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Abstract. In the paper we discuss the following type congruences:

(

npk

mpk

)

≡

(

m

n

)

(mod p
r),

where p is a prime, n, m, k and r are various positive integers with n > m > 1, k > 1 and
r > 1. Given positive integers k and r, denote by W (k, r) the set of all primes p such that
the above congruence holds for every pair of integers n > m > 1. Using Ljunggren’s and
Jacobsthal’s type congruences, we establish several characterizations of sets W (k, r) and
inclusion relations between them for various values k and r. In particular, we prove that
W (k + i, r) = W (k − 1, r) for all k > 2, i > 0 and 3 6 r 6 3k, and W (k, r) = W (1, r) for
all 3 6 r 6 6 and k > 2. We also noticed that some of these properties may be used for
computational purposes related to congruences given above.
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1. Introduction and main result

Let p be a prime, and k and r positive integers. As noticed in ([8], Remarks,

p. 76) we do not know which are the possible prime powers pk and pr such that the

congruence

(1.1)

(

npk

mpk

)

≡

(

n

m

)

(mod pr)

is satisfied for every pair of integers n > m > 1.

The variations of the congruence (1.1) for the case k = 1 with r = 1, r = 2 or r = 3

have been investigated by many authors (see [1], [3], [5], [6], [8] and [9]). However,
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the case r > 4 is more complicated for any given k > 1, and it is not still established

(see [6], [7] and [10]).

It is well known that for k = 1 and r = 3 the congruence (1.1) is satisfied for any

prime p > 5. The basic congruences for our purposes are given by the following three

statements.

Proposition 1.1. Let n and m be positive integers with m 6 n. Then for each

prime p,

(1.2)

(

np

mp

)

≡

(

n

m

)

(mod p).

If n = n0 + n1p + . . . + nsp
s and m = m0 + m1p + . . . + msp

s are the p-adic

expansions of n and m (so that 0 6 mi, ni 6 p − 1 for each i), then by the famous

Lucas’ theorem ([5]; also see [3]),

(

n

m

)

≡

s
∏

i=0

(

ni

mi

)

(mod p).

Applying the above congruence to
(

np

mp

)

, we note that the corresponding product on

the right hand side is the same as that of
(

n

m

)

. Hence, the congruence (1.2) holds for

all n and m with 1 6 m 6 n.

In 1952 W. Ljunggren generalized the congruence (1.2) to the following form.

Proposition 1.2 ([1]; also see [3]). Let p > 5 be a prime, and let n and m be

positive integers with m 6 n. Then

(1.3)

(

np

mp

)

≡

(

n

m

)

(mod p3).

Further, the congruence (1.3) was refined by E. Jacobsthal as follows.

Proposition 1.3 ([1]; also see [4]). Let p > 5 be a prime, and let n and m be

positive integers with m 6 n. Then

(1.4)

(

np

mp

)

≡

(

n

m

)

(mod pr),

where r is a power of p dividing p3nm(n−m) (this exponent r can only be increased

if p divides Bp−3, the (p − 3)rd Bernoulli number).
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As noticed previously, the situation is more complicated for the congruence (1.4)

related to modulo prime powers pr with r > 4. A prime p is said to be aWolstenholme

prime if it satisfies the congruence
(

2p−1
p−1

)

≡ 1 (mod p4). This is equivalent to

(1.5)

(

2p

p

)

≡ 2 (mod p4).

Two known such primes are 16843 and 2124679, and by a recent result of McIntosh

and Roettger [7] these primes are the only two Wolstenholme primes less than 109.

Furthermore, McIntosh [6] conjectured that there are infinitely many Wolstenholme

primes and that no prime satisfies (1.5) with (mod p5) instead of (mod p4).

Let P denote the set of all primes. Given positive integers k and r, denote by

W (k, r) the set of all primes p such that the congruence (1.1) holds for every pair of

integers n > m > 1. In this paper we prove the following result.

Theorem1.1. The following statements about the sets W (k, r) are valid.

(i) W (1, 1) = W (1, 2) = P and W (1, 3) = P \ {2, 3}.

(ii) W (1, 4) is a set of all Wolstenholme primes.

