q̇ν
. (16)

Moreover, for every (possibly local) Lagrangian λ of order r ≥ 1 for E, the
Cartan form θλ satisfies the following property: dθλ is projectable onto an open
set in J1Y , and on this set,

dθλ = αE . (17)

Above,
d′

dt
=

d

dt
− q̈ν ∂

∂q̇ν
=

∂

∂t
+

∂

∂qν
q̇ν (18)

denotes so-called “cut total derivative” applied to functions on J1Y .
Remarkably, also the converse holds true [26], [28], giving us a one-to-one rela-

tionship between variational equations and a class of closed 2-forms:

Theorem 3. Let α be a 2-form on J1Y such that E = p1α is a dynamical form. If
α is closed then E is locally variational, meaning that around every point in J1Y
there exists a Lagrangian λ such that over the domain of λ, E = Eλ.

We note that the existence of a global Lagrangian for a locally variational dy-
namical form is related with topological properties of the manifold Y [23].

Euler-Lagrange equations can be obtained from the variational principle. Let
us briefly recall the procedure. Denote by S[a,b](π) the set of sections of π with
domains around an interval [a, b] ⊂ R. Given a Lagrangian λ on J1Y , consider the
function

S[a,b](π) 3 γ →
∫ b

a

J1γ∗λ =
∫ b

a

J1γ∗θλ ∈ R (19)

called the action function of λ over [a, b]. To get a correct concept of variation
(one-parametric deformation) of a section γ, one has to restrict to consider π-
projectable vector fields on Y : if ξ is a projectable vector field on Y with projection
ξ0, and {φu}, resp. {φ0u} are the corresponding local one-parameter groups, we
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get a one-parameter family {γu} of sections where γu = φuγφ
−1
0u is defined in a

neighbourhood of φ0u([a, b]) ⊂ R, called variation of the section γ induced by ξ.
The arising function

S[a,b](π) 3 γ →

(
d

du

∫
φ0u([a,b])

J1γ∗u λ

)
u=0

=
∫ b

a

J1γ∗ LJ1ξλ ∈ R (20)

is called the first variation of the action function of the Lagrangian λ over the
interval [a, b], induced by ξ. The First Variation Formula is a splitting of the
above integral into a sum of two terms such that the first one does not depend
upon “derivations of variations” (the Euler-Lagrange term) and the second one is
a boundary term. With the Cartan form θλ the decomposition is available directly
(without the integration by parts procedure), and in an invariant way [21]:∫ b

a

J1γ∗ LJ1ξλ =
∫ b

a

J1γ∗ LJ1ξθλ

=
∫ b

a

J1γ∗ iJ1ξdθλ +
∫ b

a

d(iJ1ξθλ ◦ J1γ)

=
∫ b

a

J2γ∗ iJ2ξEλ + the above boundary term.

(21)

A section γ of π is called an extremal of λ on [a, b] if the first variation of
the action of λ on the interval [a, b] vanishes for every vertical vector field ξ on Y
with the support in π−1([a, b]) (such a vector field is often called a fixed-endpoints
variation). γ is called extremal of λ if it is an extremal on every interval [a, b] ⊂ R.

With help of the First Variation Formula one obtains necessary and sufficient
conditions for extremals as follows [21]:

Theorem 4. Let λ be a Lagrangian on J1Y . A section γ of π is an extremal of λ
if and only if γ satisfies one of the following equivalent conditions:

(1) Eλ ◦ J2γ = 0, i.e. γ is a path of the Euler-Lagrange form of λ.

(2) For every vertical vector field ξ on Y , J1γ∗ iJ1ξdθλ = 0.

(3) In every fibred chart γ satisfies the system of m second-order ordinary differ-
ential equations

∂L

∂qσ
− d

dt

∂L

∂q̇σ
= 0, 1 ≤ σ ≤ m. (22)

Notice the meaning of condition (2) of the above theorem: it is a geometric
interpretation of the Euler-Lagrange equations in terms of a dynamical distribution
of the dynamical form E = Eλ. Namely, accounting Theorem 2 we can see that
every Euler-Lagrange dynamical form possesses a distinguished global dynamical
distribution related with the Lepage 2-form αE ,

∆E = annih{iξαE | ξ runs over all vertical vector fields on J1Y } (23)
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called the Euler-Lagrange distribution [25], [27]. By condition (2) of the above the-
orem, extremals (solutions of the Euler-Lagrange equations) are holonomic integral
sections of the distribution ∆E .

Equations for (all) integral sections of the Euler-Lagrange distribution ∆E , i.e.
equations

δ∗iξαE = 0 for every π1-vertical vector field ξ on J1Y (24)

for sections δ of the fibred manifold π1 : J1Y → R are then called Hamilton
equations [16], [27]. In case that rank ∆E = 1, i.e., E is regular (as a dynamical
form), rankαE is maximal (equal 2m), and the Euler-Lagrange distribution is
spanned by one vector field ζ. It is, up to a multiplier f , a unique solution of the
equation iζαE = 0, and is called Euler-Lagrange field [16], or Hamiltonian vector
field. The condition for regularity can be expressed by means of Lagrangians as
follows:

(i) If ∆E is defined on J1Y (this means that the Euler-Lagrange equations are
nontrivially second-order equations) the regularity condition takes the form

det
( ∂2L

∂q̇σ∂q̇ν

)
6= 0 . (25)

(ii) If αE is projectable onto Y , i.e. ∆E is defined on Y , then the regularity
condition takes the form [26]

det
( ∂2L

∂qσ∂q̇ν
− ∂2L

∂q̇σ∂qν

)
6= 0 . (26)

This is the case when the Euler-Lagrange equations are first-order equations, i.e.
the corresponding Lagrangians are affine functions in the velocities.

