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A game and its relation to netweight and D-spaces

Gary Gruenhage, Paul Szeptycki

Abstract. We introduce a two player topological game and study the relationship
of the existence of winning strategies to base properties and covering properties of
the underlying space. The existence of a winning strategy for one of the players
is conjectured to be equivalent to the space have countable network weight.
In addition, connections to the class of D-spaces and the class of hereditarily
Lindelöf spaces are shown.

Keywords: topological game, network, netweight, weakly separated, D-space

Classification: 54D20, 54E20

1. Introduction

Let us introduce two closely related topological games: Given a space X we
let G(X) (resp., G′(X)) denote the following two player game of length ω on X
played by SET and POINT. In the first inning of the game:

SET plays D0 ⊆ X and a neighborhood assignment {Vx : x ∈ D0}, and
POINT plays x0 ∈ D0.

A play of the game is a sequence D0, x0, . . .Dn, xn, . . . , where at inning n of the
game

SET plays Dn ⊆ Dn−1, and

POINT plays xn ∈ Dn.

Let D =
⋂{Dn : n ∈ ω}. We say POINT wins in G(X) if

⋃
{Vxn : n ∈ ω} ⊇

⋃
{Vx : x ∈ D}

and POINT wins in G′(X) if

⋃
{Vxn : n ∈ ω} ⊇ D.

Otherwise SET wins .
The games G(X) and G′(X) originated in an attempt to understand the rela-

tionship between hereditarily Lindelöfness and the D-space property. A T1 space
X is said to be a D-space if for each open neighborhood assignment {Ux : x ∈ X}
there is a closed and discrete subset D ⊆ X such that {Ux : x ∈ D} covers the
space. The notion is due to van Douwen, first studied with Pfeffer in [4], and
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the open question whether every regular Lindelöf space is a D-space has been
attributed to van Douwen [6]. Indeed very few examples of regular spaces with
even very weak covering properties that are not D-spaces are known. Recently
a Hausdorff example of a hereditarily Lindelöf space that is not a D-space was
constructed assuming ♦ [8]. However, it may be consistent or even a ZFC result
that every hereditarily Lindelöf regular space is a D-space.

While the games are closely related to the van Douwen question, a perhaps
more interesting question is whether POINT having a winning strategy in G(X)
or G′(X) is equivalent to X having countable network weight. Consideration of
this question leads us to a generalization of the notion of weakly separated subsets
of a space and to an open question of M. Tkachenko. Recall that a subset Y of a
space X is weakly separated if there is a neighborhood assignment {Vy : y ∈ Y }
such that for all y 6= z from Y , if y ∈ Vz then z /∈ Vy . Tkachenko asked whether
it is consistent that every space with no uncountable weakly separated subspaces
has countable network weight [9].

2. Main results

Lemma 1. Suppose SET has no winning strategy in G′(X). Then SET has no
winning strategy in G′(Y ) in any subspace Y of X .

Proof: Suppose SET has no winning strategy in G(X), let Y be a subspace
of X , and let σ be a strategy for SET in G(Y ). We show σ is not winning by
defining a corresponding strategy σ∗ in G(X) such that σ∗ not winning implies σ
not winning. Let D0 and {Vx : x ∈ D0} be SET’s initial play in G(Y ) using the
strategy σ. For each x ∈ D0, let V

∗
x be an open neighborhood of x in X such that

V ∗
x ∩ Y = Vx, and define D0 and {V ∗

x : x ∈ D0} to be SET’s initial play in G(X)
using the strategy σ∗. Then if x0 ∈ D0 is POINT’s initial play in G(X), let D1

be SET’s response using σ if SET pretends x0 is POINT’s play in G(Y ), and let
this same set D1 be SET’s response to x0 in G(X). And so on. Since σ∗ is not
winning, there is a sequence x0, x1, . . . of plays by POINT in G(X) such that

⋃
{V ∗

xn
: n ∈ ω} ⊇ D

where D =
⋂

n∈ω Dn. But then this same sequence of plays wins for POINT in
G(Y ). Hence σ is not winning. �
Theorem 2. If SET has no winning strategy in G(X) or G′(X), then X is
hereditarily Lindelöf and hereditarily a D-space.

