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SECOND ORDER LINEAR q-DIFFERENCE EQUATIONS:

NONOSCILLATION AND ASYMPTOTICS

Pavel Řehák, Brno
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Abstract. The paper can be understood as a completion of the q-Karamata theory along
with a related discussion on the asymptotic behavior of solutions to the linear q-difference
equations. The q-Karamata theory was recently introduced as the theory of regularly
varying like functions on the lattice qN0 := {qk : k ∈ N0} with q > 1. In addition to
recalling the existing concepts of q-regular variation and q-rapid variation we introduce
q-regularly bounded functions and prove many related properties. The q-Karamata theory
is then applied to describe (in an exhaustive way) the asymptotic behavior as t → ∞ of
solutions to the q-difference equation D2qy(t) + p(t)y(qt) = 0, where p : qN0 → R. We
also present the existing and some new criteria of Kneser type which are related to our
subject. A comparison of our results with their continuous counterparts is made. It reveals
interesting differences between the continuous case and the q-case and validates the fact
that q-calculus is a natural setting for the Karamata like theory and provides a powerful
tool in qualitative theory of dynamic equations.

Keywords: regularly varying functions, q-difference equations, asymptotic behavior, os-
cillation

MSC 2010 : 26A12, 39A12, 39A13

1. Introduction

In this paper we work on the q-uniform lattice qN0 := {qk : k ∈ N0} with q >
1 or, possibly, on qZ := {qk : k ∈ Z}. We continue to develop the q-Karamata
theory in which, roughly speaking, for f : qN0 → (0,∞) we study the limit behavior

of f(qt)/f(t) as t → ∞. We recall the recently introduced concepts of q-regular
variation and q-rapid variation ([24], [26]). In addition to this, we prove some of their

new properties and introduce the concept of q-regular boundedness. This theory is
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then applied in the study of asymptotic behavior of solutions to the second order

q-difference equation

(1.1) D2
qy(t) + p(t)y(qt) = 0,

where p : qN0 → R and there is no sign condition on p. We also present Kneser

type criteria (the existing as well as some new ones) for (1.1) which are some-

how related to the asymptotic results. Assembling all our observations we are

able to provide an exhaustive description of asymptotic behavior of solutions to

(1.1) in the framework of the q-Karamata theory. We also offer a comparison

with the results for the continuous counterpart of (1.1), i.e., for the equation y′′ +

p(t)y = 0. We reveal substantial differences between the continuous case and

the (discrete) q-case, so that the q-calculus turns out to be a very “natural envi-

ronment” for the Karamata like theory and its applications in q-difference equa-

tions.

The theory of q-calculus is very extensive with many aspects. One can speak

about different tongues of the q-calculus, see [13]. In our paper we follow essentially

its “time scale dialect”.

The paper is organized as follows. In the next section we recall basic facts

about q-calculus, prove several technical lemmas, present fundamental information

about equation (1.1), and also mention the Karamata theory in the continuous

and the time scale cases. Section 3 is divided into three subsections: q-regular

variation, q-rapid variation, and q-regular boundedness. Also Section 4 is divided

into three subsections, where necessary and sufficient conditions for the existence

of q-regularly varying solutions of (1.1), q-rapidly varying solutions of (1.1), and

q-regularly bounded solutions of (1.1) are (individually) established. In Section 4

we also present the existing and some new Kneser type oscillation and nonoscil-

lation criteria. Some of them come as by-products in the proofs, some of them

are useful in the proofs. In the last section we provide a summary, discuss the

(nonintegral) form of conditions from the penultimate section, show relations with

a certain basic classification of monotone solutions and with recessive and dominant

solutions.

2. Preliminaries

First let us recall several basic facts about q-calculus. For material on this topic see

[2], [11], [15]. See also [7] for the calculus on time scales which in a sense contains the

q-calculus. The q-derivative of a function f : qN0 → R is defined byDqf(t) = [f(qt)−
f(t)]/[(q− 1)t]. Here are some useful rules: Dq(fg)(t) = g(qt)Dqf(t)+ f(t)Dqg(t) =
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f(qt)Dqg(t)+g(t)Dqf(t), Dq(f/g)(t) = [g(t)Dqf(t)−f(t)Dqg(t)]/[g(t)g(qt)], f(qt) =

f(t) + (q− 1)tDqf(t). The definite q-integral of a function f : qN0 → R is defined by

∫ b

a

f(t) dqt =



















(q − 1)
∑

t∈[a,b)∩qN0 tf(t) if a < b,

0 if a = b,

(1 − q)
∑

t∈[b,a)∩qN0 tf(t) if a > b,

a, b ∈ qN0 . For the original Jackson definition of the q-integral see e.g. [2], [11],

[15]. But since we work on the lattice qN0 , we prefer our definition to follow the

definition of the delta integral on time scales, see [7], which however can be derived

from the Jackson one as well. The improper q-integral is defined by
∫

∞

a
f(t) dqt =

lim
b→∞

∫ b

a f(t) dqt. Since the fraction (qa − 1)/(q − 1) appears quite frequently in the

q-calculus, we use the notation

(2.1) [a]q =
qa − 1

q − 1
for a ∈ R.

Note that lim
q→1+

[a]q = a. It follows that Dqt
ϑ = [ϑ]qt

ϑ−1. In view of (2.1), it is

natural to introduce the notation

[∞]q = ∞ and [−∞]q =
1

1 − q
.

For p ∈ R (i.e., for p : qN0 → R satisfying 1 + (q − 1)tp(t) 6= 0 for all t ∈ qN0) and

s, t ∈ qN0 , we denote

ep(t, s) =
∏

u∈[s,t)∩qN0[(q − 1)up(u) + 1] for s < t,

ep(t, s) = 1/ep(s, t) for s > t, and ep(t, t) = 1, where s, t ∈ qN0 . Here are some useful

properties of ep(t, s): For p ∈ R, e(·, a) is a solution of the IVPDqy = p(t)y, y(a) = 1,

t ∈ qN0 . If s ∈ qN0 and p ∈ R+, where R+ = {p ∈ R : 1 + (q− 1)tp(t) > 0 for all t ∈
qN0}, then ep(t, s) > 0 for all t ∈ qN0 . If p, r ∈ R, then ep(t, s)ep(s, u) = ep(t, u)

and ep(t, s)er(t, s) = ep+r+t(q−1)pr(t, s). Note that the solution to the above IVP

can be expressed in terms of some “classical q-symbols”, see e.g. [2], [11], but, as

already said, we may use the time scale dialect, and so we prefer to work simply with

ep(t, s). Intervals having the subscript q denote the intervals in q
N0 , e.g., [a,∞)q =

{a, aq, aq2, . . .} with a ∈ qN0 .

Next we present three auxiliary statements which play important roles in proving

the main results.
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Lemma 2.1. Define the function hq : ([−∞]q,∞) → R by

hq(λ) =
λ− λ2

λ(q − 1) + 1
.

If A ∈ (−∞, (
√
q+1)−2], then the equation A = hq(λ) has two real roots λ1 6 λ2 on

([−∞]q,∞). For these roots we have: λ1 < 0 < λ2 provided A < 0; λ1 = 0, λ2 = 1

provided A = 0; λ1, λ2 > 0 provided A ∈ (0, (
√
q + 1)−2); λ1 = λ2 > 0 provided

A = (
√
q + 1)−2. If, moreover, ϑi = logq[(q − 1)λi + 1], i = 1, 2, then ϑ2 = 1 − ϑ1.

Further, we have: ϑ1 < 0 < 1 < ϑ2 provided A < 0; 0 < ϑ1 < 1/2 < ϑ2 < 1 provided

A ∈ (0, (
√
q + 1)−2); ϑ1 = ϑ2 = 1/2 provided A = (

√
q + 1)−2.

P r o o f. We prove only ϑ2 = 1 − ϑ1. The other statements of the lemma are

obvious. We have

ϑ2 = logq[(q − 1)λ2 + 1] = logq[(q − 1)(A(1 − q) + 1 − λ1) + 1]

= logq [(q − 1) ((1 − q)hq(λ1) + 1 − λ1) + 1]

= logq
q

1 + (q − 1)λ1

= logq q − logq[(q − 1)λ1 + 1]

= 1 − ϑ1.

�

Observe that if q → 1 (which corresponds to the continuous case), then hq(λ) →
λ− λ2.

Lemma 2.2. Define the function F : (0,∞) → R by

F (x) =
x

q
+

1

x
.

