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Abstract

Let k and n be fixed, k ≥ 1, n ≥ 1, and let S be a simply connected
orthogonal polygon in the plane. For T ⊆ S, T lies in a staircase n-convex
orthogonal polygon P in S if and only if every two points of T see each
other via staircase n-paths in S. This leads to a characterization for
those sets S expressible as a union of k staircase n-convex polygons Pi,
1 ≤ i ≤ k.
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1 Introduction

We begin with some definitions from [3] and [4]. Let S be a nonempty set in
the plane. Set S is call an orthogonal polygon if and only if S is a connected
union of finitely many convex polygons (possibly degenerate) whose edges are
parallel to the coordinate axes. Let λ be a simple polygonal path whose edges
[vi−1, vi], 1 ≤ i ≤ n, are parallel to the coordinate axes. Path λ is called
a staircase path if and only if the associated vectors alternate in direction.
That is, for an appropriate labeling, for i odd the vectors −−−→vi−1vi have the same
horizontal direction, and for i even the vectors −−−→vi−1vi have the same vertical
direction. Edge [vi−1, vi] will be called north, south, east, or west according to
the direction of vector −−−→vi−1vi. Similarly, we use the terms north, south, east,
west, northeast, northwest, southeast, southwest to describe the relative position
of points. For n ≥ 1, if the staircase path λ is a union of at most n edges, then
λ is called a staircase n-path. If the staircase path λ is a union of exactly n
edges, then n is the length of λ. For points x and y in set S, we say x sees y (x
is visible from y) via staircase n-paths if and only if there is a staircase n-path
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in S which contains both x and y. Set S is called staircase n-convex if and
only if for every x, y in S, x sees y via staircase n-paths. Parallel definitions
hold for staircase paths. Set S is horizontally convex if and only if for each
x, y in S with [x, y] horizontal, it follows that [x, y] ⊆ S. Vertically convex is
defined analogously. Finally, set S is orthogonally convex if and only if S is both
horizontally convex and vertically convex. Using [11, Lemma 1], an orthogonal
polygon S is orthogonally convex if and only if it is staircase convex.
Many results in convexity that involve the usual idea of visibility via seg-

ments have analogues that employ the notion of visibility via staircase paths
or visibility via staircase n-paths. (See [1]–[4].) Here we obtain a staircase n-
convex analogue of a result by Lawrence, Hare, and Kenelly [8] which concerns
a decomposition of a set into convex subsets. It is interesting to notice that,
while some staircase n-path results have conclusions which involve an increase
in path length from n to n + 1 (see [1], [2]), no such adjustment is necessary
here.
Throughout the paper, clS and intS will denote the closure and interior,

respectively, for set S. If λ is a path containing points x and y, λ(x, y) will
represent the subpath of λ from x to y. The reader may refer to Valentine [12],
to Lay [9], to Danzer, Grünbaum, Klee [5], and to Eckhoff [6] for discussions on
visibility via straight line segments.

2 The results

Theorem 1 is a staircase n-path analogue of [4, Lemmas 1 and 2].

Theorem 1 Let n be fixed, n ≥ 1, and let S be a simply connected orthogonal
polygon in the plane with T ⊆ S. Set T lies in a staircase n-convex orthogonal
polygon P ⊆ S if and only if every two points of T see each other via staircase
n-paths in S.

Proof The sufficiency is immediate. To establish the necessity, assume that
every two points of T see each other via staircase n-paths in S, to show that
T lies in an appropriate subset of S. If n = 1, the result is obvious, so assume
that n ≥ 2.
For the moment, assume that T is finite. For every pair of points a, b in T ,

consider the length ka,b of a shortest a − b path in S. If ka,b �= 2, select such
a shortest path λ(a, b). If ka,b = 2 and if S contains only one a − b 2-path,
let λ(a, b) denote this path. If S contains both of the a − b 2-paths (clearly
exactly two exist), then we must choose our associated path or paths carefully.
Without loss of generality, say that a is southwest of b and that the associated
2-paths are [a, c1] ∪ [c1, b] and [a, c2] ∪ [c2, b], where c1 is north of a and c2 is
east of a. If T contains a point northwest of c1, let λ1(a, b) = [a, c1] ∪ [c1, b].
If T contains a point southeast of c2, let λ2(a, b) = [a, c2] ∪ [c2, b]. If neither
situation occurs, define λ1(a, b) and λ2(a, b) as above. Thus we will select two
a− b 2-paths λ1(a, b) and λ2(a, b) unless T contains a point northwest of c1 but
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no point southeast of c2, or vice versa. In these cases, we will select only one
a− b 2-path.
Let W denote the collection of all the selected n-paths. As in [4, Lemma

