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Abstract

Our aim is to study the principal bundles determined by the algebra of
quaternions in the projective model. The projectivization of the conformal
model of the Hopf fibration is considered as example.
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1 Introduction

A. P. Norden developed the theory of normalization which appeared useful in
applications to conformal, non-Euclidean and linear geometry, [7]. By means of
the normalization theory, A. P. Shirokov [11] succeeded to construct conformal
models of non-Euclidean spaces. We show here basic steps of this construction.
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Let a real non-degenerate hyperquadric Q be given in the projective space
P
n+1. Let us choose a projective frame (E0, . . . , En+1) such that En+1 is the
pole of the hyperplane yn+1 = 0, and the straight line EnEn+1 intersects the
hyperquadricQ in two real pointsN andN ′, and the points E0, . . . , En−1 belong
to the polar of the straight line EnEn+1.
Then the analytic expression of the hyperquadric Q reduces to the form

y2 = apqy
pyq + (yn)2 − (yn+1)2 = 0, (1)

where p, q = 0, . . . , n− 1. The hyperquadric (1) divides the space Pn+1 into the
inner part characterized by y2 < 0, and the outer part y2 > 0, and intersects
the hyperplane yn+1 = 0 in a hypersphere Q̃

apqy
pyq + (yn)2 = 0

which can be either real or imaginary.
Let us construct the stereographic projection with the pole N(0: . . . : 0: 1: 1)

of the hyperplane Pn : yn+1 = 0 into the hyperquadric Q. If U(y0: . . . : yn: 0) ∈
P
n take the straight line

λU + μN = (λy0: . . . :λyn−1:λyn + μ:μ);

coordinates of its intersection point with Q satisfy

λ2apqy
pyq + (λyn + μ)2 − μ2 = 0, λ �= 0.

Setting k = μ
λ we can write the previous equation as

apqy
pyq + (yn)2 + 2kyn = 0.

Let us distinguish two possibilities.
1) If yn �= 0, i. e. the point U �∈ P

n−1, then

k = −apqy
pyq + (yn)2

2yn
.

Hence the intersection point of the straight line UN with the hyperquadric Q
is uniquely determined.
2) If yn = 0 then apqy

pyq = 0 holds. The intersection Q̃ with the (n − 1)-
plane yn = 0 is an ideal hyperplane P

n−1 of the hyperplane yn+1 = 0. In
this case, the intersection point of the straight line UN with the hyperquadric
Q is not uniquely determined. The straight line UN is in the tangent plane
TN : yn − yn+1 = 0 of the point N .
Hence examine only the first case yn �= 0. In the hyperplane yn+1 = 0,

consider the (n− 1)-plane Pn−1 : yn = 0 as an ideal hyperplane; we obtain the
structure of affine space A

n on the rest. In A
n, we can introduce Cartesian

coordinates ui = yi/yn. Moreover, in An there exists the structure of Euclidean
space En with the metric form

ds20 = ±apqdu
pduq. (2)
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In this case, the point U(u0:u1: . . . :un−1: 1: 0) is mapped into the point

X1(2u
0: . . . : 2un−1: 1− apqu

puq:−1− apqu
puq).

Let us normalize the hyperquadric (1) self-polar, taking the lines of the sheaf
of lines with a fixed center Z = En+1 as normals of the first-order, and their
polar (n − 1)-planes belonging to the hyperplane yn+1 = 0 as second-order
normals. The straight line En+1X1 intersects the hyperplane yn+1 = 0 in the
point

X(2u0: . . . : 2un−1: 1− apqu
puq: 0).

Note that the polar of the point X related to the hyperquadric (1) intersects
the hyperplane yn+1 = 0 exactly in the (n−1)-dimensional second-order normal
which corresponds to the first-order normal X1En+1. Hence in the hyperplane
yn+1 = 0, a point X in general position is in correspondence with an (n − 1)-
plane, and the hyperplane yn+1 = 0 appears to be a polary normalized projective
space Pn with the same geometry as the quadric itself.
Let us define a second-order normal by basic points Yi = ∂iX − liX. We

find the scalar product (X,X) = (1 + apqu
puq)2. The points X and Yi are

polar conjugate, i.e. the scalar product (X,Yi) = 0. From these conditions we
calculate the normalizator li:

li =
2aisu

s

1 + apqupuq
.

The decompositions
∂jYi = ljYi + Γs

ijYs + pijX

determine components of the projective-Euclidean connection Γk
ij and the tensor

pij [7]. Then the differential equations of the normalized space Pn : yn+1 = 0
take the form

∂iX = Yi + liX, ∇jYi = ljYi + pijX. (3)

Covariant differentiation of the equation (X,Yi) = 0 gives

(∂jX,Yi) + (X,∇jYi) = 0.

Hence, by (3) we get

(X,∇jYi) = −(∂jX,Yi) = −(Yj , Yi)− lj(X,Yi)

−(∂iX − liX, ∂jX − ljX) = −(∂iX, ∂jX)− lilj(X,X).

