
Archivum Mathematicum

H. M. Dida; A. Ikemakhen
A class of metrics on tangent bundles of pseudo-Riemannian manifolds

Archivum Mathematicum, Vol. 47 (2011), No. 4, 293--308

Persistent URL: http://dml.cz/dmlcz/141777

Terms of use:
© Masaryk University, 2011

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/141777
http://project.dml.cz


ARCHIVUM MATHEMATICUM (BRNO)
Tomus 47 (2011), 293–308

A CLASS OF METRICS ON TANGENT BUNDLES
OF PSEUDO-RIEMANNIAN MANIFOLDS

H. M. Dida and A. Ikemakhen

Abstract. We provide the tangent bundle TM of pseudo-Riemannian mani-
fold (M, g) with the Sasaki metric gs and the neutral metric gn. First we show
that the holonomy group Hs of (TM, gs) contains the one of (M, g). What
allows us to show that if (TM, gs) is indecomposable reducible, then the basis
manifold (M, g) is also indecomposable-reducible. We determine completely
the holonomy group of (TM, gn) according to the one of (M, g). Secondly we
found conditions on the base manifold under which (TM, gs) ( respectively
(TM, gn) ) is Kählerian, locally symmetric or Einstein manifolds. (TM, gn) is
always reducible. We show that it is indecomposable if (M, g) is irreducible.

1. Introduction

Let (M, g) be a Riemannian manifold. This gives rise to Sasaki metric gs on the
tangent bundle TM . gs is very rigid in the following sense. When we impose to
(TM, gs) to be locally symmetric (respectively Kählerian or Einstein) manifold,
the basis manifold (M, g) must be flat (see [22, 16]). In this paper we study the
general case when (M, g) is a pseudo-Riemannian manifold. If (r, s) is the signature
of g, the one of gs is (2r, 2s). We prove that gs is not always rigid when (M, g)
is not Riemanniann or Lorentzian manifold. But some very strong conditions are
imposed on (M, g). For example if we impose to (TM, gs) to be locally symmetric,
(M, g) must be reducible and its holonomy algebra hol verifies hol2 = {0}. If we
impose to (TM, gs) to be an Einstein manifold, (M, g) must be reducible, Ricci-flat
and tr(A2) = 0, ∀ A ∈ hol.
We can provide the tangent bundle with another natural metric gn of neutral
signature (see § 4). We determine completely the holonomy algebra of (TM, gn)
according to the one of the basis manifold. the holonomy group of (TM, gn) leaves
invariant the vertical direction witch is totaly isotrope. Hence it is always reducible.
(TM, gn) is not rigid. We prove that it is locally symmetric if and only if (M, g) is
locally symmetric and hol2 = 0. (TM, gn) is an Einstein manifold, if and only if
it is Ricci flat if and only if (M, g) is Ricci flat. Further if (M, g) is a Kählerian
pseudo-Riemannian manifold then (TM, gn) is also a Kählerian pseudo-Riemannian
manifold.
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The classification of indecomposable reducible pseudo-Riemannian manifolds remain
again an open problem, called holonomy problem. The study of (TM, gs) and
(TM, gn) permits to construct examples of indecomposable reducible pseudo-Rie-
mannian manifolds. Hence this paper is a contribution to the resolution of the
holonomy problem. We recall that this problem is only solved in the Lorentzian
case ([5, 20, 8, 9, 17, 19, 24, 25]). The case of neutral signature has been studied
([6, 23]. Even the indecomposable reducible locally symmetric spaces are not yet
classified, with the exception of the case of index ≤ 2 ([13, 14, 12]).

2. Preliminaries

2.1. Results on the Classification of pseudo-Riemannian manifolds. Let
(M, g) be a connected simply connected pseudo-Riemannian manifold of signature
(r, s) (m = r + s). We denote by H its holonomy group at a point p.

Definition 1. (M, g) is called irreducible if its holonomy group H ⊂ O(TpM, gp)
do not leave any proper subspace of TpM . (M, g) is called indecomposable if H do
not leave any non-degenerate proper subspace of TpM .

De Rham-Wu’s splitting theorem reduces the study of complete simply connected
pseudo-Riemannian manifolds to indecomposables ones.

Theorem 1 ([26, 15]). Let (M, g) be a simply connected complete pseudo-Riemann-
ian manifold of signature (r, s). Then (M, g) is isometric to a product eventually of
flat pseudo-Riemannian manifold and of complete simply connected indecomposable
pseudo-Riemannian manifolds.