(iii) For all k > 2, i > 0 and r 6 3k, a prime p > 5 is in W (k + i, r) if and only if it

is in W (k − 1, r).

(iv) (reduction property). For all k > 2, i > 0 and 3 6 r 6 3k, we haveW (k+i, r) =

W (k − 1, r).

(v) For any 3 6 r 6 6 and k > 2, we have W (k, r) = W (1, r).

(vi) W (k, r) ⊆ W (k, r − 1) and W (k − 1, r) ⊆ W (k, min{r, 3k}).

We believe that the assertions of Theorem 1.1 may be useful for further investi-

gation of congruences of the type (1.1). In particular, this may be related to some

applications of properties (iii)–(vi) in computational purposes concerned with the

examinations of such congruences.

Proof of the above theorem is given in the next section, and it is based on the

auxiliary results given by the previous propositions.

2. Proof of Theorem 1.1

In order to prove Theorem 1.1, besides Propositions 1.1–1.3, we need the following

results.

Lemma 2.1. If p is a prime and n, m and k are positive integers with m 6 n,

then

(2.1)

(

npk

mpk

)

≡

(

n

m

)

(mod p).
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P r o o f. We proceed by induction on k > 1 (given any fixed n and m). For

k = 1, the congruence (2.1) is given by (1.2) of Proposition 1.1.

Now if we suppose that
(

npk

mpk

)

≡
(

n

m

)

(mod p) for some k > 1, then by Proposition

1.1 and this hypothesis, we have

(

npk+1

mpk+1

)

≡

(

npk

mpk

)

≡

(

n

m

)

(mod p).

Thus, (2.1) holds for each integer k > 1. �

Lemma 2.2. Let p > 5 be a prime, and let n, m and k be positive integers with

m 6 n. Then

(2.2)

(

npk

mpk

)

≡

(

n

m

)

(mod p3).

P r o o f. By Proposition 1.2, we see that the congruence (2.2) holds for k = 1

and each prime p > 5. Now, by induction on k, we immediately obtain (2.2) as in

the induction proof of Lemma 2.1. �

Lemma 2.3. A prime p is a Wolstenholme prime if and only if

(2.3)

(

np

mp

)

≡

(

n

m

)

(mod p4)

for all integers n > m > 1.

P r o o f. If (2.3) is satisfied for every integers n > m > 1, then (2.3) in particular

holds for n = 2 and m = 1. This shows that p is a Wolstenholme prime.

Conversely, suppose that p is a Wolstenholme prime. Then by Glaisher’s congru-

ence ([2], p. 21; also cf. [6], Corollary, p. 386) a prime p is a Wolstenholme prime if

and only if p divides the numerator of the Bernoulli number Bp−3. In this case, by

Proposition 1.3, the congruence (2.3) holds for all n and m with n > m > 1. �

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. (i) Observe first that by the congruence (1.3) of Propo-

sition 1.2, every prime p > 5 is in W (1, 3). Since
(

4
2

)

6≡
(

2
1

)

(mod 8) and
(

6
3

)

6≡
(

2
1

)

(mod 27), it follows that W (1, 3) = P \ {2, 3}.

By (1.2) of Proposition 1.1, we see that W (1, 1) = P .
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Note that P \ {2, 3} = W (1, 3) ⊆ W (1, 2). By the congruence (3.2) of Lemma 3.2

in [9],
(

3n

3m

)

≡

(

n

m

)

(mod 32),

whence we see that (1.1) holds for p = 3, k = 1 and r = 2. Hence, 3 ∈ W (1, 2).

By (3.3) of the same lemma,

(

2n

2m

)

≡ (−1)m

(

n

m

)

(mod 22ord2(n)+1),

where ord2(n) is the exponent of 2 in the prime factorization of n. If n and m are

even, then from the above we see that
(

2n

2m

)

≡
(

n

m

)

(mod 8). If n = 2n′ is even and

m = 2m′ − 1 is odd, then the above congruence implies that
(

2n

2m

)

≡ −
(

n

m

)

(mod 4).

