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Abstract

We discuss, partly on examples, several intuitively unexpected results
in a standard linear regression model. We demonstrate that direct obser-
vations of the regression curve at a given point can not be substituted by
observations at two very close neighboring points. On the opposite, we
show that observations at two distant design points improve the variance
of the estimator. In an experiment with correlated observations we show
somewhat unexpected conditions under which a design point gives no or
very little information about the estimated parameters, and so can be
excluded from the design. For completeness we repeat briefly known con-
ditions under which a design point is sensitive to the presence of outliers.

Key words: singular models, optimal design, correlated observa-
tions
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1 Introduction

We consider a standard linear regression model

yx = fT (x) θ + εx, x ∈ X , θ ∈ R
p (1)

with data yx1
, . . . , yxN

observed in N design points x1, . . . , xN taken from a de-
sign space X . In a vector notation we have y = Fθ+ε with y = (yx1

, . . . , yxN
)T ,
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104 Andrej Pázman

Fij = fj (xi) = elements of a known design matrix. The vector of random errors
ε = (εx1

, . . . , εxN
)
T is supposed to have E (ε) = 0, Var (ε) = σ2W with W a

known positive definite matrix.
A well known example is a polynomial regression on an interval. Then

X = [a, b],
yx = θ1 + θ2x+ · · ·+ θmxm−1 + εx

hence fT (x) =
(
1, x, . . . , xm−1

)
.

The best linear unbiased estimator (BLUE) of the vector θ is equal to

θ̂ = M−1FTW−1y (2)

Here
M ≡ M (x1, . . . , xN ) = FTW−1F

is the information matrix (for σ = 1). The variance matrix of θ̂ is Var(θ̂) =

σ2M−1 ifM is nonsingular, and θ̂ is not unique ifM is singular, but still we have
in this case a BLUE for hT θ, with h a given vector such that h ∈ M (M) = the
column space of the matrix M . Then

Var
(
hT θ̂

)
= σ2hTM−h

where M− is an arbitrary g-inverse of M , and θ̂ = M−FTW−1y is any solution
of the normal equation Mθ = FTW−1y.
Evidently, the position of the design points x1, . . . , xN influences the vari-

ances, as well as the form of the estimated regression function

η
(
x, θ̂
)
≡ fT (x)θ̂

Still, it seems that nothing surprising can be found in this model. We shall try
to prove the opposite.

2 Design points which cannot be approximated by neigh-
boring design points

Take [a, b] = [0, 10] and
η (x, θ) = θ1x+ θ2x

2 (3)

a quadratic polynomial without intercept. Suppose that we have to perform 10
independent observation with the same unknown variance σ2, and the aim is to
estimate the value of this polynomial at the point x̄ = 1.
Observations at one point: Apparently, a “natural” design of the experiment

would be to perform all 10 observations at the same design point x̄ = 1, i.e. in
our previous notation, x1 = · · · = x10 = x̄. We have then evidently

Var
(
η
(
x̄, θ̂
))

= Var

(
1

10

10∑
i=1

yi

)
=

σ2

10
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Observations at two neighboring points: Suppose that for some reason the
experimenter wants to divide the observations into two groups: Five observa-
tions at the point x1 = x̄+ t and five at x2 = x̄+ ct, with t > 0 but small, and
with c ∈ [−1, 1]. Then direct computation gives

M−1 (x1, x2) =
1

5x2
1x

2
2 (x1 − x2)

2

(
x4
1 + x4

2 −x3
1 − x3

2

−x3
1 − x3

2 x2
1 + x2

2

)

and after some standard computation, since

η
(
x̄, θ̂
)
= θ̂1 + θ̂2,

the variance of the BLUE for η (x̄, θ) is equal to

Var
(
η
(
x̄, θ̂
))

= σ2
(
1 1

)
M−1 (x1, x2)

(
1
1

)
=

σ2

5 (1− c)2

[
1

(1 + ct)2
+

c2

(1 + t)2

]

which for t → 0 tends to
σ2
(
1 + c2

)
5 (1− c)2

Consequently, Var
(
η
(
x̄, θ̂

))
is arbitrarily large if we take c sufficiently close

to 1, regardless of how small is t, i.e. how close are the points x1, and x2 to
x̄ = 1. And for any c �= −1 the limit variance is larger than when performing
all observations at one point x̄.
Consequences:
i) Mathematically, we have a very clear discontinuity of the variance when

considering it as a function of the design. This discontinuity is discussed on a
theoretical level in Pázman (1986), p. 63–69.
ii) We have a conflict between singular and regular regression models: If we

observe just at one point x̄, we have a singular regression model, which can be
used, since we suppose a priori that just one parameter is important, namely
η (x̄, θ). On the other hand, if we observe at two points, we have a regular model
with two parameters to be estimated. But if the points x1, x2 are very close to
x̄, the model is “bad conditioned”, nearly singular, and some functions of the
parameters are estimated with high variances. Accidently, it is the parameter
η(x̄, θ) in our case.
iii) We have a statistical paradox on an elementary level: In fact, if x1, x2

are very close to x̄, in practice one can not be sure whether we observed at x̄
or at x1, and x2. So the estimator η