The irreducible pseudo-Riemannian symmetric spaces were classified by M.
Berger in [4]. The list of possible holonomy groups of irreducible non locally
symmetric pseudo-Riemannian is given by M. Berger and R. L. Bryant in following
theorem

Theorem 2 ([3, 11]). Let (M, g) be a simply connected irreducible non locally
symmetric pseudo-Riemannian manifold of signature (r, s). Then its holonomy
group is (up to conjugacy in O(r, s)) one of the following groups:
SO(r, s), U(r, s), SU(r, s), Sp(r, s), Sp(r, s) · Sp(1), SO(r,C), Sp(p) · SL(2, R),
Sp(p,C) · SL(2,C), Spin(7), Spin(4, 3), Spin(7)C, G2, G∗2(2), GC

2 .

The complete classification of the indecomposable reducible subalgebras h of
so(1, 1 + n) is given by the following theorem.
We consider on Rm (m = n+ 2) the following Lorentzian scalar product defined by

〈(x0, x1, . . . , xn+1), (y0, y1, . . . , yn+1)〉 = x0yn+1 + x0yn+1 −
i=n∑
i=1

xiyi ,

Theorem 3 ([5]). Let h be an indecomposable subalgebra of so(〈, 〉) which leaves
invariant the light-like direction Re0. Then



A CLASS OF PSEUDO-RIEMANNIAN METRICS ON TANGENT BUNDLE 295

A) h is a subalgebra of the following algebra

(
R⊕ so(n)

)
nRn =


a X 0

0 A −tX
0 0 −a

 | a ∈ R, X ∈ Rn, A ∈ so(n)


and
• either h contains N ∼= Rn,
• or, there exist a a nontrivial decomposition n = p + q and Rn = Rp ⊕ Rq, a
nontrivial abelian subalgebra C of so(p) (eventually 0), a semisimple subalgebra D
of so(p), commuting with C and a surjective linear application ϕ : C → Rq such
that, up to conjugacy in (R⊕ so(n))nRn, h is the subalgebra of (R⊕ so(n))nRn,
of the following “block” matrixes


0 X ϕ(A) 0
0 A+B 0 −tX
0 0 0 −tϕ(A)
0 0 0 0

 | A ∈ C, B ∈ D, X ∈ Rp
 .

B) If we denote by G the projection of h on so(n) with respect to R ⊕ N , the
representation of h in Rn is the exterior direct some representation of a trivial
representation(eventually) and r irreducible representation Gi.

The algebras classified in Theorem 3 were all achieved like holonomy algebra of
Lorentzian metrics ([5, 20, 8, 17, 19, 24, 25]).

2.2. The tangent bundle TM. Let (M, g) be a pseudo-Riemannian manifold
and D its Levi-Civita connection. We denote by π : TM →M the tangent bundle.
The subspace V(p,u) = Ker(dπ|(p,u)) is called the vertical subspace of T(p,u)TM
at (p, u). The connection application is the application K(p,u) : T(p,u)TM → TpM
defined by

K(p,u)(dZp(Xp)) = (DXZ)p ,
where Z ∈ X(M) and Xp ∈ TpM . The horizontal space H(p,u) at (p, u) is defined
by

H(p,u) = Ker(K(p,u)) .
The tangent space T(p,u)TM of tangent bundle TM at (p, u) is the direct some of
its horizontal space and its vertical space:

T(p,u)TM = H(p,u) ⊕ V(p,u) .

If X ∈ X(M), we denote by Xh (and Xv, respectively) the horizontal lift (and the
vertical lift, respectively) of X to TM . A curve γ̃ : I → TM, t 7→ (γ(t), U(t)) is a
horizontal curve if the vector field U(t) is parallel along the curve γ = π ◦ γ̃.

Theorem 4 ([16]). Let (M, g) be a pseudo-Riemannian manifold, D be the
Levi-Civita connexion and R be the curvature tensor of D. Then the Lie bra-
cket on the tangent bundle TM of M satisfies the following:
i) [Xv, Y v] = 0,
ii) [Xh, Y v] = (DXY )v,
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iii) [Xh, Y h] = ([X,Y ])h − (R(X,Y )u)v.
for all X, Y ∈ X(M) and (p, u) ∈ TM .

3. Sasaki pseudo-Riemannian metric

Definition 2. Let (M, g) be a pseudo-Riemannian manifold of signature (r, s)
(m = r + s). The Sasaki metric gs on the tangent bundle TM is defined by the
following relations

gs(p,u)(Xh, Y h) = gs(p,u)(Xv, Y v) = gp(X,Y )

gs(p,u)(Xh, Y v) = 0 ,

for X, Y ∈ X(M).

