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MAXIMAL SOLVABLE EXTENSIONS
OF FILIFORM ALGEBRAS

Libor Šnobl

Abstract. It is already known that any filiform Lie algebra which possesses
a codimension 2 solvable extension is naturally graded. Here we present an
alternative derivation of this result.

1. Introduction

We present here an alternative derivation of the result of M. Goze and Yu.
Khakimdjanov stating that any filiform Lie algebra which possesses a codimension
2 solvable extension is naturally graded.

Filiform Lie algebras are in a sense least nilpotent of nilpotent Lie algebras.
At the same time they are generic examples of nilpotent algebras – in any given
dimension filiform algebras form an open subset in the variety of all nilpotent
algebras.

Let us recall that the lower central series of a given Lie algebra g = g1 ⊇ g2 ⊇
. . . ⊇ gk ⊇ . . . is defined recursively

(1) g1 = g , gk = [gk−1, g] , k ≥ 2 .

If the lower central series terminates, i.e. there exists k ∈ N such that gk = 0, then
g is called a nilpotent Lie algebra. The largest value of K for which we have gK 6= 0
is the degree of nilpotency of the nilpotent Lie algebra g.

A filiform Lie algebra n is a nilpotent Lie algebra of maximal degree of nilpotency
K = n− 1 such that n = dim n ≥ 4. It immediately follows that dim n/n2 = 2 and
dim nk/nk+1 = 1 for k = 2, . . . , n− 1.

Because the 2-dimensional Abelian algebra and the Heisenberg algebra, i.e.
3-dimensional algebra with the Lie bracket [e2, e3] = e1, have properties markedly
different from filiform algebras, it is convenient to exclude them by definition from
the class of filiform algebras, as we did above.

Properties of filiform nilpotent algebras were investigated in great detail in
[9, 3, 5, 6].
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2. Basic properties of filiform algebras

Let us recall some basic facts about filiform algebras. Their detailed derivation
can be found in [9] or in [6].

The structure of filiform algebras is most transparent in a suitable, so–called
adapted basis. Definitions of such basis used by various authors differ by some minor
variations. We shall use the one given in [9] upon suitable relabeling which brings
it to our chosen structural form (7) below. In such a basis E of an n-dimensional
filiform Lie algebra n we have

(2)

[ek, en] = ek−1 , k = 2, . . . , n− 1 ,
[e1, ej ] = 0 , j = 2, . . . , n ,

[ej , en−j+1] = (−1)jαe1 , j = 2, . . . , n− 1 ,
[ej , ek] = 0 mod n2n−j−k+1 , 3 ≤ j < k ≤ n− 1 , n− 1 < j + k .

(The antisymmetry, nk = span{e1, . . . , en−k}, k ≥ 2 and [gj , gk] ⊆ gj+k are
assumed to hold). By simultaneous rescaling of basis elements e1, . . . , en−1 we can
multiply α by any nonvanishing number; therefore we can assume α = 0, 1 without
loss of generality. Furthermore, α = 1 is possible only when dim n is even.

To any nilpotent Lie algebra one can associate the graded Lie algebra gr(n) of n

gr(n) =
K∑
k=1

nk/nk+1

with the bracket
[x, y]gr = [x, y] mod nk+j+1, ∀x ∈ nk, y ∈ nj

where in [x, y]gr an identification of the equivalence class x ∈ nk/nk+1 with its
representative x ∈ nk was used.

Due to [9], n-dimensional filiform algebras can be divided into two classes
depending on the structure of their graded algebras. One class has

gr(n) = nn,1

where
(3) nn,1 = span{e1, . . . , en} , [ek, en] = ek−1 , k = 2, . . . , n− 1 .
nn,1 is often called model filiform algebra in the literature.

The second class is present only when n is even and has
gr(n) = Qn

where
Qn = span{e1, . . . , en} ,(4)

[ek, en] = ek−1 , [ek, en−k+1] = (−1)ke1 , k = 2 , . . . , n− 1 .
Qn is often called special filiform algebra in the literature.

In Eqs. (3), (4) all commutators not listed explicitly vanish. A notation resembling
the one in [8, 1] was used here, with a minor modification – the index in Qn is
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equal to the dimension of Qn, in [1] it was half of it. These two classes correspond
to two different values of the parameter α in the adapted basis (2).