Then the function F (x) is convex on (0,∞) with the (global) minimum at x =
√
q;

lim
x→0+

F (x) = lim
x→∞

F (x) = ∞. For ϑ ∈ R, F (qϑ) = F (q1−ϑ). Further, with λ =

[ϑ]q ∈ ([−∞]q,∞), we have

(2.2) F (qϑ) =
q + 1

q
− (q − 1)2

q
hq(λ).

P r o o f. The proof of this lemma is simple, and hence is left to the reader. �
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Lemma 2.3. For y 6= 0 define the operator

L[y](t) =
y(q2t)

qy(qt)
+

y(t)

y(qt)
.

Then equation (1.1) can be written as

(2.3) L[y](t) =
q + 1

q
− (q − 1)2t2p(t)

for y 6= 0. If lim
t→∞

y(qt)/y(t) ∈ (0,∞) exists, then

lim
t→∞

L[y](t) = lim
t→∞

F
(y(qt)

y(t)

)

.

P r o o f. The statement is an easy consequence of the formula for the q-derivative.

�

Next we provide basic information about (1.1). Various aspects of linear q-

difference equations were studied e.g. in [1], [2], [3], [4], [6], [8], [10], [12], [16], [19],

[24], [29]. For related topics see [11], [15], [18], [30] and the references therein. Note

that (1.1) may be viewed as a special case of the linear dynamic equation

(2.4) y∆∆ + p(t)yσ = 0

on a time scale T (a nonempty closed subset of R), studied e.g. in [7]; if T = qN0 , then

(2.4) reduces to (1.1). Recall that an initial value problem involving (1.1) is uniquely

solvable. A solution of (1.1) is said to be nonoscillatory if it is of one sign for large t;

otherwise it is said to be oscillatory. Thanks to the Sturm type separation theorem

(see [7]), equation (1.1) can be classified as oscillatory/nonoscillatory provided one

(hence all) solution(s) is (are) oscillatory/nonoscillatory. Next we recall the concept

of recessive and dominant solutions, see e.g. [7]; in the continuous terminology they

are said to be principal and nonprincipal solutions, respectively. Assume that (1.1)

is nonoscillatory. A solution y of (1.1) is said to be recessive if for any other linearly

independent solution x of (1.1), we have lim
t→∞

y(t)/x(t) = 0. Recessive solutions are

uniquely determined up to a constant factor, and any other linearly independent

solution is called a dominant solution. The following integral characterization holds

(for a solution y of (1.1) positive on [a,∞)q) : y is recessive iff
∫

∞

a 1/(y(s)y(qs)) dqs =

∞; y is dominant iff
∫

∞

a
1/(y(s)y(qs)) dqs <∞.
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We close this section by recalling the concept of regular variation in the classical

case and in the time scale case. A measurable function f : [a,∞) → (0,∞) is said

to be regularly varying (at ∞) of index ϑ, ϑ ∈ R, if it satisfies

(2.5) lim
x→∞

f(λx)

f(x)
= λϑ for all λ > 0;

we write f ∈ RVR(ϑ). If ϑ = 0, then f is said to be slowly varying. Fundamental

properties of regularly varying functions are that relation (2.5) holds uniformly on

each compact λ-set in (0,∞) and f ∈ RVR(ϑ) if and only if it may be written in

the form f(x) = ϕ(x)xϑ exp
{∫ x

a η(s)/s ds
}

, where ϕ and η are measurable with

ϕ(x) → C ∈ (0,∞) and η(x) → 0 as x→ ∞, see e.g. [5], [17]. A measurable function
f : [a,∞) → (0,∞) is said to be rapidly varying (at ∞) of index ∞ or of index −∞
if it satisfies

lim
x→∞

f(λx)

f(x)
=

{

∞ resp. 0 for λ > 1,

0 resp. ∞ for 0 < λ < 1;

we write f ∈ RPVR(∞), resp. f ∈ RPVR(−∞). A measurable function f : [a,∞) →
(0,∞) is said to be regularly bounded (at ∞) if it satisfies

0 < lim inf
x→∞

f(λx)

f(x)
6 lim sup

x→∞

f(λx)

f(x)
<∞ for all λ > 1;

we write f ∈ RBR. Regularly bounded functions are called alsoO-regularly varying in

some literature. For more information on the continuous theory of regular variation

see e.g. [5], [27].

It has turned out, see [25], that it is advisable (or natural and somehow necessary)

to distinguish three cases when studying regular (and rapid) variation on time scales:

(I) The graininess µ of a time scale satisfies µ(t) = o(t) as t → ∞. Then we obtain
a continuous like theory (where this assumption cannot be omitted), see [25] and also

[23]. (II) The graininess satisfies µ(t) = Ct with C > 0. This case agrees with the

setting in this paper. (III) The graininess satisfies neither of the above conditions. In

particular, if the graininess is either “very big” or a “combination of big and small”,

then there is no reasonable theory of regular variation on such a time scale. Recall

that a time scale version of the limit in (2.5) considered in case (I) reads as

lim
x→∞

f(τ(λx))

f(x)
= λϑ,

where τ : R → T is defined as τ(x) = max{s ∈ T : s 6 x}.
There are more reasons for such a categorization; here are some of them: We

need to prove important and typical characterizations of regular variation and this is
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impossible without additional (reasonable) restrictions on the graininess. We want

f(t) = tϑ to be an element of the set of regularly varying functions on a time scale

of index ϑ. In case (II), instead of µ(t) ∼ Ct we prefer to consider its special case,

µ(t) = Ct, in spite of the fact that also µ(t) ∼ Ct allows a reasonable theory. But

the structure formed by µ(t) = Ct turns out to be natural in regular variation and

– since we can use some of its specific properties – it enables us to obtain a powerful

theory (described below) which is useful in applications (e.g., the study of q-difference

equations).

3. q-Karamata theory

In this section we recall the concepts of q-regularly varying functions and q-rapidly

varying functions; we present their known and also some new properties. We intro-

duce the concept of q-regular boundedness and establish fundamental features of

q-regularly bounded functions.

3.1. q-regularly varying functions.

In [24] we introduced the concept of q-regular variation in the following way.

Definition 3.1. A function f : qN0 → (0,∞) is said to be q-regularly varying of

index ϑ, ϑ ∈ R, if there exists a function ω : qN0 → (0,∞) satisfying

(3.1) f(t) ∼ Cω(t), and lim
t→∞

tDqω(t)

ω(t)
= [ϑ]q,

C being a positive constant. If ϑ = 0, then f is said to be q-slowly varying.

The totality of q-regularly varying functions of index ϑ is denoted by RVq(ϑ).

The totality of q-slowly varying functions is denoted by SVq. The definition of
q-regular variation can be seen as the one which is motivated by the definition of

regularly varying sequences, see e.g. [21] and also [9], [14]. But as shown next, thanks

to the structure of qN0 , we are able to find a much simpler (and still equivalent)

characterization which cannot exist in the classical continuous or the discrete case.

Such a simplification is possible since q-regular variation can be characterized in

terms of relations between f(t) and f(qt), which is natural for discrete q-calculus, in

contrast to other settings.

The following proposition summarizes important properties of q-regularly varying

functions.
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Proposition 3.1 [24].

(i) The following statements are equivalent:

• f ∈ RVq(ϑ).

• (“Normality”) A positive f satisfies

(3.2) lim
t→∞

tDqf(t)

f(t)
= [ϑ]q.

• (Simple Karamata type characterization) A positive f satisfies

(3.3) lim
t→∞

f(qt)

f(t)
= qϑ.

• (Representation) A function f has the form f(t) = tϑϕ(t)eψ(t, 1), where

ϕ : qN0 → (0,∞) tends to a positive constant and ψ : qN0 → R satisfies

lim
t→∞

tψ(t) = 0 and ψ ∈ R+. Without loss of generality, the function ϕ can

be replaced by a positive constant.

• (Zygmund type characterization) For a positive f , f(t)/tγ is eventually

increasing for each γ < ϑ and f(t)/tη is eventually decreasing for each

η > ϑ.

• (Karamata type characterization) A positive f satisfies

lim
t→∞

f(τ(λt))

f(t)
= (τ(λ))ϑ for λ > 1,

where τ : [1,∞) → qN0 is defined as τ(x) = max{s ∈ qN0 : s 6 x}.
• f(t) = tϑL(t), where L ∈ SVq.