We notice that the signature of gs is (2r, 2s). With the same computations that
in the Riemannian case The Levi-Civita connection associated to gs is given by

Proposition 1 ([22]). If we denote by Ds the Levi-Civita connection of (TM, gs).
Then

(Ds
XhY

h)(p,u) = (DXY )h(p,u) −
1
2(Rp(X,Y )u)v

(Ds
XhY

v)(p,u) = (DXY )v(p,u) + 1
2(Rp(u, Y )X)h

(Ds
XvY

h)(p,u) = 1
2(Rp(u,X)Y )h

(Ds
XvY

v)(p,u) = 0

Proposition 2 ([22]). The curvature Rs of (TM, gs) is given by the following
formulas

1) Rs(p,u)(Xv, Y v)Zv = 0

2) Rs(p,u)(Xv, Y v)Zh =
(

(R(X,Y )Z+ 1
4R(u,X)(R(u, Y )Z)− 1

4R(u, Y )(R(u,X)Z)
)h

3) Rs(p,u)(Xh, Y v)Zv = −
(1

2R(Y,Z)X + 1
4R(u, Y )(R(u, Z)X)

)h
4) Rs(p,u)(Xh, Y v)Zh =

(1
4R(R(u, Y )Z,X)u+ 1

2R(X,Z)Y )v + 1
2((DXR)(u, Y )Z

)h
5) Rs(p,u)(Xh, Y h)Zv =

(
R(X,Y )Z + 1

4R(R(u, Z)Y,X)u− 1
4R(R(u, Z)X,Y )u

)v
+ 1

2 ((DXR)(u, Z)Y − (DYR)(u, Z)X)h

6) Rs(p,u)(Xh, Y h)Zh = 1
2 ((DZR)(X,Y )u)v +

(
R(X,Y )Z + 1

4R(u,R(Z, Y )u)X

+ 1
4R(u,R(X,Z)u)Y + 1

2R(u,R(X,Y )u)Z
)h
,

for X, Y , Z ∈ X(M).
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3.1. Holonomy group of (TM, gs). Let (M, g) be a pseudo-Riemannian manifold
and (TM, gs) its tangent bundle provided with the Sasaki metric. Let γ be a
C1-piecewise path starting from p in M , its horizontal lift at (p, 0) is Γ: t→ (γ(t), 0).
According to Proposition 1, we obtain

Ds
Γ̇(t)X

h = (Dγ̇(t)X)h

Ds
Γ̇(t)X

v = (Dγ̇(t)X)v

for X vector field along γ. Hence, the parallel transport along Γ satisfies

(1)
τsΓ(Xh) =

(
τγ(X)

)h
τsΓ(Xv) =

(
τγ(X)

)v
Then the holonomy group Hs of (TM, gs) at (p, 0) contains the subgroup{(A 0

0 A

)
, A ∈ H

}
, where H is the holonomy group of (M, g) at p.

Theorem 5. Let (M, g) be a pseudo-Riemannian manifold and (TM, gs) its tangent
bundle provided with the Sasaki metric. Let Hs (respectively H) the holonomy group
of (TM, gs) at (p, 0) (respectively of (M, g) at p). Then
1) Hs contains the subgroup:

H ×H =
{(

A 0
0 B

)
;A,B ∈ H

}
.

2) The holonomy algebra hols of (TM, gs) at (p, 0) contains the set{
R̄sγ(X,Y ) :=

(
0 −R̄γ(Y,X)

R̄γ(X,Y ) 0

)
;X,Y ∈ TpM and γ ∈ Cp

}
,

where
R̄γ(X,Y )(Z) = τ−1

γ

(
R(τγ(X), τγ(Z))(τγ(Y ))

)
and Cp the set of the C1-piecewise paths starting from p.

Proof. According to the decomposition T(p,0)TM = H(p,0) ⊕ V(p,0) and from Pro-
position 2 we have:

Rs(Xv, Y v) =
(
R(X,Y ) 0

0 0

)
Rs(Xh, Y h) =

(
R(X,Y ) 0

0 R(X,Y )

)
and Rs(Xh, Y v) = 1

2

(
0 −R(Y,X)

R(X,Y ) 0

)
, with R̄(X,Y )(Z) = R(X,Z)(Y ) .

(1) implies that

τ−1
Γ
(
Rs(τΓ(Xv), τΓ(Y v))(τΓ(Zh))

)
= τ−1

Γ
(
Rs((τγ(X))v, (τγ(Y ))v((τγ(Z))h)

)
= τ−1

Γ (Rs(τγ(X), τγ(Y )(τγ(Z)))h

=
(
τ−1
γ (R(τγ(X), τγ(Y ))(τγ)(Z))

)h
.
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By Ambrose-Singer Theorem ([2]), we deduces 1).
In the same way, according to (1) and Proposition 2, we have

τ−1
Γ
(
Rs(τΓ(Xh), τΓ(Y v))(τΓ(Zh))

)
= 1

2
(
τ−1
γ (R(τγ(X), τγ(Y ))(τγ)(Z))

)v
and

τ−1
Γ
(
Rs(τΓ(Xh), τΓ(Y v))(τΓ(Zv))

)
= −1

2
(
τ−1
γ (R(τγ(Y ), τγ(X))(τγ)(Z))

)h
Hence we obtain 2). �

Corollary 1. (TM, gs) is flat if and only if (M, g) is flat.