Since for such values n and m the exact power of 2 dividing
(

n

m

)

is greater than or

equal to

⌊2n′

2

⌋

−
⌊2m′ − 1

2

⌋

−
⌊2(n′ − m′) + 1

2

⌋

= n′ − (m′ − 1) − (n′ − m′) = 1,

where ⌊x⌋ is the greatest integer less than or equal to x, it follows that
(

n

m

)

is even,

and so −
(

n

m

)

≡
(

n

m

)

(mod 4). This together with the previous congruence shows

that
(

2n

2m

)

≡
(

n

m

)

(mod 4).

It remains to consider the case when n is odd. By the last congruence in the proof

of Lemma 3.2 in [9] we have

(

2n

2m

)

≡ (−1)m

(

n

m

)

− (−1)m2n2

(

n − 1

m − 1

)

(

1 +
1 + (−1)m

2

)

(mod 22ord2(n)+2).

In particular, for odd n = 2n′ − 1 and odd m = 2m′ − 1, we obtain

(

2(2n′ − 1)

2(2m′ − 1)

)

≡ −1

(

2n′ − 1

2m′ − 1

)

+ 2

(

2n′ − 2

2m′ − 2

)

(mod 4).

From the identity
(

2n′ − 1

2m′ − 1

)

=
2n′ − 1

2m′ − 1

(

2n′ − 2

2m′ − 2

)

we see that
(

2n′
−1

2m′
−1

)

and
(

2n′
−2

2m′
−2

)

are both even or both odd, and therefore, 2
(

2n′
−1

2m′
−1

)

≡

2
(

2n′
−2

2m′
−2

)

(mod 4). From this and the above congruence we get
(2(2n′

−1)
2(2m′−1)

)

≡
(

2n′
−1

2m′
−1

)

(mod 4). The case when n = 2n′ − 1 is odd and m = 2m′ is even reduces to the

previous case, in view of the fact that
(2(2n′

−1)
4m′)

)

=
( 2(2n′

−1)
2(2(n′−m′)−1)

)

. This shows that
(

2n

2m

)

≡
(

n

m

)

(mod 4) for all n and m; thus 2 ∈ W (1, 2), and therefore, W (1, 2) = P .
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(ii) This is immediate from Lemma 2.3.

(iii) By a result of Jacobsthal given in Proposition 1.3, we get

(2.4)

(

npk

mpk

)

≡

(

npk−1

mpk−1

)

(mod p3k)

for any integers k > 1, n > m > 1 and prime p > 5. Then by induction on i > 0

(cf. proof of Lemma 2.1), it follows easily from the above congruence that

(

npk+i

mpk+i

)

≡

(

npk−1

mpk−1

)

(mod p3k), i = 0, 1, 2, . . . .

This shows that for arbitrary fixed k > 2, r 6 3k and i > 0, a prime p > 5 is in

W (k + i, r) if and only if it is in W (k − 1, r).

(iv) We will prove that 2 /∈ W (k, r) and 3 /∈ W (k, r) for all k > 1 and r > 3. If

this is true, then (iii) immediately yields (iv).

By (3.3) of Lemma 3.2 from [9], for p = 2 we have

(

2n

2m

)

≡ (−1)m

(

n

m

)

(mod 22ord2(n)+1),

whence it easily follows by induction on k > 1 that

(

2k+1

2k

)

≡

(

4

2

)

= 6 (mod 8) for all k > 1.

Thus,
(

2k
·2

2k
·1

)

6≡
(

2
1

)

(mod 8), and hence 2 /∈ W (k, r) for all k > 1 and r > 3.

Similarly, if p = 3, then by (3.2) of Lemma 3.2 from [9],

(

3n

3m

)

≡

(

n

m

)

(mod 32ord2(n)+2),

whence it easily follows by induction on k > 2 that

(

3k · 2

3k

)

≡

(

6

3

)

= 20 (mod 34) for all k > 1.

Thus,
(

3k
·2

3k·1

)

6≡
(

2
1

)

(mod 27) and hence, 3 /∈ W (k, r) for all k > 1 and r > 3.

(v) The assertion (iv) with k = 2 yields W (2 + i, r) = W (1, r) for all 3 6 r 6 6

and i > 0, as desired.

(vi) The inclusion W (k, r) ⊆ W (k, r − 1) is obvious, while the inclusion

W (k − 1, r) ⊆ W (k, min{r, 3k}) follows directly from the congruence (2.4).

This completes the proof. �
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