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CONSENSUS SEEKING IN MULTI-AGENT SYSTEMS
WITH AN ACTIVE LEADER
AND COMMUNICATION DELAYS

Lixin Gao, Yutao Tang, Wenhai Chen and Hui Zhang

In this paper, we consider a multi-agent consensus problem with an active leader and
variable interconnection topology. The dynamics of the active leader is given in a general
form of linear system. The switching interconnection topology with communication delay
among the agents is taken into consideration. A neighbor-based estimator is designed for
each agent to obtain the unmeasurable state variables of the dynamic leader, and then a dis-
tributed feedback control law is developed to achieve consensus. The feedback parameters
are obtained by solving a Riccati equation. By constructing a common Lyapunov function,
some sufficient conditions are established to guarantee that each agent can track the active
leader by assumption that interconnection topology is undirected and connected. We also
point out that some results can be generalized to a class of directed interaction topologies.
Moreover, the input-to-state stability (ISS) is obtained for multi-agent system with variable
interconnection topology and communication delays in a disturbed environment.

Keywords: multi-agent system, consensus, leader-following, time-delay

Classification: 93E12, 62A10

1. INTRODUCTION

In recent years, the coordination problem of multiple autonomous agents has drawn
an increasing attention with rather diverse background such as biology, physics,
mathematics, information science, computer science and control science [14, 16].
In conventional or centralized design methods or tasks, couplings or interactions
in feedback systems were often viewed as lying somewhere between troubles and
undesirable features that should be avoided if at all possible. However, an important
aspect of multi-agent systems is to aim at fully exploiting interconnection features in
distributed designs. Among the studies of distributed control and collective behavior
analysis, the leader-follower problem is important, which have been investigated in
different ways recently [1, 2, 7, 15].

As an extension of conventional leader-follower tracking problem, the problem
considered in this paper is to study the leader-follower problem where the leader
dynamics are different from those of the followers and some states of the leaders
may be unknown or unmeasurable. In practice, an active leader may be a moving
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target in a sensor network, or an evader in a pursuit game, or a reference system that
is not completely known. To follow or track such leaders, distributed estimation of
the leaders is needed in the leader-following design. On the other hand, distributed
design is quite fit to coordinate multi-agent system when the interaction topologies
keep switching. In fact, distributed estimation based on distributed observers was
considered for multi-agent coordination in [6, 7] to estimate unmeasurable states
of the active leader with simple dynamics expression, while a distributed algorithm
was proposed for distributed estimation of a general active leader’s unmeasurable
state variables in [8]. Moreover, the active leader-following problem with first-order
agent dynamics was considered even in a stochastic scenario by [11]. Additionally,
internal-model approach began in the study of such problems and the problem with
a simple topology and agents in the form general linear systems was solved in [19].

There is no doubt that the stability of multi-agent systems is of utmost impor-
tance. In real applications, the interacting topology between agents may change
dynamically. For example, in the case of interaction via communications, the com-
munication links between vehicles may be unreliable subject to disturbances and/or
communication time-delay. However, a well-known fact is that switching of the
communication topology and communication time delays may lower the system per-
formance and even cause the network system to diverge or oscillate. Time-delay
systems have attracted much attention in recent years [4], even in multi-agent sys-
tems for either first-order agents [15] or second-order agents [10, 12, 13].

The motivation of this paper is to extend the results on active leader-following
problem to systems involving communication delays among agents under switching
topology. Similar distributed observers and control laws proposed by [8] are used to
track the active leader. Moreover, to handle the switching topology, an approach
based on common Lyapunov function (CLF) is employed to study the consensus and
estimation in both noise-free and noise environments. As a special case of our result,
we also generalize the result of [8] to a class of directed interaction topologies.

The paper is organized as follows. In section 2, formulation of the problem and
some basic results about time-delay systems are presented. Main results are given in
section 3. Following that, section 4 provides a simple simulation example, and finally,
concluding remarks with discussions of the future work are reported in section 5.

The notation of this paper is standard. Throughout this paper, the following
notations are used: R is the real number set. I is an identity matrix with compatible
dimension. AT is denoted as transpose of a matrix A; 1n = [1, 1, . . . , 1]T with
proper dimension; For symmetric matrices A and B, A > (≥)B means A − B is
positive (semi-) definite. λ(A) represents an eigenvalue of matrix A. For symmetric
matrix A, λmin(A) and λmax(A) represent the minimum and maximum eigenvalue
of A respectively. ‖ · ‖ denotes Euclidean norm. ⊗ denotes the Kronecker product,
which satisfies (1) (A ⊗ B)(C ⊗D) = (AC) ⊗ (BD); (2) If A ≥ 0 and B ≥ 0, then
A⊗B ≥ 0 [9].