(ii) (Imbeddability) If f ∈ RVq(ϑ), then R ∈ RV(ϑ), where R : R → R is defined

by R(x) = f(τ(x))(x/τ(x))ϑ for x ∈ [1,∞). Conversely, if R ∈ RV(ϑ), then

f ∈ RVq(ϑ), where f(t) = R(t) for t ∈ qN0 .

(iii) Let f ∈ RVq(ϑ). Then lim
t→∞

log f(t)/ log t = ϑ. This implies that lim
t→∞

f(t) = 0

if ϑ < 0 and lim
t→∞

f(t) = ∞ if ϑ > 0.

(iv) Let f ∈ RVq(ϑ). Then lim
t→∞

f(t)/tϑ−ε = ∞ and lim
t→∞

f(t)/tϑ+ε = 0 for every

ε > 0.

(v) Let f ∈ RVq(ϑ1) and g ∈ RVq(ϑ2). Then f
γ ∈ RVq(γϑ1), fg ∈ RVq(ϑ1 + ϑ2),

and 1/f ∈ RVq(−ϑ1).

(vi) Let f ∈ RVq(ϑ). Then f is decreasing provided ϑ < 0, and it is increasing

provided ϑ > 0. A concave f is increasing. If f ∈ SVq is convex, then it is
decreasing.

1114



We have defined q-regular variation at infinity. If we consider a function f : qZ →
(0,∞), qZ := {qk : k ∈ Z}, then f(t) is said to be q-regularly varying at zero if f(1/t)

is q-regularly varying at infinity. But it is apparent that it is sufficient to develop just

the theory of q-regular variation at infinity. Note that from the continuous theory

or the discrete theory the concept of normalized regular variation is known. Because

of (3.2), there is no need to introduce a normality in the q-calculus case, since every

q-regularly varying function is automatically normalized. For more information on

q-regularly varying functions see [24].

3.2. q-rapidly varying functions.

Looking at the values on the right hand sides of (3.2) and (3.3) it is natural to be

interested in situations where these values attain their extremal values, i.e., [−∞]q

and [∞]q in (3.2) and 0 and∞ in (3.3). This leads to the concept of q-rapid variation,
which was introduced in [26].

Definition 3.2. A function f : qN0 → (0,∞) is said to be q-rapidly varying of

index ∞, or of index −∞ if

(3.4) lim
t→∞

tDqf(t)

f(t)
= [∞]q, or lim

t→∞

tDqf(t)

f(t)
= [−∞]q , respectively.

The totality of q-rapidly varying functions of index ±∞ is denoted byRPVq(±∞).

Similarly to the previous section, we can introduce the concept of q-rapid variation at

zero. As shown in [26], the concept of normalized q-rapid variation is also somehow

irrelevant.

As can be observed from the following relations, in contrast to the continuous

theory and similarly to the case of q-regular variation, the Karamata type definition

is substantially simpler (it requires just one value of the parameter) and, moreover,

for showing the equivalence between different characterizations of q-rapid variation,

we do not need additional assumptions like convexity.

Proposition 3.2.

(i) (Simple characterization) For a function f : qN0 → (0,∞), f ∈ RPVq(∞) or

f ∈ RPVq(−∞), if and only if f satisfies

lim
t→∞

f(qt)

f(t)
= ∞, or lim

t→∞

f(qt)

f(t)
= 0, respectively.

(ii) (Karamata type definition) Let τ be defined as in Proposition 3.1. For a function

f : qN0 → (0,∞), f ∈ RPVq(∞), or f ∈ RPVq(−∞), if and only if f satisfies

(3.5) lim
t→∞

f(τ(λt))

f(t)
= ∞, or lim

t→∞

f(τ(λt))

f(t)
= 0, for every λ ∈ [q,∞),
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which holds if and only if f satisfies

lim
t→∞

f(τ(λt))

f(t)
= 0, or lim

t→∞

f(τ(λt))

f(t)
= ∞, respectively, for every λ ∈ (0, 1).

(iii) We have f ∈ RPVq(∞) if and only if 1/f ∈ RPVq(−∞).

(iv) If f ∈ RPVq(∞), then for each ϑ ∈ [0,∞) the function f(t)/tϑ is eventually

increasing and lim
t→∞

f(t)/tϑ = ∞. If f ∈ RPVq(−∞), then for each ϑ ∈ [0,∞)

the function f(t)tϑ is eventually decreasing and lim
t→∞

f(t)tϑ = 0.

(v) (Imbeddability) Let R : [1,∞) → (0,∞) be defined by R(x) = f(τ(x)) for

x ∈ [1,∞). If R ∈ RPVR(±∞), then f ∈ RPVq(±∞). Conversely, if f ∈
RPVq(±∞), then lim

x→∞

R(λx)/R(x) = ∞ or lim
x→∞

R(λx)/R(x) = 0, respectively

for λ ∈ [q,∞).

(vi) (Representation) (a) We have f ∈ RPVq(∞) if and only if f(t) = ϕ(t)eψ(t, 1),

where ϕ : qN0 → (0,∞) satisfies lim inf
t→∞

ϕ(qt)/ϕ(t) > 0 and ψ : qN0 → R satisfies

lim
t→∞

tψ(t) = ∞ and ψ ∈ R+. Without loss of generality, the function ϕ can be

replaced by a positive constant.

(b) We have f ∈ RPVq(−∞) if and only if f(t) = ϕ(t)eψ(t, 1), where

ϕ : qN0 → (0,∞) satisfies lim sup
t→∞

ϕ(qt)/ϕ(t) < ∞ and ψ : qN0 → R satisfies

lim
t→∞

tψ(t) = [−∞]q and ψ ∈ R+. Without loss of generality, the function ϕ can

be replaced by a positive constant.

(vii) Let f ∈ RPVq(±∞). Then lim
t→∞

ln f(t)/ ln t = ±∞.

P r o o f. Except for (v), (vi), and (vii), the proofs of all parts can be found

in [26].

(v) Let f ∈ RPVq(∞). Then the first condition in (3.5) holds for λ ∈ [q,∞) by

(ii). We have

(3.6) lim
x→∞

R(λx)

R(x)
= lim

x→∞

f(τ(λx))

f(τ(x))
= lim

x→∞

f(τ(λτ(x)))

f(τ(x))
· f(τ(λx))

f(τ(λτ(x)))
.

Since for each λ, x ∈ [1,∞) there are m,n ∈ N0 such that λ ∈ [qm, qm+1) and x ∈
[qn, qn+1), we have λx ∈ [qm+n, qm+n+2), and so either τ(λx) = qm+n = τ(λ)τ(x)

or τ(λx) = qm+n+1 = qτ(λ)τ(x). Further we have τ(λτ(x)) = τ(λ)τ(x). Hence, in

view of (3.6), lim
t→∞

R(λx)/R(x) = ∞ for all λ ∈ [q,∞). Similarly we treat the case

of the index −∞. The proof of the opposite direction is easy. Indeed, if R is rapidly
varying of index ∞, then, in particular, lim

x→∞
R(qx)/R(x) = ∞. Hence,

lim
t→∞

f(qt)

f(t)
= lim

x→∞

f(qτ(x))

f(τ(x))
= lim

x→∞

f(τ(qx))

f(τ(x))
= lim
x→∞

R(qx)

R(x)
= ∞.

Similarly we treat the case of the index −∞.
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(vi) We prove just part (a) since (b) uses very similar arguments. Assume f ∈
RPVq(∞). Then ψ(t) = Dqf(t)/f(t) satisfies lim

t→∞
tψ(t) = ∞. Moreover, the (pos-

itive) f is a solution of the first order equation Dqf(t) = ψ(t)f(t). Such a solution

has the form f(t) = Ceψ(t, 1) with C ∈ (0,∞). We can set ϕ(t) ≡ C. Conversely,

assume f(t) = ϕ(t)eψ(t, 1). Then

f(qt)

f(t)
=
ϕ(qt)

ϕ(t)
· eψ(qt, 1)

eψ(t, 1)
=
ϕ(qt)

ϕ(t)
eψ(qt, t) =

ϕ(qt)

ϕ(t)

(

(q − 1)tψ(t) + 1
)

→ ∞

as t→ ∞. Hence, f ∈ RPV(∞) by (i) of this proposition. The note about replacing

ϕ(t) by a positive constant follows from the fact that the above defined f satisfies the

first condition in (3.4) and, consequently, f(t) = Ceδ(t, 1) with C > 0 and tδ(t) → ∞
as t→ ∞, arguing as in the previous part.
(vii) The representations from item (vi) combined with the use of the q-L’Hospital

rule yield

lim
t→∞

ln f(t)

ln t
= lim

t→∞

ln(C
∏

u∈[1,t)q
[(q − 1)uψ(u) + 1])

ln t

= lim
t→∞

lnC +
∑

u∈[1,t)q
ln[(q − 1)uψ(u) + 1]

ln t

= lim
t→∞

ln[(q − 1)tψ(t) + 1]

ln q
= ±∞

according to whether f ∈ RPV(∞) or f ∈ RPV(−∞), respectively. �

For more information on q-rapidly varying functions see [26].