(
x̄, θ̂
)
should not be so sensitive to the

choice of design points as given by the theory. However, this reflection contains
implicitly the a priori assumption that the values η(x̄, θ), η(x1, θ), η(x2, θ) do
not differ very much. But our quadratic model (3) is not adequate for such
an assumption, since it does not exclude a very narrow parabola, giving very
different values of η(x̄, θ), η(x1, θ), η(x2, θ), even if x̄, x1, x2 are very close to
each other. So the “paradoxical” result obtained from the theory is statistically
correct, but the model does not correspond to our “intuitive” assumptions.
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To solve the problem, either we must use a Bayesian modelling rejecting “a
priori” the possibility of a narrow parabola, or we must use another regression
model, say we must suppose that for x in a neighborhood of the point x̄ a
one-parameter model

η (x, θ) = θ1

is acceptable, or simply we must accept that approximations by singular models
are sometimes preferable. This may be an argument to use singular models
largely considered in the papers of L. Kubáček (cf. e.g. Fišerová et al (2007)).
The situation is even worse when we want to estimate a nonlinear function

of θ1 and θ2. For example, suppose that in the model (3) we want to estimate
the position xo of the extreme point of the parabola θ1x+ θ2x

2. By taking

d
[
θ1x+ θ2x

2
]
/dx = 0

we obtain xo = − θ1
2θ2
, so xo should be estimated by − θ̂1

2θ̂2
. As is proven in

Pázman and Pronzato (2006), if we observe m times at the “true” point xo

and N − m times at a point x1 which is close to xo, it may be that the limit
distribution of − θ̂1

2θ̂2
is asymptotically not normal for N → ∞, or still normal

but with a ”strange” variance or with a “strange” speed of convergence. All
depends on the behavior of m/N .
So it is better to do all 10 observations at the point x̄ = 1 than to split them

into two neighbor design points. But what about to split the observations into
two distant points?
Take two design points: x1 = 4.14, and x2 = 10, and take 8 observations at

x1 and 2 observations at x2. Straightforward calculus gives

M = M (x1, x2) =

(
337.12 2567.7
2567.7 22350.1

)

and

Var
[
η
(
x̄, θ̂
)]

= σ2
(
1 1

)
M−1

(
1
1

)
= (0.186)× σ2

10

which is much less then when we perform all 10 observations at x̄. Notice that
we can obtain the two design points x1, x2 when using for our case the graphical
method for computing optimum designs based on the Elfving’s theorem, cf. e.g.
Pázman (1986), p. 71.

3 Design points giving zero or little information about θ

Consider the design x1, . . . , xN in the general model (1). Suppose first that the
observations are uncorrelated, with W = I. Then the information matrix is

M (x1, . . . , xN ) =

N∑
i=1

f (xi) f
T (xi)
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So, the information contained in the observation at one design point xi is equal
to f(xi)f

T (xi). As a consequence, in the uncorrelated case a design point xi

gives zero information about θ if and only if f(xi) = 0.
The situation may be quite different, and somehow surprising, when the

observations are correlated, Var(ε) = σ2W , with W �= I. Now

M (x1, . . . xN ) = FTW−1F =

N∑
i=1

N∑
j=1

f (xi)
{
W−1

}
ij
fT (xj) (4)

Intuitively, one can perhaps argue also here that f(x) = 0 implies that in the
model

yx = fT (x) θ + εx, x ∈ X
yx is not influenced by the value of θ, hence the observation at x should give no
information about θ. This intuitive approach is false. To see this, consider an
example.

Example 1 Suppose that θ ∈ R, take {x1, x2} a two point design such that
f(x1) = 0, f(x2) = 1, and suppose that W1,1 = W2,2 = 1, but W1,2 �= 0. Then,
according to (4)

M (x1, x2) = (0, 1)

(
1 W1,2

W1,2 1

)−1(
0
1

)
=

1

1− (W1,2)
2 > 1 = M ({x2}) .

So although f (x1) = 0, by deleting the point x1 from the design we can lose
much information. The contribution of the point x1 to M (x1, x2) is very large,
even if f(x1) = 0, when the observations yx1

and yx2
are highly correlated.