When the associated graded algebra gr(n) coincides with the nilpotent algebra
n, the algebra n is called naturally graded. Obviously, nn,1 and Qn are the only
naturally graded filiform algebras.

3. Structure of solvable algebras with a given nilradical

In [7] some general results concerning the structure of any solvable Lie algebra s
whose nilradical n is isomorphic to a given nilpotent algebra were given. Let us
briefly review them here.

Let s be a solvable Lie algebra with the nilradical n (we call any such s a solvable
extension of the nilpotent Lie algebra n). Let (e1, . . . , en, f1, . . . , fp) be a basis of s
such that (e1, . . . , en) is a basis of n. Then the adjoint representation of the element
fa restricted to the nilradical n,

Da = ad|n(fa)
defines a nonnilpotent outer derivation of n (were it nilpotent the nilradical would
be larger than n, namely it would contain nuspan{fa}). In fact, the same argument
holds for any linear combination of the derivations Da, i.e. no nonvanishing linear
combination of the derivations Da is nilpotent. We call any such set of derivations
nilindependent.

At the same time, the well–known property
(5) [s, s] ⊆ n

shows that [Da, Db] must be an inner derivation for any 1 ≤ a, b ≤ p.
In [7] a theorem was proven, stating that

Theorem 1. Let n be a nilpotent Lie algebra and s a solvable Lie algebra with the
nilradical n. Let dim n = n, dim s = n+ p. Then p satisfies
(6) p ≤ n− dim n2 .

The main ingredient in its proof which is useful also for considerations in this
paper is the following simple observation.

Let n be a nilpotent Lie algebra. We can write it as a direct sum of subspaces
mj

n = mK u mK−1 u . . .u m1

such that
nj = mj u nj+1 , mj ⊂ [mj−1,m1] .

We denote mj = dim mj .
In the subspaces mj we can find bases Emk = (e

n+1−
∑k

i=1
mi
, . . . , e

n−
∑k−1
i=1

mi
)

such that
(7) ∀ej ∈ Emk ∃yj ∈ Emk−1 , zj ∈ Em1 ej = [yj , zj ] .
Together the elements of the bases Emk form a basis E = (e1, . . . , en) of the whole
nilpotent algebra n. The main advantage of the basis E is that any automorphism
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φ, or any derivation D, is fully specified once its action on the elements of the
basis Em1 of m1 is known. This is an immediate consequence of the definition of
an automorphism φ([x, y]) = [φ(x), φ(y)] or of a derivation D([x, y]) = [D(x), y] +
[x,D(y)], respectively.

In particular this implies that the matrix of any derivation D of n is upper block
triangular

(8) D =


DmKmK . . . DmKm2 DmKm1

. . .
...

...
Dm2m2 Dm2m1

Dm1m1


and the entries in Dmjmk , k ≤ j = 2, . . . ,K are linear functions of entries in the
last column blocks Dm1m1 , . . . , Dmj−k+1m1 .

In addition, a derivation D is nilpotent if and only if its submatrix Dm1m1 is
nilpotent.

Inner derivations have strictly upper triangular block structure because inner
derivations by definition map nk → nk+1. Consequently, any set of outer derivations
{D1, . . . , Df} which commutes to inner derivations, i.e. [Dj , Dk] ∈ Inn(n), must
necessarily have commuting m1m1-blocks,

[(Dj)m1m1 , (Dk)m1m1 ] = 0 .

4. Maximal solvable extensions of filiform algebras

From Theorem 1 we immediately deduce that any solvable algebra with a filiform
n-dimensional nilradical has dimension at most n+ 2. We analyze the conditions
under which a given filiform algebra n possesses an (n+ 2)-dimensional solvable
extension. It was shown in [8, 1] by explicit constructions that this bound is
saturated and the maximal extension by two nonnilpotent elements is unique in
the case of naturally graded filiform nilradicals nn,1 and Qn. On the other hand,
we know that for other classes of filiform algebras, namely for N-graded [2], often
only one nonnilpotent element can be added. In the literature [6] one can find a
proposition stating that nn,1 and Qn are the only filiform algebras which possess
a codimension 2 solvable extension. Here, we provide an alternative derivation of
that result.