Proof: First note that if SET has no winning strategy in G(X), then SET has
no winning strategy in G′(X) either, since a win for SET in G′(X) is a win in
G(X) too. Thus it suffices to show that SET having no winning strategy in G′(X)
implies X is hereditarily a Lindelöf D-space.

Suppose then that X has no winning strategy in G′(X). By the lemma, we
only need to prove X is Lindelöf and a D-space, which we do by showing that
if {Ux : x ∈ X} is a neighborhood assignment, then there is a countable closed
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discrete set D such that {Ux : x ∈ D} covers X . Consider the strategy for SET,
with initial play D0 = X and the given neighborhood assignment, and where at
the nth inning, SET plays Dn = X \⋃i<n Uxi where (xi : i < n) is the sequence
of POINT’s plays up to that point. Since this strategy is not winning for SET,
there is a sequence of points {xn : n ∈ X} such that xn /∈ ⋃{Uxi : i < n} and
{Uxn : n ∈ ω} covers all of X . It follows that if D = {xn : n ∈ ω}, then D is
closed discrete and {Ux : x ∈ D} covers X . �
Proposition 3. If X has a countable network, then POINT has a winning stra-
tegy in G(X).

Proof: Let F = {Fn : n ∈ ω} be a network for X . We describe a strategy for
POINT. Suppose that SET plays D0 ⊆ X and {Vx : x ∈ D0}. Then POINT
plays some x0 ∈ D0 such that Vx0 ⊃ Fn0 , where n0 is least possible. At inning
k > 0 of the game, choose nk minimal such that nk /∈ {ni : i < k} and there is an
xk ∈ Dk with Vxk

⊃ Fnk
; then POINT plays xk. To see that POINT wins this

play of the game, let D =
⋂

n∈ω Dn and let y ∈ ⋃{Vx : x ∈ D}. Then for some
m ∈ ω and x ∈ D, y ∈ Fm ⊂ Vx. Then by the way the ni’s were chosen, we must
have m = nk for some k, and hence y ∈ ⋃

i∈ω Vxi . So POINT wins the game. �
We conjecture that the converse to Proposition 3 is also true:

Question 1. If POINT has a winning strategy in G(X) or G′(X), does it follow
that X has a countable network?

As indicated by this question, we also do not know of a space X in which
POINT has a winning strategy in G′(X) but not in G(X). A counterexample to
Question 1 would need to be a hereditarily Lindelöf space without a countable
network. Most (all?) known examples of such spaces can be shown to have the
property that POINT does not have a winning strategy. Indeed, this is closely
related to the Tkachenko’s question whether consistently every space with no
uncountable weakly separated subset has a countable network ([9]; see also Prob-
lem 378, [7]). The following generalization of weak separation will help us show
that POINT has no winning strategy in certain examples of hereditarily Lindelöf
spaces.

Definition 4. A subset A of a hereditarily Lindelöf topological space (X, τ) is
dually weakly separated, if there is another hereditarily Lindelöf topology τ ′ on
X and two neighborhood assignments {Vx : x ∈ A} ⊆ τ and {Wx : x ∈ A} ⊆ τ ′

such that

(1) x ∈ Vx ∩Wx for all x ∈ A, and
(2) for all x 6= y in A, if y ∈ Wx then x is not in the τ ′ closure of Vy.

Note that if τ = τ ′ in the previous definition then we obtain, for regular spaces,
a statement equivalent to “A is weakly separated”.

Proposition 5. Suppose POINT has a winning strategy in G′(X) on a space
(X, τ). Then no uncountable subset of X is dually weakly separated with respect
to any hereditarily Lindelöf topology τ ′.
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Proof: Suppose that σ is a strategy for POINT, and by Theorem 2 we may
assume that (X, τ) is hereditarily Lindelöf. By way of contradiction suppose that
τ ′ is another hereditarily Lindelöf topology on X and A ⊆ X is uncountable and
{Vx : x ∈ A} ⊆ τ and {Wx : x ∈ A} ⊆ τ ′ witness that A is dually weakly
separated.