Proof.
a) It is easy to see that the curvature Rs = 0 if R = 0. Conversely, if hols = {0},
according to Theorem 5, we get hol = {0}. �

Theorem 6. Let (M, g) be a connected, simply connected pseudo-Riemannian
manifold.
1) If (M, g) is decomposable then (TM, gs) is decomposable.
2) If (TM, gs) is reducible then (M, g) is reducible.
In particular, if (M, g) is a Riemannian manifold, then (TM, gs) is irreducible if
and only if (M, g) is irreducible.

Proof.
1) If (M, g) is decomposable, i.e. (M, g) = (M1, g1)× (M2, g2), then

(TM, gs) = (TM1, g
s
1)× (TM2, g

s
2) .

2) If (TM, gs) is reducible, then its holonomy group Hs at (p, 0) leaves invariant
a proper subspace E1 of T(p,0)TM and its orthogonal E2 = E⊥1 , i.e. T(p,0)TM =
E1 ⊕E2. We suppose that dimE1 ≥ m and dimE2 ≤ m. We denote by V ≡ V(p,0)
and H ≡ H(p,0). We will distinguish three cases
• if {0}  E1 ∩H  H, according to Theorem 5, we have(

A 0
0 0

)
(E1 ∩H) ⊂ E1 ∩H

for all A ∈ hol. Consequently E1 ∩H is hol-invariant. Then (M, g) is reducible.
• If {0} = E1 ∩H, hence T(p,0)TM = E1 ⊕H. According to Theorem 5, we have
for A ∈ hol that (

0 0
0 A

)
H = 0

(
0 0
0 A

)
E1 ⊂ E1 ∩ V

then hol(T(p,0)TM) ⊂ E1 ∩ V. We distinguish two cases
? if E1 ∩ V = 0, then hol = 0 and (M, g) is reducible.
? If E1 ∩ V 6= {0} (

0 0
0 A

)
(E1 ∩ V) ⊂ E1 ∩ V
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for all A ∈ hol. Hence E1 ∩ V is hol-invariant. Then (M, g) is reducible.
• If E1 ∩H = H, then H ⊂ E1 and

Rs(Xh, Y v)(H) ⊂ E1 ∩ V .
∗ If E1 ∩ V = 0, then Rs(Xh, Y v)H ⊂ V∩E1 = {0}. Hence R = 0 and (M, g) is
reducible.
∗ If E1 ∩ V 6= 0, its is stable by hol, then (M, g) is reducible. �

3.2. Geometric structure on TM. In this section, we found conditions on
the base manifold (M, g) under which (TM, gs) is locally symmetric, Einstein or
Kählerian manifold.

3.2.1. Symmetry on TM.

Proposition 3. Let (M, g) be a pseudo-Riemannian manifold. Then (TM, gs) is
locally symmetric if and only if (M, g) is locally symmetric and hol ◦ hol = 0, where
hol is the holonomy algebra of (M, g).

Proof. According to the holonomy principle ([7, Ch. 10]), (TM, gs) is locally
symmetric if and only if its holonomy group Hs preserves the curvature Rs:
A◦Rs(X∗, Y ∗) = Rs(AX∗, AY ∗)◦A , ∀ A ∈ Hs , and ∀ X∗, Y ∗ ∈ T(p,u)TM .

In term of holonomy algebra, it is equivalent to: ∀ A ∈ hols, and ∀ X∗, Y ∗ ∈
T(p,u)TM

(2) [A,R(X∗, Y ∗)] = R(AX∗, Y ∗) +R(X∗, AY ∗) ,

For A =
(
A 0
0 B

)
with A, B ∈ hol and R(X∗, Y ∗) = R(Xv, Y v), (2) implies{

[B,R(X,Y )] = 0 ,
[A,R(X,Y )] = R(AX,Y ) +R(X,AY ) .

Then hol is commutative and (M, g) is locally symmetric. For A = Rs(Zh, T v) and
R(X∗, Y ∗) = R(Xh, Y h), (2) implies

BC −DA = R(AX,Y ) +R(X,BY ) = 0 ,(3)
CB −AD = R(BX,Y ) ,(4)

where A = R(T,Z), B = −R(Z, T ), C = R(X,Y ) and D = −R(Y,X).
If we replace in (4), X by Y and Z by T , we obtain BC −DA = R(AX,Y ). Then
(3) implies

R(X,BY ) = R(X,R(T, Y )Z) = 0 , ∀ X,Y, Z, T ∈ TpM .