For regular Lagrangians, i.e. satisfying either (25) or (26), the Cauchy problem
has a unique solution, i.e., through every point in the dynamical space (J1Y , respec-
tively Y ) there passes a unique maximal solution of the Euler-Lagrange equations.

The Cartan form θλ takes the coordinate form (14). Expressing the same form
in the canonical basis (dt, dqσ, dq̇σ) one obtains

θλ = −H dt+ pσdq
σ, where pσ =

∂L

∂q̇σ
, H = −L+ pσ q̇

σ. (27)

If L is not affine in velocities (meaning that ∆E is defined on J1Y ) then the
“momenta” pσ are (local) functions on J1Y . If, moreover, L is regular, we get on
J1Y local coordinates (t, qσ, pσ), called Legendre coordinates. In these coordinates,
Hamilton equations (24) take the “canonical form”

dpσ

dt
= − ∂H

∂qσ
,

dqσ

dt
=
∂H

∂pσ
. (28)

Up to now we have been interested in the meaning of the first term in the
decomposition of the first variation (21). The second term, however, is important
as well, since it is connected with conservation laws.
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We say that a π-projectable vector field ξ on Y is a point symmetry of a La-
grangian λ if

LJ1ξλ = 0 , (29)

and a generalized point symmetry of λ if it is a point symmetry of its Euler-Lagrange
form, i.e.,

LJ2ξEλ = 0 . (30)

Within the terminology of the classical calculus of variations, point symmetries of
a Lagrangian correspond to infinitesimal transformations that leave invariant the
action integral; similarly point symmetries of the Euler-Lagrange form correspond
to transformations leaving the action integral invariant “up to a divergence”. Equa-
tion (29) and (30) is called Noether equation and Noether–Bessel-Hagen equation,
respectively. It is known that every point symmetry of λ is a point symmetry of
Eλ [22].

Substituting into the First Variation Formula (21) the symmetry condition and
taking account of the extremal condition (2) in Theorem 4 we immediately obtain
the following famous result [45], [22]:

Theorem 5. (Noether Theorem)

(1) Assume that a π-projectable vector field ξ on Y is a point symmetry of a
Lagrangian λ. Then, along every extremal of λ, the function F = iJ1ξθλ is
constant.

(2) Assume that a π-projectable vector field ξ on Y is a generalized point sym-
metry of a Lagrangian λ. Then (locally) LJ1ξλ = hdf for a function f , and
along every extremal of λ, the function F = iJ1ξθλ − f is constant.

Within fibred mechanics one can easily consider also Lagrangian systems subject
to external forces that need not be variational (so-called nonconservative systems)
[32]. More precisely, by a mechanical system on a fibred manifold π we shall mean
a pair (λ,Φ) where λ is a Lagrangian on J1Y and Φ is a first-order dynamical form,
called a force. It is generally assumed that λ is not affine in velocities (provides
Euler-Lagrange equations that are nontrivially of order two). The corresponding
dynamical form is then E = Eλ − π∗2,1Φ, and equations for paths of E take the
form

∂L

∂qσ
− d

dt

∂L

∂q̇σ
= Φσ, 1 ≤ σ ≤ m. (31)

The corresponding Lepage class is represented by the Lepage 2-form

α = Aσω
σ ∧ dt+

1
4

(∂Aσ

∂q̇ν
− ∂Aν

∂q̇σ

)
ωσ ∧ ων +Bσνω

σ ∧ dq̇ν

= dθλ − Φ− 1
4

(∂Φσ

∂q̇ν
− ∂Φν

∂q̇σ

)
ωσ ∧ ων ,

(32)

where Aσ and Bσν are defined as above by Eσ = Aσ +Bσν q̈
ν and take the form

Aσ =
∂L

∂qσ
− ∂2L

∂t ∂q̇σ
− ∂2L

∂qν∂q̇σ
q̇ν − Φσ , Bσν = − ∂2L

∂q̇σ∂q̇ν
. (33)
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The motion is described by the dynamical distribution ∆ = annih{iξα} where ξ
runs over all vertical vector fields on J1Y .

Using theorems 1 and 2 we can see that the force Φ is conservative (potential)
if and only if it is variational (as a first order dynamical form), i.e. if and only if
the 2-form α is closed, hence

Φ +
1
4

(∂Φσ

∂q̇ν
− ∂Φν

∂q̇σ

)
ωσ ∧ ων (34)

is closed. It can be easily verified that Φ satisfies Helmholtz conditions [18]. Recall
that in this case the Helmholtz conditions take the form

∂Φσ

∂q̇ν
+
∂Φν

∂q̇σ
= 0,

∂Φσ

∂qν
− ∂Φν

∂qσ
+
d

dt

∂Φν

∂q̇σ
= 0.

(35)

Since we assume the force Φ be of the first order, the latter condition gives

∂2Φσ

∂q̇ν∂q̇ρ
= 0, (36)

i.e. that the force is affine in velocities,

Φσ = aσρq̇
ρ + bσ, (37)

and the first condition (35) then immediately means that the matrix of the coeffi-
cients (aσρ) is skew-symmetric. Substituting now (37) to the second condition (35)
we obtain the Helmholtz conditions for a force Φ in the familiar form

aσν = −aνσ,

∂aσρ

∂qν
+
∂aνσ

∂qρ
+
∂aρν

∂qσ
= 0,

∂bσ
∂qν

− ∂bν
∂qσ

+
∂aνσ

∂t
= 0.