2. PRELIMINARIES

First of all, we introduce some preliminary knowledge that will be used throughout
this paper.
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2.1. Graph theory

Stability analysis of a group of agents is based on several results of algebraic graph
theory. More details are available in [3]. Let G = {V, ε, A) be a weighted directed
graph of order n, where V = {v1, v2, . . . , vn} is the set of nodes, ε is the set of edges
and a weighted adjacency matrix A = [aij ] with nonnegative elements. The node
indexes belong to a finite index set I = {1, 2, . . . , n}. The element aij associated with
the edge of the directed graph is positive, i. e., aij > 0 ⇔ (vi, vj) ∈ ε. Throughout
the paper, we assume that all the graphs have no edges from a node to itself. Thus,
for all i ∈ I we have aij = 0. A weighted graph is call undirected if ∀ (vi, vj) ∈
ε ⇒ (vj , vi) ∈ ε and aij = aji. Otherwise, the graph is called a directed graph.
If (vi, vj) ∈ ε, then vj is said to be a neighbor of vi and we denote the set of all
neighbors of node vi by Ni = {j|(vi, vj) ∈ ε}. A path is a sequence of ordered
edges of the form (vi1 , vi2), (vi2 , vi3), . . . , (vij−1 , vij ) where ij ∈ I and vij ∈ V. The
degree matrix D = {d1, d2, . . . , dn} ∈ Rn×n of graph G is a diagonal matrix, where
diagonal elements di =

∑
j∈Ni

aij for i = 1, 2, . . . , n. Then the Laplacian matrix
of G is defined as L = D − A ∈ Rn×n. Obviously, the Laplacian matrix of any
undirected graph is symmetric. Denote the eigenvalues of Laplacian matrix L by
λ1(L), . . . , λn(L), which satisfy λ1(L) ≤ · · · ≤ λn(L). Then we know that λ1(L) = 0
and 1n is its eigenvector (see [3]).

In what follows, we mainly consider a graph Ḡ associated with the system with
n agents (labeled by vi, i = 1, 2, . . . , n) and one leader (labeled by v0). A simple
and undirected graph G describes the topology relation of these n followers and Ĝ
contains G and v0 with directed edges from some agents to the leader v0. The graph
G is allowed to have several components, within every such component all the agents
are connected via undirected edges. The graph Ĝ is said to be connected if at least
one agent in each component of G is connected to the leader by a directed edge. Let
t1 = 0, t2, t3, . . . be an infinite time sequence at which the interconnection graph of
the considered multi-agent system switches. Usually, it is assumed that chattering
does not occur, that is, there is a constant ∆ > 0, often called dwell time, with ti+1−
ti ≥ ∆, ∀ i. Moreover, we assume that there only finite possible interconnection
topologies can be switched. Denote S̄ = {Ĝ1, Ĝ2, . . . , ĜN} as a set of all possible
topology graphs and denote P = {1, 2, . . . , N} as its index set. To describe the
variable interconnection topology, we define a switching signal σ : [0,∞) → P, which
is piecewise constant. Therefore, Ni and the connection weight aij(i, j = 1, . . . , n)
are time-varying, and moreover, Laplacian matrix Lσ(t)(σ(t) ∈ P) associated with
the switching interconnection graph is also time-varying, though it is a time-invariant
matrix in any interval [ti, ti+1).

2.2. Time-delay systems

In this subsection, we introduce some basic preliminaries related to time-delay sys-
tems (see [4, 5]). Consider the following system:

ẋ = f(t, xt), t > 0, (1)
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where x(t) ∈ Rn, f : R × C → Rn with f(t, 0) = 0 and C = C([−r, 0], Rn) is the
set of continuous functions mapping interval [−r, 0] to Rn. r is said to be maximum
time delay of the system (1). Equation (1) indicates that the derivative of the state
variables x at time t depends on t and x(ω) for t− r ≤ ω ≤ t. As such, to determine
the future evolution of the state, it is necessary to specify the initial state variables
x(t) in a time interval of length r, say, from t0 − r to t0, i. e.,

xt0 = φ,

where φ ∈ C is given. In other words xt0(θ) = x(t0 + θ),∀ θ ∈ [−r, 0] with norm
||φ||c = maxθ∈[−r,0] ‖φ(θ)‖.

Then the time-delay system (1) is given by{
ẋ = f(t, xt), t ≥ t0,

ẋt0(θ) = φ(θ), θ ∈ [−r, 0].
(2)

For an A > 0, a function x(t, t0, φ) is said to be a solution of (2) on the interval [t0−
r, t0 +A) if within this interval x(t, t0, φ) is continuous and satisfies the system (2).

The concepts about stability for functional differential equation (2) are given as
follows.

Definition 2.1. For the system described by (2), the trivial solution x(t, t0, φ) = 0
is said to be stable if for any t0 ∈ R and any ε > 0, there exists a µ = µ(t0, ε) > 0
such that ‖φ‖c < µ implies ‖x(t, t0, φ)‖ < ε for t ≥ t0. It is said to be asymptotically
stable if it is stable, and for any t0 ∈ R and any ε > 0, there exists a µa = µa(t0, ε) >
0 such that ‖φ‖c < µa implies limt→∞ x(t, t0, φ) = 0. It is said to be uniformly
stable if it is stable and µ(t0, ε) can be chosen independently of t0. It is uniformly
asymptotically stable if it is uniformly stable and there exists a µa > 0 such that for
any ε̃ > 0, there exists a T = T (µa, ε̃), such that ‖φ‖c < µa implies ‖x(t, t0, φ)‖ < ε̃
for t ≥ t0 + T and t0 ∈ R. It is globally (uniformly) asymptotically stable if it is
(uniformly) asymptotically stable and µa can be an arbitrarily large, finite number.