Hence
(5) R(X,Y ) ◦R(Z, T ) = 0 , ∀ X,Y, Z, T ∈ TpM .

Because the holonomy algebra of locally symmetric space is only generated by the
curvature, (5) is equivalent to hol ◦ hol = 0. Conversely, if we have (5), and (M, g)
is locally symmetric, by a direct computation we get (2). �
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Corollary 2. Let (M, g) be a non-flat pseudo-Riemannian locally symmetric space
of dimension m ≥ 2 satisfying hol ◦ hol = 0. Then
a) (M, g) is reducible.
b) The index of g is ≥ 2.

Proof.
a) If (M, g) is supposed irreducible, the condition hol ◦ hol = 0 implies hol = 0.
b) If (M, g) is Riemannian, according to De Rham-Wu’s Theorem , we can suppose
that it is irreducible. Then by a) we deduce a contradiction.
Now if (M, g) is Lorentzian, according to a) we can suppose that hol leaves invariant
a light-like line. Then

hol ⊂ (R⊕ so(m− 2))nRm−2 =
{a tX 0

0 A X
0 0 −a

 ; a ∈ R, X ∈ Rm−2,

A ∈ so(m− 2)
}
.

However if the square of such an element of hol is null, it is necessarily null.
Impossible. �

As concerns explicit examples for Corollary 2, see more details in Example 1 at
the end of Subsection 3.2.2.

3.2.2. Einstein structure on TM. Let (M, g) be a pseudo-Riemannian manifold and
{e, . . . , em} an orthonormal basis of TpM , then the family {eh1 , . . . , ehm, ev1, . . . , evm}
is an orthonormal basis of T(p,u)TM . And hence the Ricci curvature of (TM, gs) is
given by the following formula

Rics(p,u)(X∗, Y ∗) =
i=m∑
i=1

εi g
s(Rs(X∗, ehi )Y ∗, ehi ) +

i=m∑
i=1

εi g
s(Rs(X∗, evi )Y ∗, evi )

where

εi = gs(ehi , ehi ) = gs(evi , evi ) = gs(ei, ei) = ±1 .

According to Proposition 2, we have

Rics(p,u)(Xh, Y h) =
i=m∑
i=1

εi g
s(Rs(Xh, ehi )Y h, ehi ) +

i=m∑
i=1

εig
s(Rs(Xh, evi )Y h, evi )

= Ric(X,Y ) + 3
4

i=m∑
i=1

εi g(R(X, ei)u,R(Y, ei)u) .(6)
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Rics(p,u)(Xh, Y v) =
i=m∑
i=1

εig
s(Rs(Xh, ehi )Y v, ehi ) +

i=m∑
i=1

εi g
s(Rs(Xh, evi )Y v, evi )

= 1
2

i=m∑
i=1

εig((DXR)(u, Y )ei, ei)−
i=m∑
i=1

εi g((DeiR)(u, Y )X, ei)

= 1
2

i=m∑
i=1

εig((DXR)(ei, ei)u, Y )− δR(u, Y )X = −δR(u, Y )X .(7)

Rics(p,u)(Xv, Y v) =
i=m∑
i=1

εig
s(Rs(Xv, ehi )Y v, ehi ) +

i=m∑
i=1

εi g
s(Rs(Xv, evi )Y v, evi )

= 1
2

i=m∑
i=1

εig(R(X,Y )ei, ei) + 1
4

i=m∑
i=1

εi g(R(u,X)R(u, Y )ei, ei)

= 1
2

i=m∑
i=1

εig(R(ei, ei)X,Y ) + 1
4 trace

(
R(u,X)R(u, Y )

)
= 1

4 trace
(
R(u,X)R(u, Y )

)
.(8)

Proposition 4. Let (M, g) be a pseudo-Riemannian manifold. If (TM, gs) is
Einstein, then it is Ricci-flat. And (TM, gs) is Ricci-flat if and only if (M, g)
satisfies the following conditions:
a) (M, g) is Ricci-flat,
b) traceA2 = 0, for all A ∈ hol,
c) (M, g) admits a harmonic curvature:

δR(X,Y )Z =
i=m∑
i=1

εi g(DeiR(X,Y )Z, ei) = 0 , ∀ X,Y, Z ∈ X(M) ,

d)
i=m∑
i=1

εi g(R(X, ei)Z,R(Y, ei)Z) = 0, ∀ X,Y, Z ∈ X(M).

Proof. Let us suppose that the metric gs is λ-Einstein then
Ric(p,u)(X∗, Y ∗) = λ gs(p,u)(X∗, Y ∗), ∀ X∗, Y ∗ ∈ X(M), and ∀ (p, u) ∈ TM .