We divide our discussion into two cases:

(1) gr(n) ' nn,1, i.e. we have α = 0 in Eq. (2).
Let us assume that we are given n such that its (n + 2)-dimensional solvable

extension exists. That means that we have two nilindependent outer derivations
D1, D2 of n. We consider first their submatrices

(D1)m1m1 =
(
dn−1
n−1 dn−1

n

dnn−1 dnn

)
, (D2)m1m1 =

(
d̃n−1
n−1 d̃n−1

n

d̃nn−1 d̃nn

)
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where m1 = span{en−1, en}. Because α = 0 we have [e2, en−1] = 0 in Eq. (2) and
consequently

0 = D1[e2, en−1] = [D1e2, en−1] + [e2, D1en−1] = 0 + dnn−1[e2, en] = dnn−1e1 ,

i.e. dnn−1 = 0 and similarly d̃nn−1 = 0; the matrices (D1)m1m1 , (D2)m1m1 are up-
per triangular. The nilindependence of D1, D2 implies that by a suitable linear
combination of D1, D2 we can put them into an equivalent form satisfying

(D1)m1m1 =
(

1 dn−1
n

0 0

)
, (D2)m1m1 =

(
0 d̃n−1

n

0 1

)
.

Their commutativity

[(D1)m1m1 , (D2)m1m1 ] = 0

implies d̃n−1
n = −dn−1

n . Finally, a change of basis en → en + dn−1
n en−1 leads to

another adapted basis (2) of n (recall again that α = 0) in which we have

(9) (D1)m1m1 =
(

1 0
0 0

)
, (D2)m1m1 =

(
0 0
0 1

)
.

Eq. (9) fully determines the diagonal part of the derivations D1, D2. Concerning
the off-diagonal part, we firstly add inner derivations to D1, D2 in order to arrive
to their equivalent but simpler forms. In particular, by adding suitable linear
combinations of ade2 , . . . , aden−1 to D1, D2 we can set to zero off-diagonal entries
in the last column

dkn = 0 , d̃kn = 0 , k = 1, . . . , n− 2 .

Similarly, addition of a multiple of aden allows us to set

dn−2
n−1 = 0 , d̃n−2

n−1 = 0 .

The derivations D1, D2 have each n − 3 undetermined parameters left, namely
dkn−1, d̃kn−1, k = 1, . . . , n− 3, respectively. Using

Daek = [Daek+1, en] + [ek+1, Daen] , a ∈ {1, 2} , k = 1, . . . , n− 2
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we find that the matrices of D1, D2 have the upper triangular forms

D1 =



1 0 dn−3 . . . d2 d1 0

1 0
. . . d3 d2 0

. . . . . . . . .
1 0 dn−3 0

1 0 0
1 0

0


,

D2 =



n− 2 0 d̃n−3 . . . d̃2 d̃1 0

n− 3 0
. . . d̃3 d̃2 0

. . . . . . . . .
2 0 d̃n−3 0

1 0 0
0 0

1


.(10)

Taking the commutator [D1, D2] we immediately see that it contains only zeros in
the last column and in its (n− 2, n− 1)-entry – in fact, that was the reason why
we chose the particular modification of D1, D2 by inner derivations in the previous
step. The only inner derivation with these zeros is the vanishing one. Therefore,
we must have

(11) [D1, D2] = 0

by the consequence of Eq. (5).
The condition (11) implies that dk = 0, k = 1, . . . n− 3, i.e.

(12) D1 = diag(1, 1, . . . , 1, 0)

whereas the parameters d̃k in D2 are unconstrained. The existence of a derivation
in the form (12) severely constrains the algebra n. We have D1|n2uspan{en−1} = id,
i.e.

(13) [ei, ek] = D1[ei, ek] = [D1ei, ek] + [ei, D1ek] = 2[ei, ek] ,

leading to [ei, ek] = 0 for all i, k ≤ n−1. That means that the algebra n must be the
model filiform algebra nn,1 whose solvable extensions were classified in [8]. Using
the results contained there, we arrive at the conclusion that its solvable extension by
two nonnilpotent elements is unique and its nonvanishing Lie brackets take the form

(14)