3.3. q-regularly bounded functions.

The concept of q-regular boundedness can be viewed as a generalization of q-

regular variation in the sense that the limits in (3.2) and in (3.3) may not exist, but

the expressions in them still exhibit a moderate behavior. We prefer to start with

the (simple) definition in terms of f(qt)/f(t). But, as shown later, an (equivalent)

definition in terms of the q-derivative or a Karamata type definition are also possible.

Definition 3.3. A function f : qN0 → (0,∞) is said to be q-regularly bounded if

(3.7) 0 < lim inf
t→∞

f(qt)

f(t)
6 lim sup

t→∞

f(qt)

f(t)
<∞.

The totality of q-regularly bounded functions is denoted by RBq. It is clear that
⋃

ϑ∈R

RVq(ϑ) ⊂ RBq. Similarly to the previous two sections, we can introduce the
q-regular boundedness at zero.

The following concept plays an important role in characterization of q-regular

boundedness.
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Definition 3.4. A function f : qN0 → (0,∞) is said to be almost increasing

[almost decreasing] if there exists an increasing [decreasing] function g : qN0 → (0,∞)

and C,D ∈ (0,∞) such that Cg(t) 6 f(t) 6 Dg(t).

Here is an example of f : qN0 → (0,∞), which is almost increasing but not in-

creasing.

Example 3.1. Consider f(t) = tγ(−1)logq t

with γ ∈ (0,∞). We have

Dqf(t) T 0 iff qγ(−1)logq(qt)
−(−1)logq t

T 1.

With t = qn, n ∈ N0, we get f(t) = qnγ(−1)n

, and so Dqf(t) T 0 iff γ(−1)n T √
q.

From this we easily see that there exist values of γ ∈ (0,∞) for which f is not

eventually monotone. However, since 1/γ 6 γ(−1)n 6 γ, we have g(t)/γ 6 f(t) 6
γg(t), where g(t) = t is increasing. Hence, f is almost increasing.

The following proposition shows that there are several different ways how the

q-regular boundedness can be (equivalently) expressed.

Proposition 3.3. The following statements are equivalent:

(i) f ∈ RBq.
(ii) The function f : qN0 → (0,∞) satisfies

(3.8) [−∞]q < lim inf
t→∞

tDqf(t)

f(t)
6 lim sup

t→∞

tDqf(t)

f(t)
< [∞]q.

(iii) For f : qN0 → (0,∞) there exist γ1, γ2 ∈ R, γ1 < γ2, such that f(t)/tγ1 is

eventually increasing and f(t)/tγ2 is eventually decreasing.

(iv) For f : qN0 → (0,∞) there exist δ1, δ2 ∈ R, δ1 < δ2, such that f(t)/tδ1 is

eventually almost increasing and f(t)/tδ2 is eventually almost decreasing.

(v) (Representation) A function f : qN0 → (0,∞) has the representation

(3.9) f(t) = ϕ(t)eψ(t, 1),

where C1 6 ϕ(t) 6 C2 and D1 6 tψ(t) 6 D2 with some 0 < C1 6 C2 < ∞
and [−∞]q < D1 6 D2 < [∞]q. Without loss of generality, in particular in the

only if part, the function ϕ in (3.9) can be replaced by a positive constant.

(vi) (Karamata type definition) A function f : qN0 → (0,∞) satisfies

(3.10) 0 < lim inf
t→∞

f(τ(λt))

f(t)
6 lim sup

t→∞

f(τ(λt))

f(t)
<∞
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for every λ ∈ [q,∞), where τ is defined as in Proposition 3.1. Without loss of

generality, the validity of (3.10) for every λ ∈ [q,∞) can be replaced by the

validity for every λ ∈ (0, 1).

(vii) A function f : qN0 → (0,∞) satisfies

(3.11) lim sup
t→∞

f(τ(λt))

f(t)
<∞

for every λ ∈ (0,∞). Without loss of generality, the validity of (3.11) for every

λ ∈ (0,∞) can be replaced by the validity for λ = q and λ = 1/q. In all these

cases, the lim sup <∞ in (3.11) can be replaced by the lim inf > 0.

(viii) (Imbeddability) For a function R : [1,∞) → (0,∞) defined by R(x) = f(τ(x))

for x ∈ [1,∞), where f : qN0 → (0,∞), we have R ∈ RBR.

P r o o f. (i) ⇔ (ii): Let f ∈ RBq. Then there exist M1,M2 ∈ (0,∞) such that

M1 6 f(qt)/f(t) 6 M2 for t ∈ qN0 . Set Ni = logqMi, i = 1, 2. Then

tDqf(t)

f(t)
=

1

q − 1

(f(qt)

f(t)
− 1

)

∈
[

[N1]q, [N2]q
]

,

from which (ii) follows. The proof of the opposite implication is similar.

(ii) ⇒ (iii): From (ii) it follows that there exist N1, N2 ∈ R such that [N1]q 6
tDqf(t)/f(t) 6 [N2]q. Take γ1 ∈ R such that γ1 < N1. Then

Dq

(f(t)

tγ1

)

=
Dqf(t)tγ1 − f(t)(qγ1tγ1 − tγ1)/((q − 1)t)

tγ1(qt)γ1

=
Dqf(t) − [γ1]qf(t)/t

(qt)γ1
,

where the numerator of the latter expression is positive provided tDqf(t)/f(t) >

[γ1]q, which however holds. This implies that f(t)/tγ1 increases. Similarly we show

that f(t)/tγ2 with γ2 ∈ (N2,∞) decreases.

(iii) ⇒ (iv): This implication is trivial.
(iv) ⇒ (i): Assume almost monotonicity of f(t)/tδi , i = 1, 2. Then there exist

Ai, Bi ∈ (0,∞), i = 1, 2, an increasing function g1 : qN0 → (0,∞), and a decreasing

function g2 : qN0 → (0,∞) such that

Aigi(t) 6 f(t)

tδi
6 Bigi(t), i = 1, 2.

Hence,
f(t)

tγ1
6 B1g1(t) 6 B1g1(qt) =

B1

A1
A1g1(qt) 6 B1f(qt)

A1(qt)γ1
,
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which implies f(qt)/f(t) > qγ1A1/B1. Similarly we obtain f(qt)/f(t) 6 qγ2B2/A2,

and thus f ∈ RBq.
(ii) ⇒ (v): Assume f ∈ RBq. Then ψ(t) = Dqf(t)/f(t) satisfies [−∞]q < D1 6

tψ(t) 6 D2 < [∞]q. Moreover, the (positive) f is a solution of the first order equation

Dqf(t) = ψ(t)f(t). Such a solution has the form

(3.12) f(t) = Ceψ(t, 1)

with C ∈ (0,∞). Note that (q − 1)tψ(t) + 1 > (q − 1)D1 + 1 > 0.

(v) ⇒ (i): Assume f(t) = ϕ(t)eψ(t, 1). Then

f(qt)

f(t)
=
ϕ(qt)

ϕ(t)
· eψ(qt, 1)

eψ(t, 1)
=
ϕ(qt)

ϕ(t)
eψ(qt, t) =

ϕ(qt)

ϕ(t)

(

(q − 1)tψ(t) + 1
)

∈ [M1,M2]

for large t, with some M1,M2 ∈ (0,∞), M1 6 M2. The existence of such M1,M2

follows from the inequalities 0 < C1 6 ϕ(t) 6 C1 <∞ and 1/(1− q) < D1 6 tψ(t) 6
D2 <∞. The note about replacing ϕ(t) by a positive constant follows from the fact

that the above defined f satisfies also (3.8) and, consequently, (3.12).

(i) ⇔ (vi): Let f ∈ RBq and let m ∈ N be such that λ ∈ [qm, qm+1). Then

(3.13)
f(τ(λt))

f(t)
=
f(qmt)

f(t)
=

f(qmt)

f(qm−1t)
· . . . · f(qt)

f(t)
.