If we take u = 0 in (6) and then in (4), we obtain λ = 0. Then (M, g) is Ricci-flat.
Consequently (TM, gs) is Ricci-flat.
Hence from (4)–(6), we obtain the conditions a)-d). Conversely, if we have the
conditions a)-d), it is easy to see that (TM, gs) i Ricci-flat. �

Corollary 3. Let (M, g) be a non flat pseudo-Riemannian manifold such that
(TM, gs) is Einstein. Then
i) (M, g) is reducible or locally symmetric.
ii) The index of g is ≥ 2.
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Proof.
i) If (M, g) is irreducible and non locally symmetric, then its holonomy algebra is
one of algebras of Berger’s list (Theorem 2). But no algebra of this list verifies the
condition b) of Proposition 4.
ii) Now, if (M, g) is Lorentzian. According to De Rham-Wu’s Theorem, we can
suppose that it is indecomposable.
If it is irreductible, it is well known that hol = so(1, n+ 1), where m = n+ 2. But
according to the condition b) of Proposition 4 it is impossible.
If (M, g) is indecomposable-reducible, we use the following lemma. �

Lemma 1 ([18]). Let (M, g) be a Lorentzian indecomposable reducible non Ricci-flat
manifold of signature (1, 1 + n). Then
(α) either hol = (R ⊕ G) n Rm, where G ⊂ so(n) is a holonomy algebra of a
Riemanian metric and in the decomposition of G ⊂ so(n) at least one subalgebra
Gi ⊂ so(ni) coincide with one of algebras so(ni), u(ni), sp(ni4 ) ⊕ sp(1) or with a
symmetric Berger algebra.
(β) or hol = GnRm and in the decomposition of G ⊂ so(n) each algebra Gi ⊂ so(ni)
coincide with one of algebras so(ni), su(ni), sp(ni4 ), G2 ⊂ so(7), spin(7) ⊂ so(8).

The condition b) of Proposition 4, impose that hol cannot be of type (α) of
Lemma 1. Now, if hol is of type (β), the same condition b) implies that G = 0.
Impossible.

Example 1. Let (M, g) be a simply connected pseudo-Riemannian locally sym-
metric space of signature (2, 2) with holonomy group

A =
{(I2 aJ

0 I2

)
, a ∈ R

}
, where J =

(
0 1
−1 0

)
.

Its satisfies the conditions of Propositions 3 and 4. Then (TM, gs) is an Einstein lo-
cally symmetric space of signature (4, 4). The simply connected pseudo-Riemannian
locally symmetric spaces of signature (2, 2) with holonomy group A are given in
([6]).

3.2.3. Kählerian structure on TM. Let (M, g) be a pseudo-Riemannian manifold.
Let J be the natural almost complex structure definite on TM by

J̄(Xh) = Xv and J̄(Xv) = −Xh .

It is easy to see that (TM, gs, J̄) is almost Hermitian:

gs(J̄X∗, J̄Y ∗) = gs(X∗, Y ∗) , ∀ X∗, Y ∗ ∈ X(M)

Proposition 5. If (TM, gs, J̄) is Kählerian, then it is flat.

Proof. We suppose (TM, gs, J) is Kählerian. According to the holonomy principle,
the tensor J̄ at (p, 0) commute with the curvature and in particular, we have:

J̄ ◦Rs(Xh, Y v) = Rs(Xh, Y v) ◦ J̄ , ∀ X,Y ∈ TpM) .

This implies R(X,Z)Y = R(Y, Z)X, ∀ X,Y, Z ∈ TpM). Hence R = 0. �
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Now, we suppose that (M, g, J) is a Kählerian pseudo-Riemannian manifold and
we consider the almost complex structure J̃ defined on TM by

J̃(Xh) = (JX)v , J̃(Xv) = (JX)h .

(TM, gs, J̃) is an almost Hermitian manifold.

Proposition 6. If (TM, gs, J̃) is Kählerian, then it is flat.

Proof. We suppose (TM, gs, J̃) is Kählerian. According to the holonomy principle,
the tensor J̃ at (p, 0) commute with the curvature and in particular, we have:

J̃ ◦Rs(Xh, Y v) = Rs(Xh, Y v) ◦ J̃ , ∀ X,Y ∈ TpM .