Therefore

pij =
(X,∇jYi)

(X,X)
= − (∂iX, ∂jX)

(X,X)
+ lilj = − 4aij

(1 + apqupuq)2
. (4)

Hence considering in An the structure of the Euclidean space En with the Carte-
sian coordinates ui we obtain a conformal model of a polar normalized projective
space Pn, i.e. a non-Euclidean space with the metric tensor

ds2 = gijdu
iduj =

±aijdu
iduj

(1 + apqupuq)2
. (5)
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As we can see from (2) and (5), the obtained non-Euclidean space is conformally
equivalent to the Euclidean space.
Quadrics in the projective spaces of a special type have been also studied in

[2], [3].

2 The projectivization of conformal models of fibrations
determined by the algebra of quaternions

Assume the associative unital 4-dimensional algebra A of quaternions [8], [9]
with the basis 1, i, j, k and the multiplication table

1 i j k
1 1 i j k
i i −1 k −j
j j −k −1 i
k k j −i −1

As well known, any quaternion can be uniquely expressed as x = x0 + x1i+
x2j + x3k, conjugation is given by x �→ x̄ = x0 − x1i − x2j − x3k, xy = ȳx̄
holds, the number xx̄ = (x0)2+(x1)2+(x2)2+(x3)2 is real, and x �→ |x| =

√
xx̄

defines a norm corresponding to the scalar product xy = 1
2 (xȳ+yx̄) that turns

A into the four-dimensional Euclidean space E4. Since |1| = |i| = |j| = |k| = 1
the basis elements are called units. For any x with |x| �= 0 there exists the
inverse element x−1 = x̄

|x|2 . The set of all invertible elements from A

Ã = {x | x �= 0}

is a Lie group [10].
The group of quaternions of the unit norm xx̄ = 1 can be interpreted as the

unit sphere S3

(x0)2 + (x1)2 + (x2)2 + (x3)2 = 1 (6)

in the Euclidean space E4.
We extend E

4 into P4; taking

u0 =
y0

y4
, u1 =

y1

y4
, u2 =

y2

y4
, u3 =

y3

y4

we introduce homogeneous coordinates (y0: y1: y2: y3: y4). The quadric S3 has
coordinate expression

y2 = (y0)2 + (y1)2 + (y2)2 + (y3)2 − (y4)2 = 0. (7)

The quadric (7) divides P4 into the inner part characterized by y2 < 0 and the
outer part y2 > 0, and intersects the hyperplane y0 = 0 in the two-sphere S2

(y1)2 + (y2)2 + (y3)2 − (y4)2 = 0.
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The point E0 of the projective frame (E0, . . . , E4) is the pole of the hyper-
plane y0 = 0, the straight line E0E4 intersects the quadric in two real points
N(1: 0: 0: 0: 1) and N ′(−1: 0: 0: 0: 1), and the points E1, E2, E3 belong to the
polar P2 of the straight line E0E4.
The tangent plane at the point N has the equation y0−y4 = 0. It intersects

P
3 in the mentioned 2-plane P2: y4 = 0. Hence in the hyperplane y0 = 0 there is
a structure of affine space A3 for which P2 is the plane at infinity. Consequently,
under the assumption y4 �= 0 we can introduce Cartesian coordinates

ui =
yi

y4
, i = 1, 2, 3.

Moreover, the sphere S2 determines in A
3 the structure of Euclidean space E3

with the metric form

ds20 = (du1)2 + (du2)2 + (du3)2. (8)

Assume the stereographic projection of the hyperplane y0 = 0 from the pole
N(1: 0: 0: 0: 1) onto the quadric (7). The point U(0:u1:u2:u3: 1) is mapped into
the point

X1(−1 + r2: 2u1: 2u2: 2u3: 1 + r2),

that is, the Cartesian coordinates ui are local coordinates on the quadric (7).
Here r2 = (u1)2 + (u2)2 + (u3)2 is the quadrat of distance of the point U from
the origin of the Euclidean metric (8).
Let us normalize the quadric (7) self-polar, taking as the first-order normals

straight lines passing through E0, and as second order polars their polar two-
planes belonging to the hyperplane y0 = 0 as second order normals. The straight
line E0X1 intersects the hyperplane y0 = 0 in the point

X(0: 2u1: 2u2: 2u3: 1 + r2).

It is more suitable to take the point X ∈ P
3 instead of the point X1. Note that

the polar of the point X related to the quadric (7) intersects the hyperplane
y0 = 0 in that two-dimensional normal of the second order which corresponds
to the normal of the first order X1E0. Hence in the hyperplane y0 = 0, a point
X in general position corresponds to a two-plane, and the hyperplane y0 = 0 is
the normalized projective space P3. Particularly, if r2 = 1 the point X belongs
to the sphere S2, and its polar is a tangent 2-plane in this point.
Let us define the second order polar as a span of the points Yi = ∂iX − liX.

Then X and Yi are polar conjugate, i.e. (X,Yi) = 0. From this condition we
find coordinates of the normalizer of the space P3

li =
(∂iX,X)

(X,X)
.