1], consider the maximal bounded subset SW of the plane whose boundary lies
in ∪{λ : λ ∈ W}. Clearly SW is a simply connected subset of S and ∪{λ : λ ∈
W} ⊆ SW . Moreover, by the proof of [4, Lemma 1], SW is an orthogonally
convex polygon.
We will show that SW satisfies the theorem. Choose points x, y in SW to

show that x sees y via a staircase n-path in SW . Without loss of generality,
assume that x is northwest of y. Clearly there exists a point z′ in T and north
of (possibly on) the horizontal line at x. Likewise, there is a point z in T and
east of (possibly on) the vertical line at y. There are three cases to consider.

Case 1. Assume that we may choose points z′, z in T so that z′ is northwest
of x and z is southeast of y. Consider a z′ − z n-path in W , say λ(z′, z). (See
Figures 1a and 1b.) There exists a point x1 on λ(z′, z) so that [x, x1] is horizontal
(and east) or vertical (and south). Observe that if x /∈ λ(z′, z), then x1 is on at
least the second segment of λ(z′, z). Then [x, x1]∪λ(x1, z) ≡ λ′(x, z) is an x−z
staircase n-path contained in the orthogonally convex set SW . Similarly, choose
y1 on λ′(x, z) so that [y1, y] is horizontal (and east) or vertical (and south). The
path λ′(x, y1)∪ [y1, y] will be an x−y staircase n-path in SW , the desired result.
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Case 2. For an appropriate labeling, assume that point z′ in T may be
selected northwest of x but that there is no point of T southeast of y. This
implies the existence inW of some minimal length path λ which contains points
southeast of y (possibly y itself) and which joins a point southwest of y in T to
a point northeast of y in T . Assume that λ = λ(w, z), where w is southwest of
y and z is northeast of y. (See Figure 2.)
Every two of the points z′, z, w see each other via staircase n-paths inW . In

case z′ is south of (the horizontal line at) z, then x sees y via an east-south 2-path
in SW , the desired result. A parallel argument holds if z′ is east of (the vertical
line at) w. Hence we assume that neither situation occurs. That is, suppose
that z′ is northwest of w and northwest of z. Consider n-paths δ = δ(z′, z)
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and μ = μ(z′, w) in W from z′ to z and from z′ to w, respectively. (Again see
Figure 2.) The simply connected subset of SW bounded by λ ∪ δ ∪ μ contains
the w − z 2-path λ1 = [w, u1] ∪ [u1, z], where u1 is north of w, west of z. Since
λ(w, z) has minimal length in S, it must be a 2-path as well. Moreover, since
λ(w, z) contains points southeast of y, either λ = λ2(w, z) = [w, u2] ∪ [u2, z],
where u2 is east of w, south of z, or λ contains point y (or both). The former
situation cannot occur, since it would imply the existence in T of some point
southeast of u2 and consequently southeast of y, contradicting our hypothesis
for Case 2. Thus λ �= λ2(w, z). Since λ is a 2-path from w to z, λ must be
λ1(w, z). Furthermore, by our comment above, λ = λ1(w, z) must contain point
y. But then one of the points z, w will be southeast of y, again contradicting
our hypothesis. This situation cannot occur either, finishing the argument for
Case 2.
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Case 3. Assume that there is no point of T northwest of x and no point
of T southeast of y. As in Case 2, this implies the existence in W of some
minimal length path λ = λ(z, w) which contains points southeast of y (possibly
y itself) and which joins point z northeast of y in T to point w southwest of
y in T . A parallel argument produces a minimal length path λ′ = λ′(z′, w′)
which contains points northwest of x (possibly x itself) and which joins point
z′ northeast of x in T to point w′ southwest of y in T . Every two of the points
z, w, z′, w′ see each other via minimal length n-paths in W .