To express that the information at a design point xk is small we need mea-
sures of information which are one dimensional (scalars). Like in experiments
with uncorrelated observations, we shall consider information functionals, which
are concave, monotone, real-valued functions defined on the set of positive defi-
nite matrices, cf. Pukelsheim (1993) for justification of these properties, or Páz-
man (1986) for a statistical interpretation. The gradient of such a functional Φ
is the matrix ∇Φ [M ] of the same dimension as M , with components

{∇Φ [M ]}ij =
∂Φ [M ]

∂ {M}ij
.

Well known examples are the D-optimality functional Φ[M ] = ln det(M) with
∇ ln det (M) = M−1, or the A-optimality functional Φ[M ] = − tr

(
M−1

)
with

∇ [− tr
(
M−1

)]
= M−2.

For a fixed design D = {x1, . . . , xN} we denote

a (xk) =
N∑
i=1

{
W−1

}
xk,xi

f (xi)

and
‖a (xk)‖2Φ = aT (xk)∇Φ [M (D)] a (xk) ,
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which is a (pseudo)norm, since concavity of Φ implies that the gradient ∇Φ [M ]
is a positive (semi)definite matrix of M . For example, if Φ (M) = ln det(M),
then ‖a (xk)‖2Φ = aT (xk) [M (D)]−1 a (xk).

Proposition 1 Suppose that the point xk is deleted from the design D =
{x1, . . . , xN}. Then the resulting information matrix is

M (D − {xk}) = M (D)− a (xk) a
T (xk)

{W−1}xk,xk

and

Φ [M (D − {xk})] = Φ [M (D)]− ‖a (xk)‖2Φ
{W−1}xk,xk

+ o
(
‖a (xk)‖3Φ

)
where

lim
t→0

o (t) /t = 0.

Proof The expression for M (D − {xk}) has been derived in Pázman (2010).
Further, from the Taylor formula applied to the matrix function M → Φ(M)
we obtain

Φ

[
M(D)− a (xk) a

T (xk)

{W−1}xk,xk

]
=

= Φ [M (D)]− tr

{
∇Φ [M ]M(D)

[
a (xk) a

T (xk)

{W−1}xk,xk

]}
+ o

(
‖a (xk)‖3Φ

)

= Φ [M (D)]− ‖a (xk)‖2Φ
{W−1}xk,xk

+ o
(
‖a (xk)‖3Φ

)
�

Consequently, the amount of information about θ obtained from a design

point xk is small iff the expression
‖a(xk)‖2

Φ

{W−1}xk,xk

is small, and it is zero if and

only if a (xk) = 0, as follows from the first equality in Proposition 1. Indeed, a
symmetric matrix A is zero if and only if uTAu = 0 for every vector u. So, design

points xk giving a small value of
‖a(xk)‖2

Φ

{W−1}xk,xk

can be excluded from the design

D without essential loss of information about the parameters of the regression
model.
Notice, that the extreme case of zero information at xk has been consid-

ered yet in Näther (1985) where instead of a (xk) = 0 another but equivalent
condition is used.

4 Design points sensitive to outliers

For completeness, we present here a known result from the diagnostics of a linear
model (cf. Zvára (1989)).
We have the following statement.



Strange design points in linear regression 109

Proposition 2 Suppose that the information matrix M is nonsingular. Then
for any i = 1, . . . , N we have

fT (xi)M
−1f (xi) ≤ {W}ii

In the extreme case that

fT (xi)M
−1f (xi) = {W}ii

the graph of the estimated regression function x ∈ [a, b] → η
(
x, θ̂
)
contains the

point (xi, yxi
).

Simple proof According to (2) we have

Var
[
y − F θ̂

]
= Var

[(
I − FM−1FTW−1

)
y
]
= σ2(W − FM−1FT )

Consequently

fT (xi)M
−1f (xi) =

{
FM−1FT

}
ii
≤ {W}ii .

If
{
FM−1FT

}
ii
= {W}ii, then

E

[(
yi − Fi.θ̂

)2]
= Var

[
yi − Fi.θ̂

]
= 0,

hence
yi = Fi.θ̂ = η

(
xi, θ̂

)
with probability one. �

Corollary 1 If fT (xi)M
−1f (xi) is close to {W}ii, then, even before perform-

ing the experiment, we know that the whole estimated regression function is
strongly influenced by yxi

, even if yxi
is an outlier.

Remark 1 In the case of uncorrelated observations with constant variances this
emphasizes the importance of using the G-optimality criterion of optimality

max
x∈[a,b]

fT (x)M−1(x1, . . . , xN )f(x)

The minimization of this expression with respect to x1, . . . , xN gives a design
which is good not only for the precision of the response function, but also for
its robustness with respect to outliers.

Conclusion Even in such a simple model as a linear regression on a real line
we found three kinds of “strange” design points.
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