Hence,

lim sup
t→∞

f(τ(λt))

f(t)
6 lim sup

t→∞

f(qmt)

f(qm−1t)
· . . . · lim sup

t→∞

f(qt)

f(t)
<∞.

Similarly we prove the first inequality in (3.10) for λ ∈ [q,∞). The validity of (3.10)

for λ ∈ (0, 1) then easily follows. The opposite implication is trivial.

(i) ⇔ (vii): The proof is easy. We use the fact that lim sup
t→∞

f(t/q)/f(t) < ∞ if

and only if lim inf
t→∞

f(qt)/f(t) > 0 and further we utilize the equivalence (i) ⇔ (vi).
(vi) ⇒ (viii): Assume (3.10) for λ ∈ [1,∞). We have

(3.14) lim sup
x→∞

R(λx)

R(x)
= lim sup

x→∞

f(τ(λx))

f(τ(x))

= lim sup
x→∞

f(τ(λτ(x)))

f(τ(x))
· f(τ(λx))

f(τ(λτ(x)))

6 M lim sup
x→∞

f(τ(λx))

f(τ(λτ(x)))

for some M > 0. As in the proof of (v) of Proposition 3.2 we get that for each

λ, x ∈ [1,∞) either τ(λx) = τ(λ)τ(x) or τ(λx) = qτ(λ)τ(x). Further we have
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τ(λτ(x)) = τ(λ)τ(x). Hence, in view of (3.14), there exists N ∈ (0,∞) such

that lim sup
x→∞

R(λx)/R(x) 6 N for λ ∈ [1,∞). Similarly we obtain the inequality

lim sup
x→∞

R(λx)/R(x) <∞ for λ ∈ (0, 1). Hence R is regularly bounded.

(viii) ⇒ (i): If the function R : R → R is regularly bounded, then, in particular,

lim sup
x→∞

R(qx)/R(x) <∞. Hence,

lim sup
t→∞

f(qt)

f(t)
= lim sup

x→∞

f(qτ(x))

f(τ(x))
= lim sup

x→∞

f(τ(qx))

f(τ(x))
= lim sup

x→∞

R(qx)

R(x)
<∞.

Similarly we prove lim inf
t→∞

f(qt)/f(t) > 0. �

Remark 3.1. In some literature concerning the theory of regularly varying func-

tions of a real variable, the concept of the normalized regular boudnedness is intro-

duced. In q-calculus, immediately from the definition we obtain: If f = ϕg, where

0 < C1 6 ϕ(t) 6 C2 < ∞ and g ∈ RBq, then f satisfies (3.7), (3.8), and (3.9)
with ϕ(t) ≡ C. This shows that there is no need to distinguish between a normal-

ized q-regular boundedness and a (general) q-regular boundedness, since both these

concepts coincide.

Here are some further useful properties of RBq functions.

Proposition 3.4.

(i) If f, g ∈ RBq, then f + g, fg, f/g ∈ RBq.
(ii) Let f ∈ RBq. Then

−∞ < lim inf
t→∞

ln f(t)

ln t
6 lim sup

t→∞

ln f(t)

ln t
<∞.

P r o o f. (i) The proof of this part is simple; we use directly the definition or the

representation (3.9).

(ii) From (3.12), using the q-L’Hospital rule similarly to the proof of (vii) of Propo-

sition 3.2, we have

lim sup
t→∞

ln f(t)

ln t
6 lim sup

t→∞

ln[(q − 1)tψ(t) + 1]

ln q
<∞.

Similarly we obtain the inequality for lim inf. �
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4. Asymptotic behavior of nonoscillatory solutions to linear

q-difference equations

In this section we establish sufficient and necessary conditions for positive solutions

of (1.1) to be q-regularly varying or q-rapidly varying or q-regularly bounded. We

also mention Kneser type criteria, which are strictly related to our asymptotic results.

Some of them are known, useful in the proofs, some of them are new, and some of

them come as by-products of the proofs. The constant

(4.1) γq =
1

q(
√
q + 1)2

frequently occurs hereafter. It is easy to see that qγq = ([1/2]q)
2.

4.1. q-regularly varying solutions.

We start with a theorem which generalizes [24, Theorem 2]. In contrast to that

result, here we have no sign condition on p and, moreover, we use a quite different

method of the proof.

Theorem 4.1. Equation (1.1) has (a fundamental set of) solutions

(4.2) u(t) = tϑ1L(t) ∈ RVq(ϑ1) and v(t) = tϑ2L̃(t) ∈ RVq(ϑ2)

if and only if

(4.3) lim
t→∞

t2p(t) = P ∈ (−∞, γq)

where ϑi = logq[(q − 1)λi + 1], i = 1, 2, with λ1 < λ2 being the (real) roots of the

equation qP = hq(λ). For the indices ϑi, i = 1, 2, we have ϑ1 < 0 < 1 < ϑ2 provided

P < 0; ϑ1 = 0 and ϑ2 = 1 provided P = 0; 0 < ϑ1 < 1/2 < ϑ2 < 1 provided P > 0.

Moreover, L, L̃ ∈ SVq with L̃(t) ∼ 1/(qϑ1 [1 − 2ϑ1]qL(t)). Any of the two conditions

in (4.2) implies (4.3). All positive solutions of (1.1) are q-regularly varying of indices

ϑ1 or ϑ2 provided (4.3) holds.

P r o o f. Necessity. Assume that (1.1) has a solution u ∈ RVq(ϑ1), where

λ1 = [ϑ1]q is the smaller root of qP = hq(λ). Using the fact that (1.1) can be written

in the form (2.3), with u instead of y, and applying Lemma 2.2 and Lemma 2.3, we

get

lim
t→∞

t2p(t) =
q + 1

q(q − 1)2
− 1

(q − 1)2
lim
t→∞

F
(u(qt)

u(t)

)

=
q + 1

q(q − 1)2
− 1

(q − 1)2
F

(

qϑ1
)

=
1

q
hq(λ1) = P.

Thus (4.3) holds. The same argument shows the necessity for v ∈ RVq(ϑ2).
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Sufficiency. Assume (4.3). Then there exist N ∈ [0,∞), t0 ∈ qN0 , and Pη ∈ (0, γq)

such that −N 6 t2p(t) 6 Pη for t ∈ [t0,∞)q. Let X be the Banach space of all
bounded functions [t0,∞)q → R endowed with the supremum norm. Denote

Ω =
{

w ∈ X :
1

qη
6 w(t) 6 Ñ for t ∈ [t0,∞)q

}

,

where Ñ = (q+1)/q+N(q−1)2 and η = logq[(q−1)λη+1], λη being the smaller root of

qPη = hq(λ). Clearly, 0 < η < 1/2, see Lemma 2.1, and 1/qη < Ñ . It is not difficult

to see that by using (2.2), Pη can be written as Pη = (qη − 1)(q1−η − 1)/(q(q− 1)2).

Also note that ϑ1 6 η if Pη > P ; and it is clear that in our case Pη > P must hold.

Let T : Ω → X be the operator defined by

(T w)(t) =
q + 1

q
− (q − 1)2t2p(t) − 1

qw(qt)
.

By means of the contraction mapping theorem we will prove that T has a fixed point
in Ω. First we show that T Ω ⊆ Ω. Let w ∈ Ω. Then

(T w)(t) > q + 1

q
− (q − 1)2Pη −

qη

q
=
q + 1

q
− (qη − 1)(q1−η − 1)

q
− qη

q
=

1

qη

and

(T w)(t) <
q + 1

q
− (q − 1)2t2p(t) 6 Ñ

for t ∈ [t0,∞)q. Now we prove that T is a contraction mapping on Ω. Let w, z ∈ Ω.

The Lagrange mean value theorem yields 1/w(t)−1/z(t) = (z(t)−w(t))/ξ2(t), where

ξ : qN0 → R is such that min{w(t), z(t)} 6 ξ(t) 6 max{w(t), z(t)} for t ∈ [t0,∞)q.