[ek, en] = ek−1 , k = 2, . . . , n− 1 ,
[f1, ej ] = ej , j = 1, . . . , n− 1 ,
[f2, ej ] = (n− j − 1)ej , j = 1, . . . , n− 1 ,
[f2, en] = en .
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(2) n even and gr(n) ' Qn, i.e. we have α = 1 in Eq. (2).
Let us again assume that we are given n such that its (n+2)-dimensional solvable

extension s exists. The center nn−1 = span{e1} of n is also an ideal in s; therefore,
we can consider the factor algebra s̃ = s/nn−1. The solvable algebra s̃ obviously has
an (n− 1)-dimensional filiform nilradical n/nn−1 and two nonnilpotent elements
f1, f2. By assumption n is even, n− 1 is odd, i.e. gr(n/nn−1) = nn−1,1. Using the
results derived above we deduce that the structure of the solvable algebra s̃ is as in
Eq. (14) when written in a suitable basis.

A minor complication arises from a comparison of allowed transformations in s
and s̃. In both we may add to D1, D2 any inner derivation, i.e. conclusions based
on suitable additions of inner derivations can be immediately taken over from s̃ to
s. On the other hand, the transformation en → en + dn−1

n en−1 which brought the
blocks (Da)m1m1 to the form (9) causes a problem. It changes one adapted basis in
s̃ to another (due to α = 0) but such a transformation would spoil the adaptation
of basis in s with its α = 1. Therefore, we can only assume

(15) (D1)m1m1 =
(

1 dn−1
n

0 0

)
, (D2)m1m1 =

(
0 −dn−1

n

0 1

)
in s.

We now attempt to recover as much information as possible about the structure
of n. Any basis Ẽ = (ẽ2, . . . , ẽn) in n/nn−1 respecting

[ẽ3, ẽn−1] = 0, [ẽk, ẽn] = ẽk−1 , k = 3, . . . , n− 2 ,

is adapted. The Lie brackets in the model filiform algebra n/nn−1 expressed in
terms of ẽk take the model form (3)

(16) [ẽk, ẽn] = ẽk−1 , k = 3, . . . , n− 1 , [ẽj , ẽk] = 0 , 2 ≤ j < k ≤ n− 1

because in the model filiform algebra the Lie brackets in an arbitrary adapted basis
have the canonical model form (3).

One such basis is obtained setting ẽk = ek+nn−1. Consequently, the Lie brackets
in n in the adapted basis must have the form

(17)

[ek, en] = ek−1 , k = 2, . . . , n− 1 ,
[e1, ej ] = 0 , j = 2, . . . , n ,

[ej , en−j+1] = (−1)je1 , j = 2, . . . , n− 1 ,
[ej , ek] = 0 mod span{e1} , 3 ≤ j < k ≤ n− 1 , n− 1 < j + k .

This structure is the pre-image of the Lie brackets (16) and also takes into account
the assumption that the basis (e1, . . . , en) is adapted, i.e. that the equation (2)
holds. Let us check what more we can say about the only Lie brackets not yet
completely fixed, i.e. about

(18) [ej , ek] = 0 mod span{e1} , 3 ≤ j < k ≤ n− 1 , n− 1 < j + k .

The Jacobi identity (ej+1, ek, en) implies

(19) [ej , ek] + [ej+1, ek−1] = 0 , 2 ≤ j, k ≤ n− 2 .
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When k + j = n + 1 the relation (19) holds by virtue of [ej , en−j+1] = (−1)je1.
When k + j > n + 1 it implies further restrictions on the structure of the Lie
brackets (18). We consider separately the cases of k + j even and k + j odd.

– k + j even: Let us assume k ≥ j and take k′ = j′ = k+j
2 . Then we have

0 = [ek′ , ek′ ] + [ek′+1, ek′−1] = [ek′+1, ek′−1]

and by repeated use of Eq. (19) we find that

(20) [ej , ek] = 0 , 2 ≤ j < k ≤ n− 1 , k + j even.