(38)

We note that conditions (38) mean that Φ is a Lorentz-type force. From the geomet-
ric point of view, (38) indeed are exactly the closedness conditions for the 2-form
(34).

3 Holonomic constraints
Holonomic constraints on the motion appear in numerous applications in physics
and engineering. Due to their importance they have been considered within ana-
lytical mechanics since the very beginning going back to Lagrange and Hamilton.

In classical mechanics holonomic constraints are constraints on positions of
particles; they may be time-independent (not explicitly depending on time), or
time dependent. In local coordinates (q1, . . . , qm) in Rm, holonomic constraints
are given by a system of (algebraic) equations

ua(t, qσ) = 0, a = 1, 2, . . . , k < m, (39)
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satisfying the rank condition

rank
(∂ua

∂qσ

)
= k. (40)

The latter condition means that constraint conditions (39) can be expressed in a
form

qm−k+a = wa(t, q1, . . . , qm−k). (41)

There are two ways for considering constrained motions:

• External – with Lagrange multipliers:

The influence of the constraint on the motion is modeled via an external
attractive force, called constraint force, proportional to gradu. Equations of
motion of a Lagrangian system L subject to constraints (39) then take the
form

∂L

∂qσ
− d

dt

∂L

∂q̇σ
= −µa

∂ua

∂qσ
, 1 ≤ σ ≤ m, (42)

where µa, 1 ≤ a ≤ k, are Lagrange multipliers. Solutions to the problem are
both curves in Rm satisfying simultaneously the constraint conditions and
the above motion equations, and Lagrange multipliers as functions of time.

Remarkably, equations of motion (42) can be obtained as standard Euler-
-Lagrange equations from the Lagrangian

L̂ = L+ µau
a. (43)

• Internal (geometric) – without Lagrange multipliers:

The point is that the constraints given by equations (39) with the accompany-
ing rank condition have the geometric meaning of a submanifold of codimen-
sion k in R×Rm. In terms of the fibred manifolds terminology, the constraint
conditions define a fibred submanifold π : Ȳ → R of the fibred manifold
pr1 : R × Rm → R. If we denote by ι the canonical embedding of the con-
straint submanifold Ȳ into R×Rm, and by (t, qs), 1 ≤ s ≤ m−k = dim Ȳ −1,
adapted coordinates on Ȳ , then equations of motion of a Lagrangian system
L(t, qσ, q̇σ) subject to constraints (39) take the form of “standard” Euler-
-Lagrange equations

∂L̄

∂qs
− d

dt

∂L̄

∂q̇s
= 0, 1 ≤ s ≤ m− k, (44)

for the Lagrangian L̄ = L ◦ J1ι on the manifold J1Ȳ . It is essential that the
latter equations and the equations with Lagrange multipliers above are, as
equations for sections passing in the constraint submanifold (i.e. satisfying
the constraint conditions), equivalent.

In analytical mechanics the manifold Ȳ is called “space of events”, (qs) are
“generalized coordinates”, m − k is the “number of degrees of freedom”,
J1Ȳ is called “evolution space” or “phase space”, and L̄ is the “constrained
Lagrangian”.
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Due to the geometric nature of holonomic constraints, holonomic systems are
very well understood within the fibred mechanics setting presented in the previous
section. Indeed, they completely fit with the general scheme of the theory - and
this concerns both Lagrangian and nonconservative systems. In a full generality, if
π : Y → X is a fibred manifold, a holonomic constraint in Y is a fibred subman-
ifold π̄ : Ȳ → X of π. Given a dynamical form E on J2Y , on J2Ȳ there arises
dynamical form Ē = J2ι∗E. In particular, given a Lagrangian λ on J1Y we obtain
a Lagrangian λ̄ = J1ι∗λ on J1Ȳ , and the Euler-Lagrange equations of λ̄ come from
the restricted Euler-Lagrange form Eλ̄ = J2ι∗Eλ.

Note that if π : R × M → R, and Ȳ is of the form R × N where N is a
submanifold in M we can speak about a time-independent holonomic constraint,
otherwise π̄ : Ȳ → R is a time-dependent holonomic constraint in R×M .

4 Nonholonomic systems on constraint manifolds
In what follows we shall consider constraints on the motion that depend on time,
positions and velocities, called nonholonomic constraints. In this case equations
defining a constraint are first order differential equations. In terms of jet bundles
constraints with this property are submanifolds of the first jet manifold.

As above, let us consider a fibred manifold π : Y → R, where dimY = m + 1.
Precisely speaking, by a nonholonomic constraint in J1Y we shall mean a submani-
fold Q ⊂ J1Y , fibred over Y . When appropriate, we shall use notation ι : Q→ J1Y
for the canonical embedding. A constraint of codimension k (1 ≤ k < m) in J1Y
is locally defined by a system of k first order ordinary differential equations

fa(t, qσ, q̇σ) = 0, 1 ≤ a ≤ k , (45)

where the functions fa satisfy the rank condition

rank
(∂fa

∂q̇σ

)
= k . (46)

Due to (46), equations of the constraint take a normal form

q̇m−k+a = ga(t, qσ, q̇1, . . . , q̇m−k), 1 ≤ a ≤ k . (47)

Similarly as in the case of holonomic constraints we can approach the nonholo-
nomic dynamics in two ways:

• External – with Lagrange multipliers:

The influence of the constraint on the motion should be modeled via a con-
straint force. The problem now, however, is that it is not clear how such a
force should look like. In [9] Chetaev proposed the following formula for the
constraint force:

Fσ = −µa
∂fa

∂q̇σ
, (48)

where µa, 1 ≤ a ≤ k, are Lagrange multipliers. Equations of motion of a
Lagrangian system L subject to nonholonomic constraints (45) then read

∂L

∂qσ
− d

dt

∂L

∂q̇σ
= −µa

∂fa

∂q̇σ
, 1 ≤ σ ≤ m, (49)
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and are called Chetaev equations. In this case, the integration problem means
to solve a system of m+ k mixed first and second order ordinary differential
equations (45) and (49) for m components qσ(t) of the nonholonomic curves
and k Lagrange multipliers µa(t).