In case w′ is south of (the horizontal line at) y, then x sees y via a (south-
east) 2-path in SW , finishing the argument. Parallel arguments hold if z is north
of x, if z′ is east of y, or if w is west of x. Assume that none of these situations
occur. Then the region SW contains the east-north 2-path from w′ to z′ and
the north-east 2-path from w to z. An argument like the one in Case 2 can be
applied to either of these 2-paths to obtain a contradiction. This finishes Case 3
and completes the argument for T finite.
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When T is infinite, we use an approach from [4, Lemma 2]. Let L denote
the family of lines determined by edges of S. In an obvious way, L gives rise to
a collection U of nondegenerate closed rectangular regions such that:
1) No member of U contains any other nondegenerate closed rectangular

region determined by L, and
2) ∪{U : U ∈ U} = cl(intS). Let A be the family {intU : U ∈ U} ∪

{(s, t) : [s, t] an edge of U , U ∈ U} ∪ {(s, t) : [s, t] an edge of S and (s, t) ∩
cl(int, S) = φ}. Notice that A is finite, A fails to cover at most a finite subset
S0 of S, and ∪{clA : A ∈ A} = S. Moreover, by the proof of [3, Theorem 1],
for k ≥ 2, if N is a staircase k-convex polygon in S and a ∈ N ∩ A for some A
in A, then N ∪ clA lies in a staircase k-convex polygon in S.
Following the proof of [4, Lemma 2], when T is infinite, let T0 denote the

finite (possibly empty) subset of T not covered by any member of A. That is,
T0 = T ∩ S0. Let A1, . . . , Am denote the members of A which meet T , and
for each i, 1 ≤ i ≤ m, choose xi ∈ T ∩ Ai. Since the set T0 ∪ {x1, . . . , xm} is
finite, by the first part of the proof, it lies in a staircase n-convex orthogonal
polygon N0 in S. Since x1 ∈ N0 ∩ A1, by the remark above, N0 ∪ clA1 lies
in a staircase n-convex orthogonal polygon N1 in S. By an obvious induction,
N0 ∪ clA1 ∪ . . . ∪ clAm lies in a staircase n-convex orthogonal polygon Nm in
S. Certainly T ⊆ Nm, and the set Nm satisfies the theorem. This completes
the proof. �

Using Theorem 1, it is easy to establish the following corollaries. The first
is an analogue of a result by Lawrence, Hare, and Kenelly [8] while the second
is an analogue of results by McKinney [10] and Hare and Kenelly [7].

Corollary 1 Let k and n be fixed, k ≥ 1, n ≥ 1, and let S be a simply connected
orthogonal polygon in the plane. Set S is a union of k orthogonal polygons, each
staircase n-convex, if and only if for every finite subset F of S, there is a k-
partition of F into sets F1, . . . , Fk such that every pair in Fi can be joined by a
staircase n-path in S, 1 ≤ i ≤ k.

Proof The sufficiency is obvious. The proof of the necessity follows from the
proof of [4, Theorem 1], together with Theorem 1 above. �

Corollary 2 Let n be fixed, n ≥ 1, and let S be a simply connected orthogonal
polygon in the plane. Set S is a union of two orthogonal polygons, each staircase
n-convex, if and only if for every sequence v1, . . . , vj+1 = v1 in S, j odd, at least
one consecutive pair of points vi, vi+1 sees each other via staircase n-paths.

Proof Again the sufficiency is clear. The argument for the necessity follows
the proof of [4, Theorem 3] and uses Theorem 1 above. �

In conclusion, it is easy to see that the result in Theorem 1 fails without the
requirement that set S be simply connected. Consider the following example.

Example 1 Let S denote the boundary of a rectangular region, with T the
associated vertex set. Every two points of T see each other via staircase 2-paths
in S. However, no staircase convex subset of S contains T .
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