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Abstract. Pointfree formulas for three kinds of separating points for closed sets by maps
are given. These formulas allow controlling the amount of factors of the target product
space so that it does not exceed the weight of the embeddable space. In literature, the
question of how many factors of the target product are needed for the embedding has only
been considered for specific spaces. Our approach is algebraic in character and can thus be
viewed as a contribution to Kuratowski’s topological calculus.
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1. Introduction

Some proofs of topological theorems are algebraic in character. These can either

by phrased in terms of closure algebras [11] or even in terms of locales [4]. The

topological calculus—developed by Kuratowski [7]—is, roughly speaking, the part of

topology which deals with closure operators (cf. [10]).

The aim of this paper is to enrich Kuratowski’s topological calculus with algebraic

reformulations of three known concepts of separating points from closed sets (we

mean the traditional concept as well as those of [3] and [9]).

Let X and Yj (j ∈ J) be topological spaces and C(X, Yj) the set of all continuous

functions from X to Yj . We recall that a family F ⊆
⋃

j∈J

C(X, Yj) separates points

if, whenever x 6= y in X , there is an f ∈ F such that f(x) 6= f(y). Further, F
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separates points from closed sets if, whenever K ⊆ X is closed and x ∈ X \K, there

is an f ∈ F with f(x) /∈ f(K). If F separates both the points and the points from

closed sets, then the evaluation map e : X →
∏

j∈J

Yj—determined by πj ◦ e = fj

for all j ∈ J—is an embedding (this is the well-known diagonal theorem [1]). In

particular, if Yj = Y for all j, then e embeds X into Y |J|. In the literature, the

question of how many factors of the latter product are actually needed to perform

the embedding has only been considered for specific spaces X and Y . One then

usually shows that X embeds into Y w(X) where w(X) > ℵ0 is the weight of X (cf.

proofs of the universal space theorems in [1, 2.3.23, 4.4.9, 6.2.16]). For arbitrary

spaces one exception can be found in Mrówka [9] who—by repeating the classical

Tychonoff’s technique of reducing the amount of factors (cf. [12] or [1])—was able to

show the following (cf. [9, 5.3]):

Theorem (Mrówka). If
⋃

n∈N

C(X, Y n) separates points and points from closed

sets, then the evaluation map embeds X into Y w(X).

In this paper we will show that one can reduce the amount of factors already

on the level of the general diagonal theorem provided X is T0, in which case X

can always be embedded into
∏

f∈F0

Yf where F0 ⊆ F is such that |F0| 6 w(X) (see

Theorem 2.2). Note that we assume X to be T0 in order to guarantee that after

reducing the family F to a smaller family F0, the latter will not only keep separating

points from closed sets but will also separate points [if X is T0 and F0 separates

points from closed sets, then it separates points too]. It is remarkable to notice that

(when X is T0) Theorem 2.2 immediately yields the above theorem of Mrówka (see

also Remark 2.3).

Removing the redundant factors will be achieved by formulating the concept of

separating points from closed sets by maps purely in terms of closed sets without

mentioning points (cf. [5]), which allows calculations in which membership of points

in sets plays no role as in Kuratowski’s topological calculus—hence the title of this

article.

Our approach also applies to weakly separating families in the sense of Chattopad-

hyay et al. [3] (Section 3) and separating families of Mrówka [9] (Section 4). In both

the cases we shall again be able to control the amount of factors of the target prod-

uct. We will observe that the concept of separating points from closed sets can be

formulated purely in terms of open sets and, thus, makes sense in the theory of

locales viewed as pointfree topologies (Section 5).
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2. Embedding spaces of prescribed weight

We start with a pointfree version of the concept of separating points from closed

sets (cf. [5]). It is not difficult to check that the following holds:

Fact 2.1. A family F ⊆
⋃

j∈J

C(X, Yj) separates points from closed sets if and

only if K =
⋂

f∈F

f−1(f(K)) for all closed K ⊆ X .

We note that in the latter formula the inclusion ⊆ always holds. The weight w(X)

of a space X is the smallest infinite cardinal such that X has a base of cardinal-

ity smaller or equal to w(X). The following is the diagonal theorem for spaces of

prescribed weight.

Theorem 2.2. Let X be T0 and let F be a family of continuous maps f : X → Yf

which separates points from closed sets. Then there exists a subfamily F0 ⊆ F with

|F0| 6 w(X) and such that the evaluation map embeds X into
∏

f∈F0

Yf .

P r o o f. LetH be a closed base of X with |H | 6 w(X). By [1, 1.1.14], for each

H ∈ H we can find an FH ⊆ F such that |FH | 6 w(X) and H =
⋂

f∈FH

f−1(f(H)).

Let F0 =
⋃

H∈H

FH . Clearly, |F0| 6 w(X) (as w(X) is infinite). To check that F0

still separates points from closed sets, let K ⊆ X be an arbitrary closed set and let

HK ⊆ H be such that K =
⋂

HK . Since K ⊆ H for all H ∈ HK , we have

K =
⋂

H∈HK

⋂

f∈FH

f−1(f(H)) ⊇
⋂

f∈F0

f−1(f(K)) ⊇ K.