It should be stressed, that in this case, rather surprisingly, Chetaev equations
do not arise as Euler-Lagrange equations from a Lagrangian analogous to
(43), i.e.

L̂ = L+ µaf
a, (50)

since equations for extremals of (50), called vakonomic equations, take a
different form

∂L

∂qσ
− d

dt

∂L

∂q̇σ
= −µa

(∂fa

∂qσ
− d

dt

∂fa

∂q̇σ

)
− dµa

dt

∂fa

∂q̇σ
, 1 ≤ σ ≤ m. (51)

Solutions of Chetaev and vakonomic equations are different unless the con-
straints are semiholonomic (linear, integrable), satisfying the integrability
conditions

fa =
dua

dt
. (52)

Investigations of different examples indicated that nonholonomic dynamics
obey Chetaev equations. On the other hand, vakonomic equations seem to
be valuable in control theory.

• Internal (geometric) – without Lagrange multipliers:

The second approach explores the geometric meaning of nonholonomic con-
straints as submanifolds in jet bundles. In what follows, we shall present
namely this model and the arising geometric structures, first considered in
our paper [29]. Remarkably, within this setting nonholonomic systems and
their dynamics are described by geometric structures on a corresponding con-
straint submanifold, which has the physical meaning of a constrained phase
space. The dynamics are governed by so-called reduced equations which rep-
resent a system of m − k second order ordinary differential equations for
sections of the constraint submanifold (as expected no Lagrange multipliers
enter in these equations). For the study of the constrained systems concepts
and techniques of fibred mechanics can be directly used or quite easily gen-
eralized. In this way, nonholonomic mechanics is a direct extension of fibred
mechanics and admits a straightforward generalization to higher order and
field theory.

Moreover, within the geometric model there arises a new possibility to un-
derstand and study constrained systems. Indeed, one can distinguish two
different situations [39]:

- the constrained system arises from an unconstrained system defined in a
neighbourhood of the constraint

- an internally defined constrained system on the constraint manifold is given,
without reference to the ambient space J1Y ; in this case a corresponding
unconstrained system need not exist.
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4.1 Constraint submanifolds in jet bundles

Consider a constraint submanifold ι : Q → J1Y of codimension k < m. This
means that we have fibred manifolds π̄1,0 : Q → Y where π̄1,0 is the restriction of
the projection π1,0 : J1Y → Y to Q, and π̄1 : Q→ X, where π̄1 = π1|Q.

We define the first prolongation Q̂ of the constraint Q to be a submanifold in
J2Y , consisting of all points J2

xγ such that J1
xγ ∈ Q, x ∈ X. Locally Q̂ is defined

by the equations of the constraint and their derivatives:

fa = 0,
dfa

dt
= 0, 1 ≤ a ≤ k , (53)

respectively, in normal form,

q̇m−k+a = ga, q̈m−k+a =
dga

dt
. (54)

We also use notation ι̂ : Q̂→ J2Y for the corresponding canonical embedding. The
manifold Q̂ is fibred over Q, Y and X, the fibred projections are simply restrictions
of the corresponding canonical projections of the underlying fibred manifolds. We
write π̄2 : Q̂→ X, π̄2,1 : Q̂→ Q and π̄2,0 : Q̂→ Y .

Usually we shall use on Q adapted coordinates (t, qσ, q̇s), where 1 ≤ s ≤ m−k,
and on Q̂ associated coordinates (t, qσ, q̇s, q̈s), 1 ≤ σ ≤ m, 1 ≤ s ≤ m− k.

The contact ideal on Q respectively Q̂, is locally generated by one-forms

ω̄s = dqs − q̇sdt, ω̄m−k+a = dqm−k+a − gadt, (55)

respectively,

ω̄s = dqs − q̇sdt, ω̄m−k+a = dqm−k+a − gadt, ω̂s = dq̇s − q̈sdt , (56)

and their exterior derivatives.
Due to the existence of the contact structure on constraint manifolds, it is

possible to prolong projectable vector fields from the total space Y to the constraint
and to its prolongations. The procedure was described in [35] and is as follows:

Let ξ be a projectable vector field on Y . A vector field ζ on Q (resp. Q̂) is
called the first (resp. second) constrained prolongation of ξ, and is denoted by J1

c ξ
(resp. J2

c ξ), if ζ is a symmetry of the contact ideal on Q (resp. Q̂) and projects
onto ξ. It should be stressed that not every projectable vector field on Y admits a
constrained prolongation; conditions and formulas can be found in [35].