The following result is for the stability of system (2) (the details can be found in
[4, 5]).

Lemma 2.2. Suppose f : R × C → Rn in (2) takes R× (bounded sets of C) into
bounded sets of Rn, and ϕ1, ϕ2, ϕ3 : R≥0 → R≥0 are continuous nondecreasing
functions, ϕ1(s) > 0, ϕ2(s) > 0, ϕ3(s) > 0 for s > 0 and ϕ1(0) = ϕ2(0) = 0, ϕ2

strictly increasing. If there exists continuously differentiable function V : R×Rn →
R such that

ϕ1(||x||) ≤ V (t, x) ≤ ϕ2(||x||), t ∈ R, x ∈ Rn.

In addition, there exists a continuous nondecreasing function ϕ(s) with ϕ(s) > s,
s > 0 such that the derivative of V along the solution x(t) of (2) satisfies

V̇ (t, x)|(2) ≤ −ϕ3(||x||),

if
V (t+ θ, x(t+ θ)) ≤ ϕ(V (t, x(t))), θ ∈ [−r, 0],
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then system (2) is uniformly asymptotically stable. If, in addition, limt→∞ ϕ3(s) = ∞,
then system (2) is globally uniformly asymptotically stable.

In what follows, we will introduce input-to-state stability (ISS) for functional
differential equation following [18]. This concept plays an important role in the case
of controlling nonlinear time-delay systems.

Consider the following nonlinear time-delay system{
˙̄x = g(t, x̄t, ū), t ≥ t0,

x̄t0(θ) = φ̄(θ), θ ∈ [−r, 0],
(3)

where x̄ ∈ Rn, ū ∈ Rm is bounded and piecewise continuous, φ̄ ∈ C. Suppose for
each initial data, input, and starting time t0 ≥ 0 there exists A > 0 and a unique
maximal solution x̄(·) defined on [t0 − r, t0 +A).
γ : R≥0 → R≥0 is called to a K-function if it is continuous, strictly increasing and

γ(0) = 0, and moreover, it is called to be a K∞-function if it is a K-function and
satisfies that limt→∞ γ(t) = ∞. β : R≥0×R≥0 → R≥0 is called to be a KL-function
if, for each fixed t ≥ 0, the function β(σ, t) is a K-function, and for each fixed σ ≥ 0
it decreases to zero as t→∞.

Definition 2.3. Let χ be continuous, zero at zero, and nondecreasing function,
ι ∈ R≥0, and νx̄, νū ∈ R≥0

⋃
∞. The trivial solution of (3) is said to be uniformly

ISS with gain χ [and offset ι and restriction (νx̄, νū)] if ‖φ̄‖c < νx̄ and ‖ū‖∞ < νū

imply A = ∞ and the following properties holding uniformly in t0 ≥ 0:

1) for each ε > 0 there exists µ > 0 such that ‖φ̄‖c ≤ µ implies ‖x(t)‖∞ ≤
max{ε, χ(‖ū‖∞), ι} and

2) for each ε > 0, υx̄ ∈ (0, νx̄) and υū ∈ (0, νū) there exists T > 0 such that
‖φ̄‖c ≤ υx̄ and ‖ū‖∞ ≤ υū imply supt≥t0+T ‖x(t)‖ ≤ max{ε, χ(‖ū‖∞), ι}.

When ι = 0 and ū ≡ 0, this is the standard definition of uniformly asymptotically
stable for trivial solution of a functional differential equation. This definition is
consistent with the definition ISS for ordinary differential equations ([17]).

The following lemma is the global ISS version of the Razumikhin-type theorem
([18]) for globally asymptotically stable ([4]).

Lemma 2.4. If there existK∞-functions ϕ1, ϕ2, a continuously differential function
V : R×Rn → R≥0, χ1, χ2 are continuous, zero at zero, and nondecreasing functions
and K-function ϕ3 such that

1) ϕ1(‖x‖) ≤ V (t, x) ≤ ϕ2(‖x‖),
2) V (t, x) ≥ max{χ1(maxt−r≤s≤t ‖V (s + θ, x(s + θ))‖), χ2(maxt−r≤s≤t ‖ū(s)‖)}

implies V̇ (t, x)|(3) ≤ −ϕ3(||x||),
3) χ1(s) < s for s > 0, then the trivial solution is globally uniformly ISS with

gain ϕ−1
1 ◦ χ2.
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3. MAIN RESULTS

In this paper, the dynamics of follower-agent i is described by{
ẋi = ui + δi, xi ∈ Rn0

i = 1, . . . , n,
(4)

where xi is the state, δi(t) are uncertain and ui is the input.
The leader of this considered multi-agent system is active, whose underlying dy-

namics, different from the followers, can be expressed as follows:{
ω̇ = Āω, ω = (ω1, ω2, . . . , ωm)T ∈ Rmn0 ,
x0 = Cω ∈ Rn0 .