This implies J ◦R(X,Y ) = −R(Y,X) ◦ J , ∀ X,Y ∈ TpM . Then,
R(X,JX)X = 0, ∀ X ∈ TpM . Hence, according to ([21, p. 166]), we get R = 0. �

4. Neutral metric

Definition 3. Let (M, g) be a pseudo-Riemannian manifold of dimension m with
signature (r, s). The neutral metric gn of g on TM is defined by

gn(p,u)(Xh, Y h) = gn(p,u)(Xv, Y v) = 0

gn(p,u)(Xv, Y h) = gp(X,Y ) ,

for X,Y ∈ X(M).

gn is of neutral signature (m,m).
By a simple computation, we obtain

Proposition 7. If we denote by Dn the Levi-Civita connection of (TM, gn) then

(Dn
XhY

h)(p,u) = (DXY )h(p,u) + (Rp(u,X)Y )v

(Dn
XhY

v)(p,u) = (DXY )v(p,u)

(Dn
XvY

h)(p,u) = 0
(Dn

XvY
v)(p,u) = 0

Proposition 8. If we denote by Rn the tensorial curvature of (TM, gn). Then we
have the following formulas:

Rn(p,u)(Xv, Y v)Zv = 0

Rn(p,u)(Xv, Y v)Zh = 0

Rn(p,u)(Xh, Y v)Zv = 0

Rn(p,u)(Xh, Y v)Zh = (R(X,Y )Z)v

Rn(p,u)(Xh, Y h)Zv = (R(X,Y )Z)v

Rn(p,u)(Xh, Y h)Zh = (Rx(X,Y )Z)h + ((DXR)p(u, Y )Z − (DYR)p(u,X)Z)v

for X,Y, Z ∈ X(M).
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4.1. Holonomy group.

Proposition 9. a) The holonomy group H of (M, g) is a subgroup of the holonomy
group Hn of (TM, gn):

H ≡
{(A 0

0 A

)
; A ∈ H

}
⊂ Hn .

b) According to the decomposition R2n = T(p,0TM = V(p,0 ⊕H(p,0, the holonomy
algebra holn of (TM, gn) is exactly the algebra{(A B

0 A

)
; A,B ∈ hol

}
,

where hol is the holonomy algebra of (M, g).

Proof. Let γ be a C1-piecewise path starting from p in M , its horizontal lift at
(p, 0) is Γ: t→ (γ(t), 0). According to Proposition 7, we have

Dn
Γ̇(t)X

h = (Dγ̇(t)X)h

Dn
Γ̇(t)X

v = (Dγ̇(t)X)v

for X vector field along γ. Consequently, if γ is a loop at p, the parallel transport
along Γ is given by:

τsΓ(Xh) = (τγ(X))h and τsΓ(Xv) = (τγ(X))v .

Hence we have a). Moreover, According to Proposition 8, we have

Rs(Xh, Y v)Zh = (R(X,Y )Z)v and Rs(Xh, Y v)Zv = 0 .

Then

τ−1
Γ
(
Rn(τΓ(Xh), τΓ(Y v))(τΓ(Zh))

)
= τ−1

Γ
(
Rn((τγ(X))h, (τγ(Y ))v((τγ(Z))h)

)
= τ−1

Γ (Rn(τγ(X), τγ(Y )(τγ(Z)))v

=
(
τ−1
γ (R(τγ(X), τγ(Y ))(τγ(Z))

)v
.

In the same way, we have

τ−1
Γ (Rn(τΓ(Xh), τΓ(Y v))(τΓ(Zv))) = 0 .

Then we get {(A B
0 A

)
; A,B ∈ hol

}
⊂ holn .

However the definition of gn from g and the Proposition 7 imply b). �

Proposition 10. If (M, g) is irreducible then (TM, gn) is indecomposable. The
reciprocal is true if g is a Riemannian metric.

Proof. First we notice that if hol is irreducible E := {AX,A ∈ hol, X ∈ Rm} =
Rm. Indeed, E is hol-invariant, then E = 0 or E = R2m. But hol is non tri-
vial, hence E = R2m. Now, let F be a non-degenerate proper subspace of R2m

holn-invariant, then its projections Fi, (i = 1, 2) on Rm are hol-invariant. Since hol
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is irreducible Fi = 0 or Fi = Rm. F is non-degenerate then Fi = Rm. holn contains{(0 A
0 0

)
, A ∈ H

}
, then F contains the subspace{
(AX, 0); A ∈ hol, X ∈ Rm

}
= Rm × {0}.

Hence F = R2m. Consequently holn is indecomposable. �

Remark 1. According to Proposition 9, the vertical direction V(p,0) is holn− inva-
riant witch is totaly isotrope. Consequently, we get a class of indecomposable-reducible
manifolds (TM, gn) once the base manifold (M, g) is irreducible.

4.2. Geometric consequences.

4.2.1. Symmetry on (TM, gn).

Proposition 11. (TM, gn) is locally symmetric if and only if (M, g) is locally
symmetric and hol ◦ hol = 0.

Proof. For the proof we need the following lemma.

