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Abstract

The structures of the fuzzy information theory are focused on the
concept of fuzzy entropy, where the individual information of symbols is
considered only implicitely. This paper aims to fill this gap and to study
the concepts of fuzzy information. Special attention is paid to the typical
fuzzy set theoretical paradigma of monotonicity of operations.
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1 Introduction

The classical information theory, where the uncertainty is represented by ran-
domness, was established by Shannon and Weaver in [8].
When the fuzzy set theory was presented in [9], the demand for a specific

information theory dealing with vagueness has appeared (see, e.g. [1, 2, 4] and
many others). Meanwhile Shannon built his theory on the concept of infor-
mation connected with individual symbols of the source alphabet and then he
defined the entropy of the entire source as the probabilistic mean value of the
particular information values, the fuzzy information measuring is derived from
the concept of the entire fuzzy source entropy.
In fact, the definitions of fuzzy entropy presented, e.g., in [1, 4] and in other

works, include some implicite components closely analogous to probabilistic

*The research summarized in this paper was partly supported by the Grant Agency of
Czech Republic, project No. P402/11/0378, and by the Ministry of Education, Youth and
Sports of the CR, Research Centre No. 1M0572.
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information measure. But their specific character is not explicitely stressed
and their properties are not deeply analyzed.
Moreover, the definitions of fuzzy entropy formulated in the referred works

very closely repeat their classical probabilistic counterpart. As mentioned in
[6, 7], this approach to the fuzzy information is not unavoidable, and the concept
of fuzzy information can be significantly simplified.
Such simplified fuzzy information concept was suggested in [7], and its struc-

ture is analyzed and characterized in the following sections of this paper.

2 Information sources

In the whole paper, we denote by A the non-empty and finite alphabet. Its
elements a, a′, a1, a2, . . . are called symbols, and we call any finite sequence of
symbols by the term word. By A∗ = A∪A2 ∪A3 ∪ · · · ∪An ∪ . . . we denote the
set of all words from the alphabet A.

2.1 Probabilistic information measures

Due to the Shannon and Weaver model [8], the random information source is
defined as a pair (A, p), where A is an alphabet and p is a probability distribution
over A.
The information transmitted by a symbol a ∈ A is defined as a number

Ip(a) = log2(1/p(a)) = − log2 p(a). (1)

The uncertainty of the entire source (A, p) is measured by its entropy H(A, p)
defined as the mean value of symbol information

H(A, p) =
∑

a∈A

p(a) · Ip(a) = −
∑

a∈A

p(a) · log2 p(a). (2)

The properties of the probabilistic entropy are summarized in many classical
works on information theory.

2.2 Fuzzy information measures

In this paper, we interpret a fuzzy set as a vague information source (A, μ),
where A is an alphabet, and for any a ∈ A, μ(a) is a value of the membership
function (c.f. [9, 1, 4, 7, 5]). The fuzzy entropyH(A, μ) is defined in several ways.
Here, we mention the definition by De Luca and Termini [1], let us denote it

HLT(A, μ) = −K ·
∑

a∈A

μ(a) · log2 μ(a), (3)

and its more sophisticated analogy suggested by Kolesárová and Vivona in [4],
which we denote

HKV(A, μ) = −K ·
∑

a∈A

((μ(a) · log2 μ(a)) + (1− μ(a)) · log2(1− μ(a))) , (4)

where in both cases K is a positive normalising constant.
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When analyzing formulas (3) and (4), we can interpret them as (rather
modified) analogies of the arithmetic weighted means of values

Iμ(a) = − log2 μ(a), a ∈ A. (5)

To stress this analogy with [8] we call the values Iμ(a) the fuzzy information of
symbol a.

3 Monotonous alternative of fuzzy information

The fuzzy information defined by (5) has interesting advantages but also serious
methodological disadvantages. Namely the latter ones were discussed in [7] and
partly in [6], too. They regard the observation that the approach represented
by (3) and (4) and (5) is not adequate to the elementary paradigm of fuzzy set
theory.
Certain attempt to modify the definition of fuzzy-like form was done in [6]

and especially [7].

4 General model of fuzzy information measure

Considering a fuzzy information source (A, μ), we aim to suggest some measure
of fuzzy information connected with particular symbols a ∈ A. Let us formu-
late its elementary properties which are rationally demanded. We denote the
considered fuzzy information measure by Im(a), a ∈ A. Then we assume that
for a, b ∈ A

Im(a) ≥ 0, (6)

Im(a) ≤ 1, (7)

Im(a) = 0 iff μ(a) = 1, (8)

if μ(a) ≥ μ(b) then Im(a) ≤ Im(b). (9)

Lemma 1 The fuzzy information measure Iμ(·) defined by (5) fulfils (6), (8)
and (9).

Proof The statements follow from the elementary properties of logarithmic
function. �

Remark 1 As the alphabet A is assumed to be finite, there evidently always
exists real-valued K, where 0 < K ≤ 1, such that K · Iμ(a) ≤ 1 for all a ∈ A.

Remark 2 Let us note that even the probabilistic information measure Ip(·)
defined by (1) (see [8]) fulfils conditions (6), (8), (9), as well, and for finite
alphabet A, it fulfils a statement analogous to previous Remark 1.