(5)

Here Ā=(āij)mn0×mn0 , ω=(ω1, ω2, . . . , ωm)T ∈ Rmn0 are respectively the state ma-
trix and state variables. Without loss of generality, we assume n0=1 in the sequel.
The obtained result of this paper is true for any dimension m, because we can revise
the expressions via Kronecker product. For simplicity, we take CT = (1, 0, . . . , 0)T ∈
Rm, or equivalently, x0 = ω1. Clearly, the leader model considered in [7] can be
viewed as a special case of (5).

The state matrix Ā is assumed to be known by all following agents, but its initial
condition ω(0) is unknown and x0 is the only measurable variable.

Our problem is to let all the follower-agents track the active leader. Since we
consider tracking problems with time delays, each agent cannot instantly get the
information from others and the leader. To obtain distributed design, the relative
measurement is employed. Denote the relative error of agent i as

zi(t) =
∑

j∈Ni(t)

aij(t)(xi(t− τi)− xj(t− τj))

+ bi(t)(xi(t− τi)− x0(t− τ0)).
(6)

The time-varying delay τi(t) > 0, i = 0, 1, . . . , n are continuously differentiable
functions with 0 ≤ τi ≤ ri.

At time t , aij(t) and bi(t) are chosen by

aij(t) =

{
αij = αji, if agents i and j are connected at t,
0, otherwise,

bi(t) =

{
βi, if agent i is connected to the leader at t,
0, otherwise,

where αij > 0 (i, j = 1, . . . , n) is connection weight constant between agent i and
agent j, and βi > 0 (i = 1, . . . , n) is connection weight constant between agent i and
leader.

To track the leader in the form of (5), follower agents have to estimate the state
ω on line. However, the conventional observer design cannot apply here to deal



Consensus seeking in multi-agent systems with an active leader and communication delays 779

with the state estimation problem because the distributed design is based on local
information. Therefore we have to propose a distributed control scheme with online
estimation algorithm for each agent to estimate the leader’s unmeasurable state
variables under switching topologies with time delays.

To solve the tracking problem, similar distributed observers and control laws
proposed by [8] are used to track the active leader, which consists of two parts:

1) Neighbor-based feedback law:

ui = ā11xi +
m∑

j=2

ā1jv
j−1
i − l̄1zi, (7)

with āij defined in (5) and zi in (6);

2) Distributed estimation law:

vk−1
i = āk1xi +

m∑
j=2

ākjv
j−1
i − l̄kzi, k = 2, . . . ,m, (8)

with l̄k (k = 1, 2, . . . ,m) to be determine in the following.

Note that ui in (7) is a local controller of agent i, with neighbor-based estimation
rule in form of observer (8), which can be viewed as a distributed (reduced) observer,
to estimate the leader’s state variables. In other words, each agent cannot “observe”
the leader immediately based on the measured information of the leader if it is not
connected to the leader. In fact, it has to collect the information of the leader in a
distributed way from its neighbor agents.

At first, we consider noise-free case (δi = 0, i = 1, . . . , n). Denote

ξi =


xi

v1
i
...

vm−1
i

 , ηi = ξi − ω ∈ Rm, i = 1, . . . , n,

and

η =


η1
η2
...
ηn

 ∈ Rmn, L̄ =


l̄1
l̄2
...
l̄m

 , z =


z1
z2
...
zn

 .

Then, after manipulations with combining (4 – 8), we have

η̇i = Āηi − L̄zi, i = 1, 2, . . . , n,

or equivalently
η̇ = (In ⊗ Ā)η − (In ⊗ L̄)z.
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To express conveniently, assume that all time-delays have same form τj = τ , and
according the properties of Laplacian matrix we have

z(t) = (Lp +Bp)⊗ Cη(t− τ)

where p = σ(t) ∈ P, Lp is the Laplacian matrix of graph G associated to n follower-
gents, Bp is a n× n diagonal matrix whose ith diagonal elements is bi(t).

For convenience, let Hp = Lp + Bp. Due to Lp1 = 0, the error dynamics of the
closed-loop system can be rewritten in a compact form:

η̇(t) = In ⊗ Āη(t)−Hp ⊗ (L̄C)η(t− τ). (9)

Note that, even when the interconnection graph is connected, bi(t) may be 0 for
some i, and therefore, Bp may not be of full rank. It was known that, Hp associated
with Ḡp is positive definite if graph Ḡp is connected (see [7]).

In the sequel, it is always assume that the interconnection graph Ḡ is connected,
though the interconnection topology keeps changing.

Define
λ̄ := max

p∈P
{λmax(Hp)|∀ Ḡp is connected}

and
λ := min

p∈P
{λmin(Hp)|∀ Ḡp is connected}.