Fix M an elementary submodel of some Hκ for κ sufficiently large such that M
contains everything relevant. Fix z ∈ X \M . For each x ∈ X , let yx be POINT’s
response to an opening play of Dx

0 = Wx \ {x}. Let Ux = (Wx \ Vyx) (here the
closure is taken wrt τ ′. The sets Ux form a τ ′-open cover of X , so has a countable
subcover {Ux : x ∈ A0}. By elementarity we may assume that A0 ∈ M and since
it is an open cover, we may find x0 ∈ A0 such that z ∈ Ux0 and so z ∈ Dx0

0 . For
each x ∈ Dx0

0 let Dx
1 = Dx0

0 ∩ (Wx \ {x}) and let y1x be POINT’s response to this
play where POINT follows its strategy σ. By assumption, we have that the sets
U1
x = Wx\Vy1

x
form a τ ′-open cover ofDx0

0 . SinceX must be hereditarily Lindelöf,
it follows that we have a countable A1 such that {Ux : x ∈ A1} covers Dx0

0 . By
elementarity, we may assume that A1 ∈ M , and may find x1 ∈ A1 with z ∈ U1

x .
It follows that z ∈ Dx1

1 . Continuing in this fashion we find a sequence of plays
by SET of the form Dn = Dxn

n = D
xn−1

n−1 ∩Wxn \ {xn} with the property that for
all n, z ∈ Dn and z /∈ Vyn

xn
where ynxn

is POINT’s response to this play Dn. This

implies that the play is losing for POINT, so POINT does not have a winning
strategy. �

Proposition 5 can be used to show that POINT has no winning strategy on
many interesting examples of heredetarily Lindelöf spaces: For example, for any
space with an uncountable weakly separated subspace (e.g., any uncountable sub-
space of the Sorgenfrey line or any L-space), POINT has no winning strategy.

There are consistent examples of hereditarily Lindelöf spaces with no uncount-
able weakly separated subspaces, yet using Proposition 5 we can see that POINT
has no winning strategy.

Example 1. We recall an example mentioned in [5, p. 303]. An uncountable set
of reals E is called 2-entangled if every uncountable monotone function from a
subset of E to E has a fixed point. Such sets exist assuming CH and are consistent
with MA+¬CH [2]. Now let f be any uncountable one-to-one function from a
subset of E to E with no fixed point, and consider the plane with the topology τ
refining the usual Euclidean topology by adding “bowtie” neighborhoods of the
form V(x1,x2) = {y : y1 ≤ x1 and x2 ≤ y2 or y1 ≥ x1 and x2 ≥ y2}. Let X be
the graph of f as a subspace of the plane with this topology, and let X ′ be the
graph of f with the topology τ ′ obtained by rotating the bowtie neighborhoods by
90 degrees. Both X and X ′ are hereditarily Lindelöf, but neither has a countable
network because {(x, x) : x ∈ f} is easily seen to be a discrete subspace of X×X ′.
Now note that if B(x) is a bowtie neighborhood of x in τ , and B′(x) its rotation
by 90o, then {(B(x), B′(x)) : x ∈ f} witnesses that X is dually weakly separated.
So POINT has no winning strategy in G′(X).
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Example 2. K. Ciesielski constructed an example of space with network weight
ω2 but any subspace of cardinality ω1 has a countable network [3]. Clearly, no un-
countable subset of this space could be weakly separated, however, the entire space
is dually weakly separated. The example is obtained by forcing a generic graph on
F : [ω2]

≤2 → 2 with the stipulation that F ({x}) = 0 for every x ∈ X = ω2. Then
τ = τF is the topology obtained by taking the sets UF

x,i = {y : F ({x, y}) = i} as
a subbasis. Ciesielski constructs a further forcing extension where this topology
is the required example. To see that this space is dually weakly separated, define
another function G : [ω2]

≤2 → 2 by G({x, y}) = F ({x, y}) for all x 6= y and
G({x}) = 1 for all x ∈ X . Defining a subbasis with respect to G in the same
way, one obtains an alternate topology τ ′ = τG. The proof that τ ′ is hereditarily
Lindelöf is the same as Ciesielski’s proof for τ . Note that UG

x,1 = (X \UF
x,0)∪{x}.