Hence,

|(T w)(t) − (T z)(t)| =
1

q

∣

∣

∣

1

w(qt)
− 1

z(qt)

∣

∣

∣
6 1

q
|w(qt) − z(qt)| 1

ξ2(qt)

6 q2η−1|w(qt) − z(qt)| 6 q2η−1‖w − z‖

for t ∈ [t0,∞)q. Thus ‖T v − T w‖ 6 q2η−1‖v − w‖, where q2η−1 ∈ (0, 1) by virtue

of η < 1/2 and q > 1. The Banach fixed point theorem then ensures the existence

of w ∈ Ω such that w = T w. Define u by u(t) =
∏

s∈[t0,t)q

1/w(s). Then u is

a positive solution of (2.3) and, consequently, of (1.1) on [t0,∞)q. Thus (1.1) is

nonoscillatory. Moreover, 1/Ñ 6 u(qt)/u(t) 6 qη. Denote M∗ = lim inf
t→∞

u(qt)/u(t)

and M∗ = lim sup
t→∞

u(qt)/u(t). Taking lim inf as t → ∞ in (2.3), with u instead of y,
rewritten as

(4.4)
u(q2t)

qu(qt)
=
q + 1

q
− (q − 1)2t2p(t) − u(t)

u(qt)
,
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we get M∗/q = (q + 1)/q − (q − 1)2P − 1/M∗. Similarly, the lim sup yields M∗/q =

(q + 1)/q − (q − 1)2P − 1/M∗. Hence, F (M∗) = F (M∗). Since M∗,M
∗ ∈ [1/Ñ, qη]

and F is strictly decreasing on (0,
√
q), we have M := M∗ = M∗. Further, writing

P as P = hq(λi)/q, we obtain

F (qϑi) =
q + 1

q
− (q − 1)2

q
hq([ϑi]q) =

q + 1

q
− (q − 1)2P = F (M),

i = 1, 2, which implies M = qϑ1 because of ϑ1,M ∈ (0,
√
q), ϑ2 >

√
q, and of the

monotonicity of F on (0,
√
q). Thus u ∈ RVq(ϑ1). We have u(t) = tϑ1L(t) with

L ∈ SV by Proposition 3.1, where 1 − 2ϑ1 > 0 by Lemma 2.1. Hence there exists

K > 0 such that L2(t)tϑ1−1 6 K for large t, say t ∈ [t0,∞)q, by Proposition 3.1.

Consequently,

∫ t

t0

dqs

u(s)u(qs)
∼

∫ t

t0

dqs

qϑ1s2ϑ1−1L2(s)s

> 1

qϑ1K

∫ t

t0

dqs

s
=

q − 1

qϑ1K ln q
ln

t

t0
→ ∞

as t→ ∞. This shows that y is a recessive solution. Consider a linearly independent
(dominant) solution v of (1.1), which is given by v(t) = u(t)

∫ t

t0
dqs/(u(s)u(qs)).

Put z = 1/u2. Then z ∈ RVq(−2ϑ1) by Proposition 3.1. Since u is recessive, the

q-L’Hospital rule and Proposition 3.1 yield

lim
t→∞

t/u(t)

v(t)
= lim
t→∞

tz(t)
∫ t

t0
(1/(u(s)u(qs))) dqs

= lim
t→∞

z(t) + qtDqz(t)

1/(u(t)u(qt))

= lim
t→∞

(u(t)u(qt)

u2(t)
+
qu(t)u(qt)

u2(t)
· tDqz(t)

z(t)

)

= qϑ1 + qϑ1+1[−2ϑ1]q =: ω.

Hence, ωv(t) ∼ t/u(t) = t1−ϑ1/L(t). Consequently, v(t) = tϑ2L̃(t), where L̃(t) ∼
1/(ωL(t)), L̃ ∈ SVq, and so v ∈ RVq(ϑ2) by Proposition 3.1 since ϑ2 = 1 − ϑ1, see

Lemma 2.1. For the quantity ω we have

ω = qϑ1

(

1 +
q1−2ϑ1 − q

q − 1

)

= qϑ1
q1−2ϑ1 − 1

q − 1
= qϑ1 [1 − 2ϑ1]q.

It remains to show that every positive solution of (1.1) is in RVq(ϑ1) or RVq(ϑ2).

Let r be an eventually positive solution of (1.1). Then there exist c1, c2 ∈ R such

that r = c1u + c2v, where u, v are as above. If c2 = 0, then necessarily c1 > 0

and r ∈ RVq(ϑ1). Now assume c2 6= 0. It is easy to see that u(t)/v(t) → 0 and
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u(qt)/v(t) → 0 as t→ ∞. Hence,

r(qt)

r(t)
=
c1u(qt) + c2v(qt)

c1u(t) + c2v(t)
=
c1u(qt)/v(t) + c2v(qt)/v(t)

c1u(t)/v(t) + c2
∼ v(qt)

v(t)

as t→ ∞, which implies r ∈ RVq(ϑ2). �

Remark 4.1. (i) In addition to the generalization of the main result from [24],

Theorem 4.1 can be viewed as a q-version of the continuous results [20, Theorem 1.10,

1.11], which treat the linear differential equation

(4.5) y′′ + p(t)y = 0.

There are however substantial differences between these corresponding cases. In

particular, conditions in [20] have the integral form (see also Section 5 and the

references therein for more detailed explanation). Moreover, a different approach in

the proof is used. Note that the condition in [24], which deals with the q-calculus

case, has integral form, but it can be equivalently written in the nonintegral form

appearing in Theorem 4.1. Such a relation does not work in the continuous case.

(ii) Observe how the indices of q-regular variation in (4.2) and the bound in the

(4.3) match the constants in the continuous case when taking the limit as q → 1+.

(iii) As a by-product of the above theorem we get the following nonoscillation

Kneser type criterion: If lim
t→∞

t2p(t) < γq, then (1.1) is nonoscillatory. However,

a better variant of this criterion is known ([8]), where the sufficient condition is

relaxed to lim sup
t→∞

t2p(t) < γq. The constant γq is sharp, since lim inf
t→∞

t2p(t) > γq

implies oscillation of (1.1), see [8]. No conclusion can be generally drawn if equality

occurs in these conditions. Note that y(t) =
√
t is a (nonoscillatory) solution of the

Euler type equation D2
qy(t) + γqt

−2y(qt) = 0, and a simple application of the Sturm

type comparison theorem yields the above nonoscillation criterion with lim sup as

well as its following modification, which can be used in particular in the situations

where lim sup
t→∞

t2p(t) = γq: If t
2p(t) 6 γq for large t, then (1.1) is nonoscillatory.

See also Remark 4.3 (iii) for a new Kneser type oscillation criterion, which arises

as a by-product of Theorem 4.4. For related oscillation results concerning equation

(4.5) see e.g. [28].

(iv) There is an alternative way of how an RVq(ϑ2) solution v can be obtained:

We use the Banach fixed point theorem, similarly to the case of the solution u.

More precisely, we find a fixed point of S : Γ → X , where (Sw)(t) = q + 1 −
q(q − 1)2t2p(t) − q/w(t/q) for t ∈ [qt0,∞)q, (Sw)(t0) = qϑ2 , and Γ = {x ∈ X : qζ 6
w(t) 6 Q for [t0,∞)q} with suitable ζ > 1/2, Q > 0, and t0 ∈ qN0 . Having obtained

a solution of w = Sw in Γ, we use monotonicity properties of F to get v ∈ RVq(ϑ2).

Details are left to the reader.
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Next we discuss the case when the limit in (4.3) attains the largest admissible

value.

Theorem 4.2. Let (1.1) be nonoscillatory (which can be guaranteed e.g. by

t2p(t) 6 γq for large t). Equation (1.1) has (a fundamental set of) solutions

(4.6) u(t) = t1/2L(t) ∈ RVq(1/2) and v(t) = t1/2L̃(t) ∈ RVq(1/2)

if and only if

(4.7) lim
t→∞

t2p(t) = γq.

Moreover, L, L̃ ∈ SVq with

(4.8) L̃(t) = L(t)

∫ t

a

dqs√
qsL(s)L(qs)

,

which can be expressed also as

(4.9) L(t) = L̃(t)

∫

∞

t

dqs√
qsL̃(s)L̃(qs)

,

where
∫

∞
(1/sL(s)L(qs)) dqs = ∞ and

∫

∞
(1/sL̃(s)L̃(qs)) dqs < ∞. All positive

solutions of (1.1) are q-regularly varying of index 1/2 provided (4.7) holds.

P r o o f. Necessity. We proceed in the same way as in the proof of the necessity

in Theorem 4.1.