Since (X,X) = −(r2 − 1)2 we obtain

l1 =
2u1

r2 − 1
, l2 =

2u2

r2 − 1
, l3 =

2u3

r2 − 1
,
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and by (4) we have finally

p11 = p22 = p33 =
4

(r2 − 1)2
.

Now introducing in A3 the structure of Euclidean space E3 with ui as Cartesian
coordinates we find the conformal model C3 with the metric form

ds2 = gijdu
iduj =

(du1)2 + (du2)2 + (du3)2

(r2 − 1)2
. (9)

The corresponding Riemannian (Levi–Civita) connection appears to be of con-
stant curvature K = 1, non-vanishing components (Christoffel symbols) of con-
nection are just

Γ1
11 = −Γ1

22 = −Γ1
33 = Γ2

21 = Γ3
13 = − 2u1

r2 − 1
,

Γ2
22 = Γ1

12 = −Γ2
11 = −Γ2

33 = Γ3
32 = − 2u2

r2 − 1
,

Γ3
33 = −Γ3

22 = Γ1
13 = −Γ3

11 = Γ2
23 = − 2u3

r2 − 1
.

As an example, we examine the fibration defined by the subalgebra of com-
plex numbers.

3 Example

Let us write a quaternion in the form

x = x0 + x1i+ (x2 + x3i)j = z1 + z2j, z1, z2 ∈ R(i),

where R(i) is a 2-dimensional subalgebra of complex numbers with basis {1, i}.
The set of its invertible elements

R̃(i) = {λ = a+ bi | λ �= 0}, a, b ∈ R

turns out to be a Lie subgroup of the group Ã, a 2-plane with exception of one
point.
The canonical projection π : Ã → Ã/R̃(i) reads

π(x) = (z1: z2).

The factorspace Ã/R̃(i) is a complex projective line P (i) covered by two charts

U1 = {[z1: z2] | z2 �= 0} with the coordinate z =
z1
z2

and
U2 = {[z1: z2] | z1 �= 0} with the coordinate z̃ =

z2
z1

.
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Let the point z = u+ iv ∈ P (i) is in U1. Then the coordinate expression of
the projection π in real coordinates is

π(z1, z2) = z =

(
x0x2 + x1x3

(x2)2 + (x3)2
,
x1x2 − x0x3

(x2)2 + (x3)2

)
. (10)

If z = z1
z2
, where in homogeneous coordinates

z1 =
y0 + y1i

y4
, z2 =

y2 + y3i

y4
,

we obtain 2-planes L2 : z1 − zz2 = 0 which are given by a pair of equations over
reals

y0 − uy2 + vy3 = 0,
y1 − vy2 − uy3 = 0.

}
(11)

These 2-planes determine the equations of fibres in the projective space P4. The
projection π(y) = z can be written as

π(y) =

(
y0y2 + y1y3

(y2)2 + (y3)2
,
y1y2 − y0y3

(y2)2 + (y3)2

)
,

which is equivalent to (10). The system (11) together with (7),

(y0)2 + (y1)2 + (y2)2 + (y3)2 − (y4)2 = 0,

y0 − uy2 + vy3 = 0,

y1 − vy2 − uy3 = 0,

defines on this quadric a 2-parameter family of second order curves which define
the fibration. Excluding y0 from the formulas we find the projection of the family
of fibres onto the base y0 = 0. Passing to the Cartesian coordinates we obtain

(u1)2 + (u2)2 + (u3)2 + (uu2 − vu3)2 = 1,

u1 − vu2 − uu3 = 0.

}
(12)

There is a correspondence of these equations with the equations (21) ([4],
p. 89). If y is a point on the quadric distinct from N (i.e. y0−y4 �= 0 holds), the
corresponding point ξ in E3: y0 = 0 is uniquely determined by the homogeneous
coordinates (0: y1: y2: y3: y4 − y0), that is

ξ

(
0:

y1

y4 − y0
:

y2

y4 − y0
:

y3

y4 − y0
: 1

)
,

and the corresponding Cartesian coordinates in the space A3 : y4 �= 0 are

x =
u1

1− u0
, y =

u2

1− u0
, z =

u3

1− u0
.
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The inverse mapping is characterized by the formulas

u0 =
ξ2 − 1

ξ2 + 1
, u1 =

2x

ξ2 + 1
, u2 =

2y

ξ2 + 1
, u3 =

2z

ξ2 + 1
, ξ2 = x2 + y2 + z2

similar to the formulas (18) (cf. [4], p. 88). Hence the coordinates of the points
y and ξ are related by the conformal mapping. Substituting these expressions
into (12) we obtain the equations of the family of fibres in the form

x2 + y2 + z2 − 2(uy − vz)2 = 1,

x− vy − uz = 0.

These equations coincide with (21) (cf. [4], p. 89).
In the conclusion, note that the stereographic projection with the pole N ′

yields the Euclidean space with the same ideal 2-plane P
2, and considering

both stereographic projections together we get the covering of the sphere, the
transition functions of which are given by the inverse mapping.
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