So, UG
x,1 is τ -closed. By symmetry, it also follows that each UF

x,0 is τ
′-closed. Also,

if y ∈ UG
x,1 and x 6= y then F ({x, y}) = G({x, y}) = 1, so y /∈ UF

x,0. So y is not in

the τ ′ closure of UF
x,0. Therefore the sets Wx = UG

x,1, Vx = UF
x,0 form a dual weak

separation of X .

Question 2. If a hereditarily Lindelöf space includes no uncountable dually
weakly separated subset, must it have a countable network?

If so, then POINT having a winning strategy implies countable network weight.
Finally, we point out that being hereditarily Lindelöf is not characterized by

SET not having a winning strategy:

Proposition 6. SET has a winning strategy on the Sorgenfrey line.

Proof: For each x ∈ R, let Ux = [x,∞). Let SET play as follows: D0 = (0,∞)
and {Ux : x ∈ (0,∞)} is the opening play. Assume that in the nth inning, SET
and POINT have played a sequence {Di, xi : i ≤ n} such that Di = (yi, xi−1)
where 0 = y0 < y1 < · · · < yn < xn−1 < · · · < x0. Then if point responds by
choosing xn ∈ Dn = (yn, xn−1), SET responds with Dn+1 = (yn+1, xn). Using
compactness, it is easy to see that this is a winning strategy for SET. �

Of course, the square of the Sorgenfrey line is not Lindelöf. And, moreover, the
example of [8] is a T2 example of a space with the property that every subspace
has each finite power Lindelöf, but it is not a D-space. This raises the natural
question whether Xω being hereditarily Lindelöf implies that X is a D-space, or
even more:

Question 3. If X is regular and Xω is hereditarily Lindelöf, is it the case that
SET has no winning strategy in G(X)?

Of course, if Xn is hereditarily Lindelöf for each n, then so is Xω, however,
the assumptions of the following question might be weaker than the previous.

Question 4. Suppose X that is regular and for every subspace Y ⊆ X , we have
every finite power of Y is Lindelöf. Does it follow that SET has no winning
strategy in G(X)?
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If we only assume Hausdorff in the previous question then we have a consistent
negative answer [8].

The Star Game. Analyzing Arhangel’skii and Buzyakova’s proof that spaces
with a point countable base are D-spaces, L. Aurichi defined a topological game,
called the star game, as follows (see [1]). Given a spaceX with basis B, PLAYER I
chooses x0 ∈ X and PLAYER II chooses A0 ⊆ X and basic open sets {Vx : x ∈
A0 ∪ {x0}} such that x ∈ Vx for each x. At stage α, having chosen {xξ : ξ < α}
and {Aξ : ξ < α}:

If {xξ : ξ < α} is not closed discrete, then I wins if
⋃

ξ<α Aξ does not include

all limit point of {xξ : ξ < α}, otherwise II wins.
If {xξ : ξ < α} is closed discrete and {Vxξ

: ξ < α} covers X , then I wins.
Otherwise, the game continues and I chooses xα ∈ X \ {xξ : ξ < α} and II

chooses Aα along with neighborhoods Vx ∈ B for each x ∈ {xα} ∪ Aα subject to
the rule that if x ∈ ({xα} ∪Aα)∩ (

⋃
ξ<α Aξ) then Vx fixed at stage α is the same

as the Vx chosen in the previous stage of the game.

Theorem 7 ([1]). If X has a point countable base, then PLAYER I has a winning
strategy in the star game. If PLAYER II has no winning strategy in the star game
on a space X then X is a D-space.