Sufficiency. The condition t2p(t) 6 γq for large t implies nonoscillation of (1.1)

by Remark 4.1 (iii). Let u be a positive solution of (1.1) on [a,∞)q. Let us write γq

as γq = hq([1/2]q)/q, noting that λ = [1/2]q is the double root of γq = hq(λ)/q, see

Lemma 2.1. In view of Lemma 2.2 and Lemma 2.3,

(4.10) F (
√
q) =

q + 1

q
− (q − 1)2

q
hq([1/2]q) =

q + 1

q
− (q − 1)2γq

=
q + 1

q
− (q − 1)2 lim

t→∞

t2p(t) = lim
t→∞

L[u](t).

DenoteM∗ = lim inf
t→∞

u(qt)/u(t) andM∗ = lim sup
t→∞

u(qt)/u(t). IfM∗ = 0 orM∗ = ∞,
then lim sup

t→∞

L[u](t) = ∞, which contradicts (4.10). Hence, 0 < M∗ 6 M∗ <

∞. Consider (1.1) in the form (4.4). Taking lim sup or lim inf as t → ∞ in

(4.4), into which our u is substituted, we obtain F (M∗) = F (
√
q) = F (M∗).
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Thanks to the properties of F , see Lemma 2.2, we get M∗ = M∗ =
√
q. Hence,

u(t) =
√
tL(t) ∈ RVq(1/2), where L ∈ SVq. Assume that u is recessive. Then

∫

∞

a
(1/

√
qsL(s)L(qs)) dqs =

∫

∞

a
(1/u(s)u(qs)) dqs = ∞. Consider a linearly inde-

pendent solution v of (1.1) given by

v(t) = u(t)

∫ t

a

dqs

u(s)u(qs)
=

√
tL(t)

∫ t

a

dqs√
qsL(s)L(qs)

;

this solution is dominant. But at the same time we have v(t) =
√
tL̃(t), where

L̃ ∈ SVq (this follows in the same way as u ∈ RVq(1/2)). Thus we get (4.8).

Similarly we obtain relation (4.9): We start with a dominant solution and then use

reduction of order formula. Alternatively we can see it when (4.8) is substituted into

(4.9) for L̃ and the formula for Dq(1/
∫ t

a
(1/

√
qsL(s)L(qs)) dqs) is used.

Since we worked with an arbitrary positive solution, it follows that all positive

solutions must be q-regularly varying of index 1/2. �

Remark 4.2. The continuous counterpart of the above theorem can be found e.g.

in [20, Theorem 1.12]. However, several differences appear again: (a) The counterpart

to (4.7) has an integral form (see also Section 5); (b) there are several additional

conditions in the continuous case, which are not present in Theorem 4.2; (c) the

approaches in the proofs are quite different; (d) the existence of only an RV(1/2)

fundamental system of (4.5) is guaranteed in [20] while here (by means of condition

(4.7)) we guarantee all positive solutions of (1.1) to be in RVq(1/2).

4.2. q-rapidly varying solutions.

In [26] we established a special case of the following general statement, which covers

the situation when the value of the limit lim
t→∞

t2p(t) attains its extremal value. The

coefficient p was assumed to be negative there, but here we omit that restriction.

Theorem 4.3. Equation (1.1) has (a fundamental set of) solutions

(4.11) u(t) ∈ RPVq(−∞) and v(t) ∈ RPVq(∞)

if and only if

(4.12) lim
t→∞

t2p(t) = −∞.

Either of the two conditions in (4.11) implies (4.12). All positive solutions of (1.1)

are q-rapidly varying provided (4.12) holds.
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P r o o f. We may proceed as in the corresponding result from [26], where we

assumed the sign condition p(t) < 0. Indeed, in our general case, it is easy to see

that (4.12) requires an eventual negativity of p. Moreover, because of necessity, no

other behavior of the limit in (4.12) is allowed for RPVq solutions. Hereby, the
discussion on q-rapidly varying solutions is complete. �

4.3. q-regularly bounded solutions.

This subsection discusses the case when the limit in (4.3) and (4.12) is allowed not

to exist. We establish necessary and sufficient conditions for all positive solutions of

(1.1) to be q-regularly bounded.

Theorem 4.4. If (1.1) is nonoscillatory (which can be guaranteed e.g. by t2p(t) 6
γq for large t) and

(4.13) lim inf
t→∞

t2p(t) > −∞,

then all eventually positive solutions of (1.1) are q-regularly bounded.

Conversely, if there exists an eventually positive solution y of (1.1) such that

y ∈ RBq, then

(4.14) −∞ < lim inf
t→∞

t2p(t) 6 lim sup
t→∞

t2p(t) <
q + 1

q(q − 1)2
.

If, in addition, p is eventually positive or y is eventually increasing, then the constant

on the right-hand side of (4.14) can be improved to 1/(q − 1)2.

P r o o f. Sufficiency. The condition t2p(t) 6 γq for large t implies nonoscillation

of (1.1) by Remark 4.1 (iii). Let y be a positive solution of (1.1) on [a,∞)q. Assume

by contradiction that lim sup
t→∞

y(qt)/y(t) = ∞. Then, in view of (2.3),

∞ = lim sup
t→∞

y(q2t)

qy(qt)
6 lim sup

t→∞

L[y](t) =
q + 1

q
− (q − 1)2 lim inf

t→∞
t2p(t) <∞

by (4.13), a contradiction. If lim inf
t→∞

y(qt)/y(t) = 0, then lim sup
t→∞

y(t)/y(qt) = ∞ and
we proceed similarly to the previous case. Since we worked with an arbitrary positive

solution, this implies that all positive solutions must be q-regularly bounded.

Necessity. Let y ∈ RBq be a solution of (1.1). Taking lim sup as t → ∞ in (2.3)
we obtain

q + 1

q
− (q − 1)2 lim inf

t→∞
t2p(t) = lim sup

t→∞

L[y](t)

6 lim sup
t→∞

y(q2t)

qy(qt)
+ lim sup

t→∞

y(t)

y(qt)
<∞,
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which implies the first inequality in (4.14). The lim inf as t→ ∞ in (2.3) yields

(4.15)
q + 1

q
− (q − 1)2 lim sup

t→∞

t2p(t) = lim inf
t→∞

L[y](t)

> lim inf
t→∞

y(q2t)

qy(qt)
+ lim inf

t→∞

y(t)

y(qt)
> 0,

which implies the last inequality in (4.14). If p is eventually positive, then every

eventually positive solution of (1.1) is eventually increasing, which can be easily

seen from its concavity. Hence, y(qt)/y(t) > 1 for large t. Thus the last inequality

in (4.15) becomes lim inf
t→∞

y(q2t)/qy(qt) + lim inf
t→∞

y(t)/y(qt) > 1/q, from which the

statement follows. �

Remark 4.3. (i) Recall that the corresponding result from the continuous case

(see e.g. [20, Theorem 1.13]) reads as follows: If
∣

∣t
∫

∞

t p(s) ds
∣

∣ 6 γ < 1/4, then

all positive solutions of (4.5) are regularly bounded. One can notice a substantial

difference when comparing it with our result. First, the methods of the proofs are

quite different. Second, the sufficient conditions have a different form and, moreover,

we state also a necessary condition. Note that the absence of a continuous analog to

the second inequality in (4.14) is not surprising. This can be seen when one takes

the limit as q → 1.

(ii) A closer examination of the last proof shows that a necessary condition for

nonoscillation of (1.1) is (q + 1)/q−(q−1)2 lim sup
t→∞

t2p(t) > 0. Thus we have obtained

a new Kneser type oscillation criterion: If

lim sup
t→∞

t2p(t) >
q + 1

q(q − 1)2
,

then (1.1) is oscillatory. If p is eventually positive, then the constant on the right-

hand side can be improved to 1/(q− 1)2 and the strict inequality can be replaced by

the nonstrict one (this is because of the q-regular boundedness of possible positive

solutions). Clearly, 1/(q − 1)2 > γq. A continuous analog of this criterion is not

known, which is quite natural since 1/(q−1)2 → ∞ as q → 1. Compare these results

with the Hille-Nehari type criterion, which was proved in general setting for dynamic

equations on time scales, and is valid no matter what the graininess is (see [22]); in

q-calculus it reads as follows: If p > 0 and lim sup
t→∞

t
∫

∞

t
p(s) dqs > 1, then (1.1) is

oscillatory. This criterion holds literally also in the continuous case. Finally note

that, in general, lim sup
t→∞

t
∫

∞

t
p(s) dqs 6 lim sup

t→∞

qt2p(t).
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5. Concluding remarks

The aim of this section is to summarize and comment on all the above results in

order to show that our discussion is somehow comprehensive. Moreover, we point out

relations between Karamata solutions and some other special subclasses of nonoscil-

latory solutions.