92 Milan Mareš

4.1 Monotonous information of particular symbol

Our aim is to construct an information measure Im(·) fulfilling (6), (7), (8), (9),
and consequently preserving the structure of fuzzy set theoretical operations.
We call the mapping Im : A → [0, 1] such that for any a ∈ A

Im(a) = 1− μ(a), (10)

the monotonous fuzzy information. It is easy to verify the validity of the fol-
lowing statement.

Theorem 1 The monotonous fuzzy information Im(·) defined by (10) fulfils
properties (6), (7), (8), and (9).

Proof The statement of Theorem1 follows from (10), immediately. �

4.2 Extended monotonous information of several symbols

For the probabilistic information [8], let us recollect that for a, b ∈ A, p(a, b) =
p(a) · p(b|a) or, in the case of independence, p(a, b) = p(a) · p(b). It justifies the
application of the logarithmic function in (1), and the construction of random
information Ip as an additive mapping, i.e.,

Ip(a, b) = Ip(b) + Ip(a|b) (11)

or, in the case of independence,

Ip(a, b) = Ip(a) + Ip(b). (12)

We can expect that the fuzzy information measure would be rather monotonous
than additive, for example.
Namely, it is rational to expect that for any (however defined) measure of

information I(·) over A
I(a, b) ≥ max (I(a), I(b)) , a, b ∈ A. (13)

Remark 3 Condition (13) is fulfilled for the random information Ip(·) defined
by (5), as follows from (11) and (13).

Natural extension of the fuzzy set theoretical representation of uncertainty
can be formulated by a fuzzy logical conjunction of the possibilities of symbols
a and b. In symbols,

μ(a, b) = min (μ(a), μ(b)) . (14)

Then the following statement is evident.

Lemma 2 If the membership function μ of the fuzzy source (A, μ) is extended
from A on A2 by means of (14) then the fuzzy information measures Iμ and Im
can be extended on A2, as well (analogously to (5)) and (10), and the extensions
Iμ(·, ·), Im(·, ·) fulfil condition (12).
Proof Due to (5) and (14), condition (13) is evidently fulfilled. �
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Lemma 3 Analogously, under the assumptions of Lemma 2, the extended fuzzy
information Iμ(·, ·) fulfils 6), (7) and (9). For finite alphabet A, it fulfils also
the corresponding analogy of Remark 1.

Theorem 2 The extension of monotonous fuzzy information Im(·, ·) defined by
(10) on A2, fulfils conditions (6), (7), (8) and(9), if the assumptions of Lemma 2
are fulfilled.

Proof The proof follows from (10) and (14), immediately. �

It is easy to see that extension defined by (13) and (14) need not be limited
on the pairs of symbols.
Let (A, μ) be a fuzzy source, let μ∗ be an extension of μ on A∗ such that for

any n = 1, 2, 3, . . . and any (a1, a2, . . . , an) ∈ An ⊂ A∗

μ∗(a1, . . . , an) = min (μ(a1), μ(a2), . . . , μ(an)) .

Then we extend the monotonous vague information measure Im on the fuzzy
source (A∗, μ∗) by means of

Im(a1, . . . , an) = 1− μ∗(a1, . . . , an). (15)

Theorem 3 Let a, b, c ∈ A, let Im be defined by (10) and extended by (15) for
arbitrary n = 2, 3, . . . Then

Im(a, a) = Im(a),

Im(a, b) = Im(b, a),

Im(a, b, c) = 1−min (μ(a), μ∗(b, c)) = 1−min (μ∗(a, b), μ(c))
= 1−min (μ(a), μ(b), μ(c)) .

Proof Using (13) and (15), it is evident that μ(a, a) = μ(a) and μ(a, b) =
μ(b, a). Hence, the equalities are easily proved. �

5 Two conclusive remarks

The elementary concepts and ideas briefly formulated in the previous sections,
can be further developed in several ways. Let us mention, here, at least two of
them which appear especially promising.

5.1 Monotonous vague entropy

Analogously to the probabilistic model, the fuzzy information measure of sym-
bols can be extended to the entropy-like concept for entire source. It was done
in [7], where the desired type of fuzzy entropy is called the stricly monotonous
one, denoted by HSM(A, μ), and defined by

HSM(A, μ) = 2 ·max [min(Im(a), 1− Im(a)) : a ∈ A] , (16)
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which is equivalent to

HSM(A, μ) = 2 ·max [min(μ(a), 1− μ(a)) : a ∈ A] .

As shown in [7],

— HSM(A, μ) = 0 if for all a ∈ A, μ(a) ∈ {0, 1}.
— If A,B are finite alphabets and (A, μ), (B, ν) fuzzy sources, where B is a
permutation of A, and {ν(b) : b ∈ B} is a permutation of {μ(a) : a ∈ A},
then HSM(A, μ) = HSM(B, ν).

— If (A, μ), (A, ν) are fuzzy information sources and for any

μ(a) ≤ ν(a) if ν(a) ≤ 1
2

μ(a) ≥ ν(a) if μ(a) ≥ 1
2

then HSM(A, μ) ≤ HSM(A, ν).

— If for (A, μ), (A, ν) and for all a ∈ A

μ(a) = 1− ν(a)

then HSM(A, μ) = HSM(A, ν).

— HSM(A, μ) ≥ HSM(A, ν) for all (A, ν) if μ∗(a) = 1
2 for all a ∈ A.

5.2 Generalization possibilities

This fuzzy approach can be generalized and the fuzzy set theoretical methods
can be substituted, e.g., by the t-norms and t-conorms and related tools, even-
tually by the methods of aggregation operators theory.
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