Based on the fact that the set P is finite, λ̄ and λ are fixed and positive.

Theorem 3.1. Assume that the switching interaction graphs Ḡσ(t) are all connected
with a given dwell time, the time-delay is sufficiently small, and the system param-
eters li of the consensus protocol has been designed. Controller (7) together with
“observer” (8) can guarantee the follower-agents track the active leader, namely,

lim
t→∞

η(t) = 0, (10)

if there exists a matrix P = PT > 0 such that{
P (Ā− λ̄L̄C) + (Ā− λ̄L̄C)TP < 0
P (Ā− λL̄C) + (Ā− λL̄C)TP < 0. (11)

P r o o f . Choose a common Lyapunov function for system (9):

V (η) = ηT (In ⊗ P )η.

To prove the theorem, we consider the dynamics in each interval at first. In
any interval [ti, ti+1), the topology graph is fixed and the system matrices are time-
invariant. Then we will focus on the discussion in [ti, ti+1), when the system become
time-invariant with some fixed p ∈ P. Let Up be an orthogonal transformation
such that UpHpU

T
p is a diagonal matrix diag{λ1p, λ2p, . . . , λnp}, where λip is ith

eigenvalue of matrix Hp.
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If (11) is satisfied, there exists positive definite matrix Q̄ such that{
P (Ā− λ̄L̄C) + (Ā− λ̄L̄C)TP ≤ −Q̄ < 0
P (Ā− λL̄C) + (Ā− λL̄C)TP ≤ −Q̄ < 0.

Due to λip ∈ [λ, λ̄], there exist constants αip ≥ 0 and βip ≥ 0 satisfying λip =
αipλ+ βipλ̄ and αip + βip = 1. From (11), we have

Ωip := P (Ā− λipL̄C) + (Ā− λipL̄C)TP = αip[P (Ā− λL̄C)

+ (Ā− λL̄C)TP ] + βip[P (Ā− λ̄L̄C) + (Ā− λ̄L̄C)TP ] ≤ −Q̄ < 0.

Moreover, we have

(I ⊗ P )(I ⊗ Ā−Hp ⊗ (L̄C)) + (I ⊗ Ā−Hp ⊗ (L̄C))T (I ⊗ P )

= (UT
p ⊗ I)diag{Ω1p, . . . ,Ωnp}(Up ⊗ I)

≤ −(UT
p ⊗ I)(I ⊗ Q̄)(Up ⊗ I)

= −I ⊗ Q̄ < 0.

(12)

Then we consider V̇ (η)|(9). By Leibniz–Newton formula, we have

η(t− τ) = η(t)−
∫ t

t−τ

η̇(s) ds

= η(t)− (I ⊗ Ā)
∫ 0

−τ

η(t+ s) ds+Hp ⊗ (L̄C)
∫ 0

−τ

η(t+ s− τ) ds.
(13)

Thus the delayed differential equation (9) can be rewritten as

η̇(t) = (I ⊗ Ā−Hp ⊗ (L̄C))η(t) + (Hp ⊗ (L̄CĀ)
∫ 0

−τ

η(t+ s) ds

− (H2
p ⊗ (L̄CL̄C)

∫ 0

−τ

η(t+ s− τ) ds.

Then, we have

V̇ (t)|(9) = ηT (t)[(I ⊗ Ā−Hp ⊗ (L̄C))T (I ⊗ P )

+ (I ⊗ P )(I ⊗ Ā−Hp ⊗ (L̄C))]η(t) + 2ηT (t)[Hp ⊗ (PL̄CĀ)]
∫ 0

−τ

η(t+ s) ds

− 2ηT (t)[H2
p ⊗ (PL̄CL̄C)]

∫ 0

−τ

η(t+ s− τ) ds.

Note that 2aT b ≤ aTψa+bTψ−1b holds for any appropriate positive define matrix
ψ, and then with aT = −ηT [Hp⊗ (PL̄CĀ)] and b = η(t+s), ψ = (I⊗P )−1 we have

2ηT (t)[Hp ⊗ (PL̄CĀ)]
∫ 0

−τ

η(t+ s) ds

≤ τηT (t)[H2
p ⊗ (PL̄CĀP−1(PL̄CĀ)T )]η +

∫ 0

−τ

ηT (t+ s)(I ⊗ P )η(t+ s) ds.
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Similarly, with a = −ηT [H2
p ⊗ (PL̄CL̄C)] and b = η(t+ s− τ), ψ = P−1, we have

− 2ηT (t)[H2
p ⊗ (PL̄CL̄C)]

∫ 0

−τ

η(t+ s− τ) ds

≤ τηT (t)[H4
p ⊗ (PL̄CL̄CP−1(PL̄CL̄C)T )]η +

∫ −τ

−2τ

ηT (t+ s)(I ⊗ P )η(t+ s) ds.