Similarly as in the unconstrained case, for every q-form η on Q one has a unique
decomposition into a sum of a π̄2-horizontal form and i-contact forms, i = 1, 2, . . . q,
on Q̂ [35]; we write

π̄∗2,1η = h̄η + p̄1η + · · ·+ p̄qη . (57)

Applying this decomposition to (locally) exact one-forms on Q we get an invariant
splitting of the exterior derivative d to the horizontal and contact part, π̄∗2,1d =
h̄d+ p̄1d. The operator h̄d has the component

dc

dt
=

∂

∂t
+ q̇s ∂

∂qs
+ ga ∂

∂qm−k+a
+ q̈s ∂

∂q̇s
, (58)
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and is called the constraint total derivative.
For convenience of notations we also put

d′c
dt

=
∂

∂t
+ q̇s ∂

∂qs
+ ga ∂

∂qm−k+a
. (59)

4.2 The canonical distribution

The most important object in the constraint geometry is the canonical distribution
(also called Chetaev bundle) [29] (see also [43]). Remarkably, it is an internal object
– a bundle naturally arising over every nonholonomic constraint. The canonical
distribution gives a geometric meaning to virtual displacements in the space of
positions and velocities, and to the concept of reactive (Chetaev) forces; for more
details and introduction of a nonholonomic D’Alembert principle we refer to [29]
and [34].

The canonical distribution for a nonholonomic constraint Q ⊂ J1Y is a corank
k distribution C on the manifold Q, where k = codimQ, locally annihilated by the
system of k linearly independent 1-forms

ϕa =
(
∂fa

∂q̇σ
◦ ι
)
ω̄σ = ω̄m−k+a −

m−k∑
s=1

∂ga

∂q̇s
ω̄s, 1 ≤ a ≤ k, (60)

or, equivalently, locally spanned by the system of 2(m− k) + 1 independent vector
fields

∂c

∂t
≡ ∂

∂t
+

k∑
a=1

(
ga −

m−k∑
l=1

∂ga

∂q̇l
q̇l
) ∂

∂qm−k+a

∂c

∂qs
≡ ∂

∂qs
+

k∑
a=1

∂ga

∂q̇s

∂

∂qm−k+a

∂

∂q̇s

(61)

where 1 ≤ s ≤ m− k.
The annihilator of C is denoted by C0.
The ideal in the exterior algebra on Q locally generated by the 1-forms ϕa,

1 ≤ a ≤ k, is called the constraint ideal, and denoted by I(C0). Differential forms
belonging to the constraint ideal are called constraint forms.

Vector fields belonging to the canonical distribution are called Chetaev vector
fields. Note that every Chetaev vector field takes a form

Z = Z0 ∂c

∂t
+ Zs ∂c

∂qs
+ Z̃s ∂

∂q̇s

= Z0 ∂

∂t
+ Zs ∂

∂qs
+

k∑
a=1

(
Z0
(
ga −

m−k∑
l=1

∂ga

∂q̇l
q̇l
)

+ Zs ∂g
a

∂q̇s

) ∂

∂qm−k+a
+ Z̃s ∂

∂q̇s
.

(62)
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We stress that the family of Chetaev vector fields need not contain

• vector fields projectable onto Y ,

• prolongations of vector fields defined on Y , even if the canonical distribution
is projectable.

Remarkably, the following theorem holds [29]:

Theorem 6. The constraint Q is given by equations affine in the first derivatives if
and only if the canonical distribution C on Q is π̄1,0-projectable (i.e. the projection
D of C is a distribution on Y ).

The distribution D on Y is then locally spanned by vector fields

∂

∂t
+

k∑
a=1

Aa ∂

∂qm−k+a
,

∂

∂qs
+

k∑
a=1

Ba
s

∂

∂qm−k+a
, 1 ≤ s ≤ m− k , (63)

or, annihilated by 1-forms Aadt + Ba
s dq

s − dqm−k+a, 1 ≤ a ≤ k, where ga =
Aa +Ba

s q̇
s.

The canonical distribution need not be completely integrable. We call a non-
holonomic constraint Q semiholonomic if its canonical distribution C is completely
integrable. Properties of semiholonomic constraints can be summarized as follows
[29], [33], [35]:

Theorem 7. The following conditions are equivalent:

(1) Q is semiholonomic.

(2) The canonical distribution C on Q is projectable onto Y , and its projection
is completely integrable.

(3) The constraint ideal is closed.

(4) Functions ga defining locally the constraint satisfy

∂cg
a

∂qs
− dc

dt

∂ga

∂q̇s
= 0 , 1 ≤ s ≤ m− k . (64)

Theorem 8. The canonical distribution C of a semiholonomic constraint is spanned
by vector fields J1

c ξ, where ξ belongs to the projection D of C, and π̄1,0-vertical
vector fields.

We have seen that constraints linear or affine in velocities can be alternatively
modeled by means of a distribution D on Y , defined by (63) (that is completely
integrable in case of semiholonomic constraints). The geometric description of non-
holonomic constraints by a distribution on Y (on a “configuration space”, or “space
of events”) is quite popular and frequently used. The reader should, however, keep
in mind that using such a model means restriction to constraints affine in velocities.