Theorem 8. If POINT has a winning strategy in the gameG′(X), then PLAYER
II has no winning strategy in the star game.

Proof: Suppose that POINT has a winning strategy in the game G′(X), and
PLAYER II in the star game employs some fixed strategy. We define a response
by PLAYER I that will defeat this strategy. Let f : ω → ω be any function such
that f(n) < n for all n > 0, and f−1(k) is infinite for all k ∈ ω.

In inning n = 0, PLAYER I plays any x0 ∈ X . Let A0 and the neighborhood
assignment {Vx : x ∈ A0∪{x0}} be PLAYER II’s response following her strategy.

Now consider A0 \Vx0 with the neighborhood assignment given from II’s move
in the star game as SET’s first move in a game G′(X), which we will call the 0th
auxiliary game, and let x1 be POINT’s reply in G′(X) to this move using her
winning strategy, and let it also be I’s reply to II’s first move in the star game.

At stage n > 0 of the star game, we have a partial play x0, A0, x1, . . . , xn−1,
An−1. We have also defined partial plays (some of which may be empty) ending
in a move of POINT in n auxiliary games of type G′(X). We will also have
the neighborhoods Vxi , i < n, chosen by II’s strategy, and I’s plays {xi}i<n will
always be such that xi /∈ ⋃

j<i Vxj .

Define I’s response xn to this partial play as follows. Suppose f(n) = k. We
then extend the kth auxiliary game by one round. If it has not started yet, let
Ak \ ⋃

i<n Vxi with the neighborhood assignment given from the star game be
SET’s first move in G′(X). If it has started, and B is SET’s last move in that
game, then let B \⋃i<n Vxi be SET’s next move. Now let xn be POINT’s reply
in G′(X) as well as I’s reply to the given partial play of the star game. (If SET’s
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move defined as above happens to be empty, then let xn be an arbitrary element
of X \⋃i<n Vxi .)

Note that at stage ω all the auxiliary games will have been completed, and
every play by POINT in these games will be among the xn’s. Since POINT used
her winning strategy, and SET’s plays in the kth auxiliary game have the form
Ak minus some finite union of the Vxi ’s, it follows that Ak ⊂ ⋃

n∈ω Vxn for all
k ∈ ω.

Since xn /∈ ⋃
i<n Vxi , any limit point of the xn’s lies outside of

⋃
n∈ω Vxn . Since⋃

n∈ω Vxn contains all of the An’s, if {xn}n∈ω has a limit point, it is not in any
An and hence Player I has won the game. If on the other hand {xn}n∈ω is closed
discrete, then either the Vxn ’s cover X , in which case I again wins, or the game
continues.

If the game continues, for the next ω rounds Player I continues similarly to the
first ω rounds. That is, I first chooses any xω ∈ X \⋃n∈ω Vxn . II plays Aω and
a neighborhood assignment {Vx : x ∈ Aω ∪ {xω}}. Then consider Aω \⋃n≤ω Vxn

with the neighborhood assignment given from II’s move in the star game as SET’s
first move in the ωth auxiliary game G′(X), and let xω+1 be POINT’s reply in
G′(X) to this move using her winning strategy, and let it also be I’s reply to II’s
ωth move in the star game. And so on out to stage ω+ω. If the game is still not
over, continue in like manner.

Since we are assuming POINT has a winning strategy in G′(X), X is hered-
itarily Lindelöf and the game must end at some countable stage α. If {xβ}β<α

is closed discrete and the game is over, then I has won. If {xβ}β<α has a limit
point, then since xβ /∈ ⋃

γ<β Vxγ , and for β < α, {xγ}γ<β is closed discrete, any

limit point of the xβ ’s lies outside of
⋃

β<α Vxβ
. But then said limit point cannot

be in any Aβ since (arguing as in the first ω rounds) Aβ is covered by the Vxγ ’s,
γ < α. So I wins again and Player II’s strategy is defeated. �
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