Set r = max{r1, r2, . . . , rn} and φ(s) = qs for some constant q > 1, in case of
V (η(t+ θ)) < qV (η(t)), −r ≤ θ ≤ 0. Then we have

V̇ (t) ≤ −ηT (t)Q̄η(t) + τηT [H2
p ⊗ (PL̄CĀP−1(PL̄CĀ)T )]η

+ τηT [H4
p ⊗ (PL̄CL̄CP−1(PL̄CL̄C)T )]η +

∫ 0

−τ

ηT (t+ s)(I ⊗ P )η(t+ s) ds

+
∫ −τ

−2τ

ηT (t+ s)(I ⊗ P )η(t+ s) ds

≤ −ηT (t)(I ⊗ Q̄)η(t) + τηT (t)[H2
p ⊗ PL̄CĀP−1(PL̄CĀ)T ]η(t)

+ τηT (t)[H4
p ⊗ PL̄CL̄CP−1(PL̄CL̄C)T ]η(t) + 2rqηT (I ⊗ P )η.

Set % = maxp∈P{‖H2
p⊗PL̄CĀP−1(PL̄CĀ)T ‖+‖H4

p⊗PL̄CL̄CP−1(PL̄CL̄C)T ‖},
and then

V̇ (η) ≤− ηT (I ⊗ Q̄)η + r%ηT η + 2rqηT (I ⊗ P )η

≤− [λmin(Q̄)− r%− 2rqλmax(P )]‖η‖2,

where λmin(Q̄) denotes the smallest eigenvalue of Q̄, λmax(P ) denotes the largest
eigenvalue of P .

If r < λmin(Q̄)
%+2qλmax(P ) , then, according to Lemma 2.2, system (9) is globally uniformly

asymptotically stable, which implies (10). �

Remark 3.2. As mentioned before, the assumption that all the time delays are the
same as τ is not necessary. By Leibniz–Newton formula (13), the equation (9) with
different delays τj can be expressed as

η̇(t) = (I ⊗ Ā−Hp ⊗ (L̄C))η(t) +
M∑

j=1

Mj

∫ 0

−τj

η(t+ s) ds

−
M∑

j=1

Nj

∫ 0

−τj

η(t+ s− τj) ds,

(14)

where M is the number of difference time-delays, Mj and Nj are known constant
matrix with appropriated dimension. For small enough r, all results of this paper
can also be obtained by using (14).

Remark 3.3. According to condition (11), we can obtain feedback parameters li,
i = 1, 2, . . . ,m by solving the following LMI condition. If there exist positive definite
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matrix P and matrix K such that{
PĀ+ ĀTP − λ̄(KC + CTKT ) < 0
PĀ+ ĀTP − λ(KC + CTKT ) < 0,

then L̄ = P−1K.

Moreover, if (C, Ā) is detectable, we provide the following result to obtain feed-
back parameters li (i = 1, 2, . . . ,m) from a Riccati equation, which can be general-
ized to a class of directed interaction topologies.

Theorem 3.4. Assume (C, Ā) is detectable and the switching interaction graphs
Ḡσ(t) are all connected with a given dwell time. If the time-delay bound is sufficiently
small, then there exist constants li, i = 1, 2, . . . ,m such that controller (7) with
“observer” (8) together yields

lim
t→∞

η(t) = 0. (15)

Namely, the follower-agents can track the active leader.

P r o o f . Since (C, Ā) is detectable and Q is positive definite, it is well known that
there is a unique positive definite matrix P̄ to satisfy the Riccati equation

ĀP̄ + P̄ ĀT − P̄CTCP̄ +Q = 0. (16)

Furthermore, ĀT − CTCP̄ is stable (see [8]).
For any positive constant k > 1

2 , taking

L̄T =
k

λ
CP̄ , (17)

we have
P̄ (Ā− λ(Hp)L̄C)T + (Ā− λ(Hp)L̄C)P̄

= −Q+ P̄CTCP̄ − 2λ(Hp)
k

λ
P̄CTCP̄ ≤ −Q,

(18)

where λ(Hp) denotes any eigenvalue of matrix Hp. Then we know that matrices
Ā−λ(Hp)L̄C, p ∈ P are stable, that is, all eigenvalues of Ā−λ(Hp)L̄C are negative,
which implies the following inequality

P (Ā− λ(Hp)L̄C) + (Ā− λ(Hp)L̄C)TP ≤ −PQP := −Q̄ (19)

where both P = P̄−1 and Q̄ are positive definite. From the inequality (19), it is
easy to obtain that

(I ⊗ P )(I ⊗ Ā−Hp ⊗ (L̄C)) + (I ⊗ Ā−Hp ⊗ (L̄C))T (I ⊗ P ) ≤ −I ⊗ Q̄ < 0.

The rest proof is omitted, because we can prove by similar line as to prove Theo-
rem 3.1. �
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Remark 3.5. If there is no time-delay, the relative error of agent i becomes

zi(t) =
∑

j∈Ni(t)

aij(t)(xi(t)− xj(t))

+ bi(t)(xi(t)− x0(t)),
(20)

and our control scheme becomes

ui = ā11xi +
m∑

j=2

ā1jv
j−1
i − l̄1zi, (21)

with āij defined in (5) and zi defined in (6); with the distributed estimation law

v̇k−1
i = āk1xi +

m∑
j=2

ākjv
j−1
k − l̄kzi, k = 2, . . . ,m, (22)

which is in the same form as given in [8]. Therefore, our result can applied to non-
time-delay case directly. The result of Theorem 3.4 is same as the result obtained
by [8] in this case. In the next remark, we will point out that Theorem 3.4 can
generalize to a class of directed interaction topologies.