The canonical distribution is naturally lifted to the distribution Ĉ on Q̂, defined
with help of its annihilator by Ĉ0 = π̄∗2,1C0.
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4.3 Dynamics of nonholonomic systems: Reduced equations

Consider a nonholonomic constraint ι : Q → J1Y endowed with the canonical
distribution C as above. Let E be a J1Y -pertinent dynamical form on J2Y and
[α] its Lepage class. Recall that [α] consists of local 2-forms on J1Y , and contains
a closed (global) 2-form if and only if the dynamical form E comes as the Euler-
-Lagrange form from (possibly local) Lagrangians. We keep notations used above,
i.e. E = Eσω

σ ∧ dt, Eσ = Aσ +Bσν q̈
ν , and

α = Aσω
σ ∧ dt+Bσνω

σ ∧ dq̇ν + F, (65)

where F is a 2-contact 2-form on an open subset of J1Y .
According to [29], a constrained mechanical system associated with [α] is defined

to be the class
[ᾱ] = ι∗α mod I(C0). (66)

This means that [ᾱ] is defined on the constraint Q and consists of all possibly local
2-forms on Q such that

ᾱ = Ālω
l ∧ dt+ B̄lsω

l ∧ dq̇s + F + ϕ, (67)

where F is a 2-contact and ϕ is a constraint 2-form on Q, and

Āl =
(
Al +Am−k+j

∂gj

∂q̇l
+
(
Bl,m−k+i +Bm−k+j,m−k+i

∂gj

∂q̇l

)d′gi

dt

)
◦ ι,

B̄ls =
(
Bls +Bl,m−k+i

∂gi

∂q̇s
+Bm−k+i,s

∂gi

∂q̇l
+Bm−k+j,m−k+i

∂gj

∂q̇l

∂gi

∂q̇s

)
◦ ι.

(68)

Note that if the matrix B is symmetric then so is B̄, however, regularity of B does
not imply regularity of B̄. The latter has important consequences on dynamical
properties of nonholonomically constrained systems making them much different
from the holonomic ones. We shall discuss it in more detail below when dealing
with the associated exterior differential systems.

If in particular α is related with a mechanical system (λ,Φ), we have

Ās =
∂cL̄

∂qs
− d′c
dt

∂L̄

∂q̇s
−
( ∂L

∂q̇m−k+a
◦ ι
)(∂cg

a

∂qs
− d′c
dt

∂ga

∂q̇s

)
− Φ̄s − Φ̄m−k+a

∂ga

∂q̇s
(69)

B̄sr = − ∂2L̄

∂q̇r∂q̇s
+
( ∂L

∂q̇m−k+a
◦ ι
) ∂2ga

∂q̇r∂q̇s
(70)

with the notation L̄ = L ◦ ι, Φ̄σ = Φσ ◦ ι.
In place of a single dynamical form E = p1α we have for the constrained system

rather the class [Ē], on Q̂, with

Ē = p̄1ᾱ = ι̂∗E + ϕa ∧ νa (71)

where ϕa are the canonical constraint 1-forms defined above and νa are horizontal
forms.
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Since C → Q is a subbundle of the tangent bundle TQ → Q, the class [Ē]
gives rise to a dynamical form along the canonical distribution, called constrained
dynamical form, Ēc = (ι̂∗E)|Ĉ ∈ Λ2(Ĉ) (see [29] for the definition and more details
on forms along a distribution); we note that Ēc is the same for all Ē ∈ [Ē].

Computations in adapted fibred coordinates yield the following formula:

Ēc = (Ās + B̄sr q̈
r)ω̄s ∧ dt . (72)

We shall be interested in constrained sections of π, that is in sections γ : I → Y
such that J1γ(I) ⊂ Q. Constrained sections satisfy the system of k first order
ODE’s of the constraint. In particular, every such a section is an integral section
of the canonical distribution C.

We have the following theorem (cf. [29]):

Theorem 9. Equations of motion of a mechanical system α constrained to Q are
equations for constrained sections of π, taking one of the following two equivalent
intrinsic forms:

Ēc ◦ J2γ = 0 , (73)

J1γ∗iZ ᾱ = 0 for every π̄1-vertical Chetaev vector field Z on Q (74)

(where ᾱ is (any) representative of the class [ᾱ]).
In coordinates,

Ās + B̄sr q̈
r = 0, (75)

or, if α is given by means of a Lagrangian λ and a force Φ,

∂cL̄

∂qs
− dc

dt

∂L̄

∂q̇s
−
( ∂L

∂q̇m−k+a
◦ ι
)(∂cg

a

∂qs
− dc

dt

∂ga

∂q̇s

)
= Φ̄s + Φ̄m−k+a

∂ga

∂q̇s
, (76)

where 1 ≤ s ≤ m− k.

It should be stressed that the above motion equations for nonholonomic systems
are differential equations on the constraint manifold Q. They are called reduced
nonholonomic equations (“without Lagrange multipliers”) [29].

Further it should be emphasized that the motion equations for nonholonomic
systems are generally equations in implicit form. However, due to their interpre-
tation as equations for an exterior differential system on the constraint manifold
Q, apparent from (74), they are investigated with the same methods as motion
equations in the unconstrained/holonomic case (see e.g. [29], [32], [40]).

4.4 The nonholonomic variational principle

Let us turn to the special case, when the force Φ(t, qν , q̇ν) is conservative (poten-
tial). Note that equations (31) are then variational being Euler-Lagrange equations
of a Lagrangian L′ = L − V , where V is a potential for Φ. Hence, without loss
of generality, and for simplicity of notations, let us consider to have a Lagrangian
system on J1Y , given by a Lagrangian λ. The nonholonomic equations of motion
then obviously take one of the equivalent forms:

Ēc
λ ◦ J2γ = 0 , (77)
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J1γ∗iZι
∗dθλ = 0 for every π̄1-vertical Chetaev vector field Z on Q, (78)

∂cL̄

∂qs
− dc

dt

∂L̄

∂q̇s
−
( ∂L

∂q̇m−k+a
◦ ι
)(∂cg

a

∂qs
− dc

dt

∂ga

∂q̇s

)
= 0 , 1 ≤ s ≤ m− k . (79)

Reduced equations for constrained Lagrangian systems (79) were first considered
in [46], and are equivalent with Chetaev equations.