– k + j odd: we find that all [ej , ek] with the same k + j are related through

(21) [ej , ek] = (−1)jα 1
2 (j+k−n−1)e1 , 3 ≤ j < k ≤ n− 1 , n+ 1 < j + k

for some parameters α1, α2, . . . , α(n2−2).
To sum up, due to the Jacobi identity the Lie brackets in the adapted basis (17)

necessarily have the form

(22)
[ek, en] = ek−1 , k = 2, . . . , n− 1 ,
[e1, ej ] = 0 , j = 2, . . . , n ,

[ej , en−j+1] = (−1)je1 , j = 2, . . . , n− 1 ,

[ej , ek] = 0 , 3 ≤ j < k ≤ n− 1 , j + k even
[ej , ek] = (−1)jα 1

2 (j+k−n−1)e1 , 4 ≤ j < k ≤ n− 1 , n+ 1 < j + k odd

for some parameters α1, α2, . . . , α(n2−2). We may change the adapted basis (22) by
a transformation

(23)
ẽn−1 = en−1 +

n
2−2∑
j=1

βn
2−j−1e2j+1 ,

ẽn = en , ẽk = [ẽk+1, ẽn] , k = n− 2, . . . , 1 .

which preserves its adaptation but changes the values of the parameters αj . Through
a suitable choice of the parameters βj in the transformation we can set all αj
equal to zero. The easiest way of seeing this is to proceed in steps, using only one
nonvanishing β in each of them. Firstly, we use only β1 6= 0 in the transformation
(23). Setting β1 = −α1

2 we have α̃1 = 0 in the new basis. Proceeding by induction,
assuming that we already have αj = 0, j = 1, . . . , J we use the transformation (23)
with βJ+1 = −αJ+1

2 to eliminate α̃J+1.
We arrive at the conclusion that n is isomorphic to the special filiform algebra

Qn. Its solvable extensions were classified in [1]. Using the results contained there
and converting them to our choice of adapted basis we find that s is isomorphic to
the algebra with the following nonvanishing Lie brackets

(24)
[ek, en] = ek−1 , [ek, en−k+1] = (−1)ke1 , k = 2, . . . , n− 1 ,
[f1, en] = en−1 , [f1, e1] = 2e1 , [f1, ek] = ek , k = 2, . . . , n− 1 ,
[f2, en] = en , [f2, ej ] = (n− j)ej , j = 1, . . . , n− 1 .
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The seemingly anomalous Lie bracket [f1, en] = en−1 is a consequence of Eq. (15),
i.e. of our convention for adapted bases. A more convenient linear combination of
D1, D2 was used instead of D2 to define the action of f2.

We recall that the filiform algebras nn,1 and Qn are called naturally graded
because they coincide with their respective associated graded algebra. We summarize
the results of this section in the following theorem

Theorem 2. Let n be a filiform Lie algebra, not characteristically nilpotent, and
s be a solvable Lie algebra with the nilradical n. Then dim s = dim n + 1 or
dim s = dim n + 2. If dim s = dim n + 2 then n is naturally graded and s is
determined by n up to isomorphism. The two possible forms of s are given in Eq.
(14) and Eq. (24), respectively.

5. Conclusions and comparison with the original proof

We have presented an alternative proof of the statement that the only filiform
algebras which possess a solvable extension of codimension 2 are nn,1 and Qn (up
to isomorphism).

This result was originally obtained in [6] where the the results of [4] were used.
In [4] the maximal external torus of derivations1 and rank2, of an arbitrary filiform
Lie algebra n was found (when nonvanishing). It turned out that only nn,1 and Qn
have rank 2.

Any such torus spanned by Da, a = 1, . . . , rank(n) can be used in order to
construct a solvable extension of n by setting Da = ad|n(fa) and [fa, fb] = 0.
Nevertheless, such construction may not necessarily exhaust all solvable extensions
(and it indeed doesn’t in general) because ad|n(fa) need neither commute nor be
diagonalizable.

Next, in [6] it was shown that the algebra of derivations of any filiform Lie algebra
is solvable. Its Chevalley decomposition into a semidirect sum of the maximal torus
and the nilpotent ideal then allowed to deduce that the codimension of n in any of
its solvable extensions s must be less or equal to the rank of n.

Our derivation here is conceptually different. We avoid here the cumbersome
construction of the maximal torus of an arbitrary filiform algebra. On the other hand,
we rely on the knowledge of the solvable extensions of nn,1 and Qn constructed
in [8, 1] and the ideas employed in [7]. Therefore, our derivation provides an
alternative, hopefully simpler, re-derivation of Goze’s and Khakimdjanov’s original
result.
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plan MSM6840770039 of the Ministry of Education of the Czech Republic and the
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1i.e. maximal commuting set of diagonalizable outer derivations
2i.e. dimension of the external torus of derivations
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