Lemma 2. Let (M, g) be a pseudo-Riemannian manifold. the covariant derivatives
of the tensor curvature Rn are given by the following formulas

1) (Dn
WhR

n
(p,u))(Xh, Y h)Zh = ((DWR)p(X,Y )Z)h + ((DWDXR)p(u, Y )Z

− (DWDYR)p(u,X)Z)v − ((DuDWR)p(Y,X)Z
+ (DWDuR)p(Y,X)Z + (D[u,W ]R)p(Y,X)Z
+ 2Rp(Y,R(u,W )X)Z)v

2) (Dn
WvRn(p,u))(Xh, Y h)Zh = ((DWR)p(X,Y )Z)v

3) (Dn
WhR

n
(p,u))(Xh, Y h)Zv = ((DWR)p(X,Y )Z)v

4) (Dn
WvRn(p,u))(Xh, Y h)Zv = 0

5) (Dn
WhR

n
(p,u))(Xh, Y v)Zh = ((DWR)p(X,Y )Z)v

6) (Dn
WvRn(p,u))(Xh, Y v)Zh = 0

7) (Dn
WhR

n
(p,u))(Xh, Y v)Zv = 0

8) (Dn
WvRn(p,u))(Xh, Y v)Zv = 0

9) (Dn
WhR

n
(p,u))(Xv, Y v)Zh = 0

10) (Dn
WvRn(p,u))(Xv, Y v)Zh = 0

11) (Dn
WhR

n
(p,u))(Xv, Y v)Zv = 0

12) (Dn
WvRn(p,u))(Xv, Y v)Zv = 0 .

We suppose that (TM, gn) is locally symmetric. According to 2) of Lemma 2,
(M, g) is locally symmetric.
By 1) of Lemma 2, we get g(R(Y,R(u,W )X)Z, V ) = 0. It is equivalent to

g(R(Z, V )R(u,W )X,Y ) = 0 ,
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then
R(X,Y ) ◦R(Z, V ) = 0 , ∀ X,Y, Z, V ∈ χ(M) .

and since (M, g) is locally symmetric, we have

(9) A ◦B = 0 , ∀ A,B ∈ hol .

Conversly, according to Lemma 2, if we have (9) and (M, g) is locally symmetric,
we get (TM, gn) is locally symmetric. �

4.2.2. Einstein structure on TM. Let {e1, . . . , em} be an orthonormal basis of TpM ,
then the Ricci curvature at (p, u) is

Rics(p,u)(X∗, Y ∗) =
i=m∑
i=1

εig
n(Rn(X∗, ehi )Y ∗, evi ) +

i=m∑
i=1

εig
n(Rn(X∗, evi )Y ∗, ehi )

where

εi = gn(ehi , evi ) = g(ei, ei) = ±1 .

Let’s compute Ricn. We have

(10)
Ricn(Xh, Y h) =

i=m∑
i=1

εig
n(Rn(Xh, ehi )Y h, evi ) +

m∑
i=1

εig
n(Rn(Xh, evi )Y h, ehi )

= 2
m∑
i=1

εig(R(X, ei)Y, ei) = 2 Ric(X,Y ) .

(11)

Ricn(Xv, Y v) =
m∑
i=1

εig
n(Rn(Xv, ehi )Y v, evi )

+
m∑
i=1

εig
n(Rn(Xv, evi )Y v, ehi ) = 0 .

(12)

Ricn(Xv, Y h) =
m∑
i=1

εig
n(Rn(Xv, ehi )Y h, evi )

+
m∑
i=1

εig
n(Rn(Xv, evi )Y h, ehi ) = 0 .

Proposition 12. If (TM, gn) is λ-Einstein, then it is Ricci-flat. Therefore (TM, gn)
is Ricci-flat if and only if (M, g) is Ricci-flat.

Proof. According to (10), if (TM, gn) is Einstein, it is Ricci-flat. According to (8),
we deduce the proposition. �
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4.2.3. Kählerian structure on TM. Let (M, g, J) be a Kählerian pseudo-Riemannian
manifold. Let Jn be the natural almost complex structure definite on TM by

Jn(Xh) = (JX)v and Jn(Xh) = (JX)h .
It is easy to see that (TM, gn, Jn) is an almost Hermitian pseudo-Riemannian
manifold.

Proposition 13. (TM, gn, Jn) is a Kählerian pseudo-Riemannian manifold.

Proof. According to the decomposition R2n = T(p,0TM = V(p,0⊕H(p,0 the tensor

Jn =
(
J 0
0 J

)
at (p, 0) commute with holn since J commute with hol at p. Then

the holonomy principle implies the proposition. �

Remark 2. According to the previous propositions, the tangent bundle can support
some reducible-imdecomposable metrics of neutral signature. Notably Einstein,
Kählerian or Ricci-flat metrics. For example, if Hol(M, g) = U(r, s), (TM, gn) is a
Kählerian pseudo-Riemannian manifold. If Hol(M, g) = SU(r, s), (TM, gn) is an
Einstein Kählerian pseudo-Riemannian manifold.
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