In [35] a variational principle for systems subject to nonholonomic constraints
was found, providing the above reduced equations as equations for “constrained
extremals”. A generalization of the standard variational principle is in no case
trivial or straightforward, and needs a careful review of basic variational concepts.
Main points are as follows:

• The variational principle is formulated for the fibred manifold π̄1 : Q → R,
endowed with the canonical distribution C.

• “Admissible paths” are sections of the fibred manifold π̄1 : Q → R. (Note
that they need not be holonomic, however, every admissible section δ has a
counterpart in Y : it is a section γ of π : Y → R, given by γ = π̄1,0 ◦ δ).

• “Admissible variations” are π̄1-projectable vector fields belonging to the
canonical distribution (Chetaev vector fields). (Note that the requirement
of projectability onto the base is essential, since variations of this kind pro-
vide a one-parametric family of maps that all are sections of the constraint
manifold. Also note that the family of admissible sections δu = φu δ φ

−1
0u ,

arising by deformation of a holonomic section δ = J1γ, may contain non-
holonomic sections (which is a violation of the “classical” principle of virtual
displacements); moreover, the projection of the family {δu}, i.e. the family
of sections of π of the form γu = π̄1,0 φu J

1γ φ−1
0u is not induced by a vector

field on Y unless the canonical distribution is projectable (meaning that the
constraints are affine in velocities)–however, even in this case, J1γu = (J1γ)u

need not be true).

• The integrand of the action function (taking the place of a “constrained
Lagrangian”) is the 1-form ι∗θλ.

Definition 10. [35] Denote by S[a,b](π̄1) the set of sections of π̄1, defined around
an interval [a, b] ⊂ R, a < b. Given a Lagrangian λ on J1Y , the function

S[a,b](π̄1) 3 δ →
∫ b

a

δ∗ι∗θλ ∈ R , (80)

is called constrained (to Q) action function of the Lagrangian λ over [a, b].
Let Z ∈ C be a π̄1-projectable vector field, and denote by φ and φ0 the flows of

Z and its projection Z0, respectively. The one-parameter family {δu} of sections
of π̄1, where δu = φu δ φ

−1
0u , is called constrained variation of δ induced by Z. The

function

S[a,b](π̄1) 3 δ →

(
d

du

∫
φ0u([a,b])

δ∗u ι
∗θλ

)
u=0

=
∫ b

a

δ∗ LZι
∗θλ ∈ R (81)
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is then called the first constrained variation of the action function of λ over [a, b],
induced by Z.

To study constrained sections of the fibred manifold π, we have to restrict the
domain of definition S[a,b](π̄1) of the function (81) to the subset Sh

[a,b](π̄1) of holo-
nomic sections of the projection π̄1, i.e. δ = J1γ where γ ∈ S[a,b](π). Then the
first constrained variation (81) can be regarded as a function

S[a,b],Q(π) 3 γ →
∫ b

a

J1γ∗ LZι
∗θλ ∈ R (82)

defined on a subset of sections of the projection π : Y → R.
We stress that (due to the properties of admissible variations mentioned above)

the restricted first constrained variation cannot be obtained via a “variation pro-
cedure” from an action defined directly on the set S[a,b],Q(π).

Applying to (82) Cartan’s formula for the decomposition of Lie derivative we
obtain the nonholonomic first variation formula∫ b

a

J1γ∗ LZι
∗θλ =

∫ b

a

J1γ∗ iZι
∗dθλ +

∫ b

a

J1γ∗ diZι
∗θλ , (83)

where Z is a π̄1-projectable Chetaev vector field.
Formula (83) gives the splitting of the first constrained variation to a “con-

strained Euler-Lagrange term” and a boundary term. One should notice that on
the left-hand side of the nonholonomic first variation formula one cannot put the
Lie derivative of the “constrained Lagrangian” λ̄ = ι∗λ instead of LZι

∗θλ, since
the difference LZι

∗θλ − LZ λ̄ need not be a contact form.
A section γ of π : Y → R is called a constrained extremal of λ on [a, b] if

Im J1γ ⊂ Q, and if the first constraint variation of the action on the interval [a, b]
vanishes for every “fixed endpoints” variation Z over [a, b]. γ is called a constrained
extremal of λ if it is its constrained extremal on every interval [a, b] ⊂ Dom γ. With
help of the nonholonomic first variation formula one proves that γ is a constrained
extremal of λ if and only if it satisfies equations of the constraint, and one of the
(equivalent) equations (77)–(79) [35]. Therefore we call any of these equations
nonholonomic Euler-Lagrange equations.

Notice that for semiholonomic constraints equations (79) simplify to

∂cL̄

∂qs
− dc

dt

∂L̄

∂q̇s
= 0 , 1 ≤ s ≤ m− k , (84)

completely determined by the “constrained Lagrangian” λ̄ = ι∗λ.
Similarly as in the unconstrained/holonomic case, the second term on the right-

hand side of the nonholonomic first variation formula (83) is connected with con-
servation laws. Let us recall a generalization of Noether theorem to nonholonomic
systems, due to [36]:

A Chetaev vector field Z ∈ C is called a constrained symmetry of a Lagrangian
λ if LZι

∗θλ is a constraint form.
Directly from (83) we obtain:
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Theorem 11. (Nonholonomic Noether theorem)
Let λ be a Lagrangian on J1Y , and Z be a constrained symmetry of λ. Then

along every constrained extremal of λ, the function F = iZι
∗θλ = iZθλ̄ is constant.