Remark 3.6. The condition that (C, Ā) is detectable is often used, though it is not
necessary. Moreover, we can consider the graph Ḡp is directed, which means matrix
Hp associated with Ḡp is not symmetric matrix. Assume that all matrices Hp +HT

p

are positive definite. Therefore, define

λ := min
p∈P

{λmin(Hp +HT
p )}. (23)

For any positive constant k > 1, taking

L̄T =
k

λ
CP̄ , (24)

where P is a unique positive definite solution of Riccati equation (16), we have

P̄ (Ā− 1
2
λ(Hp +HT

p )L̄C)T + (Ā− 1
2
λ(Hp +HT

p )L̄C)P̄

= −Q+ P̄CTCP̄ − λ(Hp +HT
p )
k

λ
P̄CTCP̄ ≤ −Q,

(25)

which implies the following inequality holds by noting that L̄CP̄ is symmetric matrix

(I ⊗ P̄ )(I ⊗ Ā−Hp ⊗ (L̄C))T + (I ⊗ Ā−Hp ⊗ (L̄C))(I ⊗ P )

= (I ⊗ P̄ )[I ⊗ Ā− 1
2
(Hp +HT

p )⊗ (L̄C)]T

+ [I ⊗ Ā− 1
2
(Hp +HT

p )⊗ (L̄C)](I ⊗ P ) ≤ −I ⊗ Q̄ < 0.

(26)
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Similarly, we can obtain

(I ⊗ P )(I ⊗ Ā−Hp ⊗ (L̄C)) + (I ⊗ Ā−Hp ⊗ (L̄C))T (I ⊗ P ) ≤ −I ⊗ Q̄ < 0.

From the above analysis, we know that the results of Theorem 3.4 and the non-time-
delay case given in [8] is also right in some directed graph cases.

Consider the special case that the graph Gp associated with all followers is bal-
anced. A weighted graph G = (V, ε, A) is said to be balanced if

n∑
j=1

aij =
n∑

j=1

aji, i = 1, 2, . . . , n.

Any undirected weighted graph is balanced. Furthermore, a weighted graph is bal-
anced if and only if 1TL = 0 (see [15]). Although the matrix Hp associated with
Ḡp is not symmetric and positive definite, we have: The matrix HT

p +Hp is positive
definite if and only if node 0 is globally reachable in Ḡp(see [12]). Therefore, that
all interconnection graph Gp associated to all followers are balanced and node 0 is
globally reachable in Ḡp can also guarantee solvableness of the tracking problem.

Remark 3.7. Obviously, the consensus problem of multi-agent system is equiva-
lent to stability problem of error system (9). Although the closed-loop multi-agent
system and the error system both have mn-order, the consensus condition given in
Theorem 3.1 contains two m-order common Lyapunov matrix inequalities, which
make the established reduced consensus condition more easier to be checked. More-
over, if (C, Ā) is detectable, all control constants li can be designed only by solving a
Reccati equation. Obviously, the solution L̄ obtain by Theorem 3.4 also satisfies the
consensus condition given in Theorem 3.1. Thus, the result established by Theorem
3.4 is more conservative than the result of Theorem 3.1.

Next, we study the case when δi 6= 0 for some i = 1, . . . , n. Similarly, we can
obtain the error dynamics of closed-loop system as follows

η̇(t) = In ⊗ Āη(t)−Hp ⊗ (L̄C)η(t− τ) + δ, (27)

where δ = (δ1, δ2, . . . , δn)T ∈ Rmn, and δi = (δi, 0, . . . , 0) ∈ Rm. Now we give the
convergent analysis of system (27) in the following theorem.

Theorem 3.8. Suppose that the switching interaction graphs Ḡσ(t) are all con-
nected with a given dwell time and the time-delay bound is sufficiently small. Then
there are constants li, i = 1, 2, . . . , n such that there is a constant cδ > 0 with
limδ→0 cδ = 0 to make

lim
t→∞

[xi(t)− x0(t)] ≤ cδ, (28)

hold for the multi-agent system (4)-(5) with local feedback laws (7) and observers (8).
Moreover, the considered system (27) is globally uniformly ISS with δi (i = 1, . . . , n)
as its inputs.
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P r o o f . Still take V (η) = ηT (t)(I⊗P )η(t) with P defined in the proof of Theorem
3.4. Take an interval [ti, ti+1) into consideration, during which the graph associated
with Hp for some p ∈ P is connected and unchanged.