5.1. Summary.

In view of Section 3, one can simply say that in the q-Karamata theory we study

basically, for f : qN0 → (0,∞), the limit behavior of f(qt)/f(t) as t → ∞. If we
denote

K∗ = lim inf
t→∞

f(qt)

f(t)
, K∗ = lim sup

t→∞

f(qt)

f(t)
, K = lim

t→∞

f(qt)

f(t)
,

then we can easily define f as

• q-regularly varying of index ϑ, ϑ ∈ R, if K = qϑ,

• q-slowly varying if K = 1,

• q-rapidly varying of index ∞ if K = ∞,
• q-rapidly varying of index −∞ if K = 0,

• q-regularly bounded if 0 < K∗ 6 K∗ <∞.
Next we provide a complete discussion on the asymptotic behavior of solutions to

(1.1) with respect to the limit behavior of t2p(t) in the framework of the q-Karamata

theory. Denote

P = lim
t→∞

t2p(t), P∗ = lim inf
t→∞

t2p(t), and P ∗ = lim sup
t→∞

t2p(t).

Recall that γq is defined by (4.1). The functions from the set of all q-regularly varying

and q-rapidly varying functions are called q-Karamata functions. With the use of

the previous results we obtain the following exhaustive description:

(I) Assume that there exists P ∈ R∪{−∞,∞}. In this case all positive solutions are
q-Karamata functions provided (1.1) is nonoscillatory. Moreover, we distinguish

the following subcases:

(Ia) P = −∞: Equation (1.1) is nonoscillatory and all positive solutions are
q-rapidly varying (of index −∞ or ∞).

(Ib) P ∈ (−∞, γq): Equation (1.1) is nonoscillatory and all positive solutions

are q-regularly varying (of index ϑ1 or ϑ2, defined in Theorem 4.1).

(Ic) P = γq: Equation (1.1) is either oscillatory or nonoscillatory (the latter

can be guaranteed e.g. by t2p(t) 6 γq). In case of nonoscillation all positive

solutions are q-regularly varying of index 1/2.

(Id) P ∈ (γq,∞) ∪ {∞}: Equation (1.1) is oscillatory.
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(II) Assume that R ∪ {−∞} ∋ P∗ < P ∗ ∈ R ∪ {∞}. In this case, there are no
q-Karamata functions among positive solutions. Moreover, we distinguish the

following subcases:

(IIa) P∗ ∈ (γq,∞): Equation (1.1) is oscillatory.

(IIb) P∗ ∈ {−∞} ∪ (−∞, γq]: Equation (1.1) is either oscillatory (this can be

guaranteed e.g. by P ∗ > (q+1)/(q(q−1)2) or by p > 0 and P ∗ > 1/(q−1)2),

or nonoscillatory (this can be guaranteed e.g. by t2p(t) 6 γq). If, in ad-

dition to nonoscillation, we have P∗ > −∞, then all positive solutions
are q-regularly bounded, but there is no q-regularly varying solution. If

P∗ = −∞, then there is no q-regularly bounded or q-rapidly varying solu-
tion.

5.2. Integral versus nonintegral conditions.

From the asymptotic theory of (4.5), which is developed in the framework of regu-

lar variation, see e.g. [20], we know that the limit behavior of the integral expressions

t
∫

∞

t
p(s) ds and t

∫ λt

t
p(s) ds is crucial, and the condition in terms of lim

t→∞

t2p(t) may

serve to show only sufficiency. More precisely, for a nonoscillatory equation (4.5),

the existence of a finite or infinite limit lim
t→∞

t
∫ λt

t
p(s) ds for all λ > 1 is equivalent

to the existence of regularly or rapidly varying solutions of (4.5). Moreover, there

exists p such that lim
t→∞

t
∫

∞

t p(s) ds = −∞ but lim
t→∞

t
∫ λt

t p(s) ds does not exist for

some λ, while their existence as finite limits is equivalent.

In contrast to this continuous case, asymptotic theory of equation (1.1) in the

framework of q-regular variation can be fully (and naturally) described in terms of

the limit behavior of t2p(t). Observe that this expression can be understood, up

to a certain constant multiple, as the integral expression t
∫ qt

t
p(s) dqs, with noting

that such a connection has no continuous analogy. Moreover, there exists p such

that lim
t→∞

t
∫

∞

t
p(s) dqs = −∞ but lim

t→∞

t2p(t) does not exist, while their existence as

finite limits is equivalent.

More information about relations between integral and nonintegral conditions,

and also between the classical calculus and the q-calculus cases can be found in [26].

These relations can also explain why in the q-calculus, in contrast to the continuous

case, the Kneser type criteria are more suitable and natural than the Hille-Nehari

type criteria (the ones expressed in terms of t
∫

∞

t p) when studying the regularly

varying behavior of solutions to (1.1).

5.3. Monotonicity.

Assume that (1.1) is nonoscillatory. Without loss of generality, we may restrict

our consideration only to positive solutions of (1.1); we denote this set as M. It is
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easy to see that if p(t) > 0 or p(t) < 0 for large t, then all solutions of (1.1) are

eventually monotone. Let us consider two subclasses of M, namely M
+ and M

−,

where
M

+ = {x ∈ M : x(t) > 0, Dqx(t) > 0 for large t},
M

− = {x ∈ M : x(t) > 0, Dqx(t) < 0 for large t}.

We have M = M
+ ∪ M

− with M
+ 6= ∅ 6= M

− provided p(t) < 0, and M = M
+

provided p(t) > 0.

The following notation will be utilized:

MSV = M ∩ SVq,
MRV (ϑ) = M ∩RVq(ϑ), ϑ ∈ R,

MRPV (±∞) = M ∩RPVq(±∞),

M
−

0 = {y ∈ M
− : lim

t→∞

y(t) = 0},

M
+
∞

= {y ∈ M
+ : lim

t→∞

y(t) = ∞}.

One can immediately see that the existence of a (finite or infinite) nonzero limit

lim
t→∞

t2p(t) = P implies eventually one sign of p, and, consequently, in case of

nonoscillation, eventual monotonicity of all solutions to (1.1). Compare this be-

havior with that in the continuous case which utilizes the integral condition; even if

the limit lim
t→∞

t
∫

∞

t p(s) ds is nonzero, we cannot assert that the coefficient p in (4.5)

is eventually of one sign.

With the use of the previous results, the following holds, where P = lim
t→∞

t2p(t)

and ϑ1, ϑ2 are as in Theorem 4.1:

(i) ∅ 6= M
− = MRPV (−∞) = M

−

0 ⇔ P = −∞ ⇔ M
+ = MRPV (∞) = M

+
∞

6= ∅.
(ii) ∅ 6= M

− = MRV (ϑ1) = M
−

0 ⇔ P ∈ (−∞, 0) ⇔ M
+ = MRV (ϑ2) = M

+
∞

6= ∅.
(iii) (Assuming p(t) < 0.) ∅ 6= M

− = MSV ⇔ P = 0 ⇔ M
+ = MRV (1) = M

+
∞

6= ∅.
(iv) (Assuming p(t) > 0.) P = 0 ⇔ M = M

+ = MSV [6= ∅] ∪MRV (1)[= M
+
∞

6= ∅].
(v) P ∈ (0, γq) ⇔ M = M

+ = [∅ 6=]MRV (ϑ1)[= M
+
∞

] ∪ [∅ 6=]MRV (ϑ2)[= M
+
∞

].

(vi) (Assuming (1.1) is nonoscillatory.) P = γq ⇔ M = M
+ = MRV (1/2) = M

+
∞
.

5.4. Recessive and dominant solutions.

Using the arguments similar to those in the proof of Theorem 4.1, we can estab-

lish the following relations between Karamata solutions and recessive and dominant

solutions. Let R denote the set of all positive recessive solutions of (1.1) and D the

set of all positive dominant solutions of (1.1). Then:

(i) If (4.3) holds, then R = MRV (ϑ1) and D = MRV (ϑ2).

(ii) If (4.12) holds, then R = MRPV (−∞) and D = MRPV (∞).
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(iii) If (4.7) holds and (1.1) is nonoscillatory, then R∪D = MRV (1/2); the recessive

or dominant character of a solution is determined by SVq functions in the
representations which are related by (4.8) or by (4.9).
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