4.5 Regularity and Hamilton equations of nonholonomic systems

Consider a nonholonomic mechanical system (λ,Φ, Q). Equations (74) represent
an important form of the nonholonomic motion equations, since they provide a
representation in form of an exterior differential system (particularly, a distribution)
on the constraint Q. More precisely, solutions of equations (74) are holonomic
integral sections of the distribution ∆c

ᾱ, locally annihilated by the system of 1-
forms on Q,

ϕa, iZ ᾱ, (85)

where 1 ≤ a ≤ k, and Z runs over all vertical vector fields in C, called constrained
dynamical distribution (note that ∆c

ᾱ is a subdistribution of the canonical distrib-
ution C). We shall call equations for (all) integral sections of the distribution ∆c

ᾱ

nonholonomic Hamilton equations (cf. [32], [42] for Lagrangian systems). Note that
in this context, the constraint manifold Q has the meaning of a genuine evolution
space for the constrained system.

The constrained dynamical distribution need not have a constant rank, and
even if the rank is constant it need not be equal to one. We say that the nonholo-
nomic system [ᾱ] is regular if rank ∆c

ᾱ = 1 [29]. From (76) we conclude that for a
constrained mechanical system (λ,Φ, Q) the regularity condition reads

det
(

∂2L̄

∂q̇r∂q̇s
−
( ∂L

∂q̇m−k+a
◦ ι
) ∂2ga

∂q̇r∂q̇s

)
6= 0 , (86)

i.e. the matrix (B̄sr) (70) is regular, If the constrained system is regular then the
distribution ∆c

ᾱ is locally spanned by one vector field (constrained semispray)

ζ =
∂

∂t
+

m−k∑
l=1

q̇l ∂

∂ql
+

k∑
a=1

ga ∂

∂qm−k+a
−

m−k∑
l,s=1

B̄lsĀs
∂

∂q̇l
, (87)

where (B̄ls) is the inverse matrix to (B̄ls) and Ās are given by (69), and the
nonholonomic Hamilton equations are equivalent with the nonholonomic motion
equations in Theorem 9.

Let us turn again to the case when the original mechanical system is Lagrangian.
Then the nonholonomic Hamilton equations take the form

δ∗iZι
∗dθλ = 0 for every π̄1-vertical Chetaev vector field Z on Q,

δ∗ϕa = 0 , 1 ≤ a ≤ k .
(88)

If the constrained system (λ,Q) is regular then the nonholonomic Hamilton equa-
tions are equivalent with the nonholonomic Euler-Lagrange equations ((77) or (78)
or (79)). In this case we can introduce a nonholonomic Legendre transformation
[51]:
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Theorem 12. Let x ∈ Q be a point. Suppose that in a neighbourhood of x,

∂B̄ls

∂q̇r
=
∂B̄lr

∂q̇s
, 1 ≤ l, r, s ≤ m− k . (89)

Then there exists a neighbourhood U ⊂ Q of x, and, on U , functions Pl, 1 ≤ l ≤
m− k, and a 1-form η, such that

ι∗dθλ = η ∧ dt+ dPl ∧ dql + F , (90)

where F is a 2-contact form on Q. If, moreover, the constrained system (λ,Q) is
regular, then (t, qσ, q̇l) → (t, qσ, Pl) is a coordinate transformation on U .

The integrability condition for the B̄sl’s (89) ensures that one can express func-
tions Pl explicitly. To this purpose we consider a mapping χ : [0, 1] ×W → W
defined by (u, t, qσ, q̇l) → (t, qσ, uq̇l), where W ⊂ Q is an appropriate open set.
Then Poincaré Lemma gives us a solution

Pl = −q̇s

∫ 1

0

(B̄ls ◦ χ) du =
∂L̄

∂q̇l
− q̇s

∫ 1

0

((
∂L

∂q̇m−k+a
◦ ι
)

∂2ga

∂q̇l∂q̇s

)
◦ χdu . (91)

We call the above functions Pl, 1 ≤ l ≤ k, nonholonomic momenta, and the
corresponding coordinate transformation nonholonomic Legendre transformation
of λ. The 1-form η in (90) is called a nonholonomic energy 1-form.

The 1-form η is determined up to a constraint 1-form, and need not be closed.
In constraint Legendre coordinates we can write

η = η0 dt+ ηl dq
l + ηl dPl mod I(C0) . (92)

In nonholonomic Legendre coordinates the nonholonomic Hamilton equations
take the following canonical form

d

dt
(Pl ◦ δ) = ηl,

d

dt
(ql ◦ δ) = −ηl ,

d

dt
(qm−k+a ◦ δ) = ga , (93)

where 1 ≤ l ≤ m− k, 1 ≤ a ≤ k.
For non-holonomic constraints affine in velocities the situation essentially sim-

plifies: Indeed, then (89) is fulfilled identically and the nonholonomic momenta are
defined by

Pl =
∂L̄

∂q̇l
, 1 ≤ l ≤ m− k . (94)

The regularity condition takes the form

det
(

∂2L̄

∂q̇l∂q̇s

)
6= 0. (95)

Moreover, if the constraint Q is semiholonomic then the family of energy 1-forms
(92) contains a closed 1-form equal to −dH̄, where

H̄ = −L̄+ Plq̇
l. (96)
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[40] O. Krupková, G.E. Prince: Second Order Ordinary Differential Equations in Jet Bundles
and the Inverse Problem of the Calculus of Variations. In: D. Krupka, D. Saunders
(eds.): Handbook of Global Analysis. Elsevier (2008) 841–908.
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