If V (η(t+s)) ≤ qV (η(t)), −2r ≤ s ≤ 0, then similar to the discussion in Theorem
3.1, the derivative of V (t) is given by

V̇ (t)|(27) ≤ −ηT (t)(I ⊗ Q̄)η(t) + τηT (t)[H2
p ⊗ PL̄CĀP−1(PL̄CĀ)T ]η(t)

+ τηT (t)[H4
p ⊗ PL̄CL̄CP−1(PL̄CL̄C)T ]η(t)

+ ηT (I ⊗ P )δ + 2rqλmax(P ))ηT (t)η(t)
≤ −λmin(Q̄))ηT (t)η(t) + r%ηT (t)η(t) + 2rqλmax(P ))ηT η(t)

+
2λ2

max(P )
λmin(Q̄)

δT (t)δ(t) +
λmin(Q̄)

2
ηT (t)η(t)

≤ −(
λmin(Q̄)

2
− r%− 2rqλmax(P ))‖η(t)‖2 +

2λ2
max(P )

λmin(Q̄)
δT (t)δ(t)

with % defined in Theorem 3.1.
If

r <
λmin(Q̄)

2(%+ 2qλmax(P ))
,

we have (
λmin(Q̄)

2
− r%− 2rqλmax(P )

)
‖η‖2 = α(‖η‖),

λ2
max(P )‖δ‖2 2

λmin(Q̄)
= γδ(‖δ‖),

which means that
V̇ (η) ≤ −α(‖η‖) + γδ(‖δ‖).

According to Lemma 2.4, system (27) is uniformly globally ISS, which implies (28).
�

4. SIMULATION RESULTS

In this section, to illustrate our theoretical results derived in the above section,
we will provide a simple simulation example. The multi-agent system include one
leader and six followers. The dynamic of leader is considered as: ẍ = α, which
means that the active leader move with an known acceleration α. Set ω1 = x,
ω2 = ẋ and ω3 = ẍ. The dynamic of leader is rewritten as ω̇ = Āω, where Ā =2666664

0 1 0
0 0 1
0 0 0

3777775. Interconnection topology is arbitrarily switched with switching period

1 among four graphs Ḡi(i = 1, 2, 3, 4). The Laplacian matrices Li(i = 1, 2, 3, 4) for
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the four subgraphs Gi(i = 1, 2, 3, 4) are

L1 =


3.5 −1.5 0 0 0 −2
−1 5.5 −2.5 0 −2 0

0 −1 2 −1 0 0
0 0 −2 5 −1 −2
0 −2 0 −1 5 −2

−1 0 0 −1 −2 4

, L2 =


5 −1 −2 0 −2 0

−1.5 4.5 −1 0 0 −2
−2 −1 4 0 −1 0

0 0 0 2 0 −2
−1 0 −1 0 2 0

0 −2 0 −2 0 4

 ,

L3 =


3 0 0 −2 0 −1
0 2 0 −1 −1 0
0 0 2 0 0 −2

−2 −1 0 5 −2 0
0 −1 0 −2 3 0

−2 0 −2 0 0 4

, L4 =


2 0 0 −1 −1 0
0 4 −2 0 −2 0
0 −2 5 −2 0 −1

−2 0 −2 4 0 0
−1 −2 0 0 5 −2

0 0 −1 0 −2 3

 .

and the diagonal matrices for the interconnection relationship between the leader
and the followers are

B1 = diag(1, 0, 0, 1, 0, 0), B2 = diag(0, 1, 0, 1, 0, 0),

B3 = diag(1, 0, 0, 0, 1, 1), B4 = diag(0, 0, 1, 1, 0, 0).

The initial values of the all agents are randomly produced. The time-delay is
taken as 0.07. The control constants are designed using the method proposed by
Theorem 3.4. Figure 1 shows that all six follower-agents can track the accelerated
motion leader in time-delay case by only using the neighbors position information in
the distributed control laws. The Laplacian matrices given in here are not symmetric,
but the multi-agent system can also achieve consensus, which verifies our above
analysis.

5. CONCLUSIONS

In this paper, we considered an active leader-following problem, where the multi-
agent network has communication delays and switching interconnection topologies.
The dynamics of the active leader is given in a general form of linear systems. A
neighbor-based estimator is designed for each agent to obtain the unmeasurable
state variables of the dynamic leader, and then a distributed feedback control rules
were designed to track the active leader. The tracking convergence was proved in
the noise-free case by constructing a common Lyapunov function, while the input-
to-state stability (ISS) was obtained for the time-delay system in the case with
disturbances. In this paper, we assume that the dimension of following agent’s state
is 1 for notational simplicity and would not be lost generality. All result of this paper
can be also true for high dimension, and we can revise the expressions via Kronecker
product. Due to the conservativeness of the common Lyapunov function method,
we also should probe less conservative method in our future work. More generalized
and interesting cases on active leader models are still under investigation.



788 L. GAO, Y. TAN, W. CHEN AND H. ZHANG

0 10 20 30 40 50
−10

−5

0

5

10

15

20

t

T
ra

ck
in

g 
er

ro
rs

 o
f s

ix
 fo

llo
w

er
s

Fig. 1. Tracking errors of six followers with time-delay network.
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