Since F0 separates points from closed sets and X is T0, e is well known to be an

embedding (cf. [1, Th. 2.3.20]). However, according to the goal of this paper we wish

to calculate in order to show that e is an embedding. For this purpose, let K ⊆ X

be closed. We use Fact 2.1 for F0 and calculate in order to show that e is a closed

map from X onto e(X):

e(K) =
⋂

f∈F0

e((πf ◦ e)−1((πf ◦ e)(K)))

⊇
⋂

f∈F0

e(e−1(π−1
f (πf (e(K)))))

⊇ e(e−1(e(K)))

= Cle(X)e(K).

�
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Remark 2.3. Regarding the embeding theorem of Mrówka (see Section 1) we note

that—by Theorem 2.2—a T0-space X is embeddable into Y w(X) whenever C(X, Y )

separates points and points from closed sets. This is enough for the typical embedding

theorems (cf. [1]).

3. Weak separation of points from closed sets

When F ⊆ C(X, [0, 1]) (with X being a Tychonoff space) separates points from

closed sets, then e : X → [0, 1]|F | is an embedding. However, the converse need not be

true: if e is an embedding, then F need not separate points from closed sets. In order

to have an iff criterion Chattopadhyay et al. [3] introduced the concept of a weak

separation of points from closed sets and characterized those subsets F ⊆ C(X, [0, 1])

for which e is an embedding. In this section we formulate their concept without

involving points so that we will be able to enrich the main result of [3] with the

prescribed amount of factors of the target product space depending on the weight of

the embeddable space.

Definition 3.1 ([3, Def. 1.1]). A family F of continuous maps f : X → Yf

(where X and Yf are topological spaces) is said to weakly separate points from

closed sets if for each closed set K ⊆ X and each x ∈ X \ K there exists a finite

cover C ⊆ P(X) of K such that for all A ∈ C there exists an f ∈ F satisfying

f(x) /∈ f(A).

Let Covfin(K) be the collection of all finite covers of K.

Lemma 3.2. A family F of continuous maps f : X → Yf weakly separates points

from closed sets iff

(WS) K =
⋂

C∈Covfin(K)

⋃

A∈C

⋂

f∈F

f−1(f(A))

for each closed K ⊆ X .

P r o o f. We first observe that the inclusion ⊆ always holds. Indeed, let C

be a finite cover of K. We have A ⊆
⋂

f∈F

f−1(f(A)) for each A ∈ C , so that

K ⊆
⋃

A∈C

⋂

f∈F

f−1(f(A)). Since C ∈ Covfin(K) is arbitrary we get that K ⊆

⋂

C∈Covfin(K)

⋃

A∈C

⋂

f∈F

f−1(f(A)). Now it is easy to see that the inclusion

⋂

C∈Covfin(K)

⋃

A∈C

⋂

f∈F

f−1(f(A)) ⊆ K

says precisely that F weakly separates any x ∈ X \ K from K. �
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Notation. Given C ∈ Covfin(K) and F , we put

∆(C , F ) =
⋃

A∈C

⋂

f∈F

f−1(f(A)).

Lemma 3.3. Let the family F of continuous maps f : X → Yf weakly separate

points from closed sets. Then F has a subfamily F0 ⊆ F which weakly separates

points from closed subsets and is such that |F0| 6 w(X).

P r o o f. Let H be a closed base of X such that |H | 6 w(X). By [1, 1.1.14], we

will reduce the cardinalities of the involved families in two steps. First, for each closed

H ∈ H we select CH ⊆ Covfin(H) such that |CH | 6 w(X) and H =
⋂

C∈CH

∆(C , F ).

Next, for a given H and for each A ∈ C ∈ CH we select FA ⊆ F such that

|FA| 6 w(X) and
⋂

f∈F

f−1(f(A)) =
⋂

f∈FA

f−1(f(A)). Take FC =
⋃

A∈C

FA. Then

H ⊇
⋂

C∈CH

∆(C , FC ).

Then the family

F0 =
⋃

H∈H

⋃

C∈CH

FC =
⋃

H∈H

⋃

C∈CH

⋃

A∈C

FA

is such that |F0| 6 w(X) and weakly separates points from closed sets. Indeed, let

K be an arbitrary closed subset of X . Then K =
⋂

K where K ⊆ H . For all

H ∈ K we have CH ⊆ Covfin(H) ⊆ Covfin(K) and we can write

H ⊇
⋂

C∈CH

∆(C , FC ) ⊇
⋂

C∈Covfin(K)

∆(C , F0).

Thus K ⊇
⋂

C∈Covfin(K)

∆(C , F0). We have already noticed that the opposite inclusion

always holds, so the proof is complete. �

After Lemma 3.3 we can again control the amount of factors of the target product

according to the weight of the embeddable space. Thanks to the pointfree formula

for weak separation the proof is again a calculation line by line. Before stating our

enrichment of [3, Thm. 1.2], we first check that if F is weakly separating and X is

T0, then F separates points. Indeed, assume x 6= y. If K is closed, x /∈ K and

y ∈ K, say, then there is a finite cover C of K such that for all A ∈ C there is an

f ∈ F with f(x) /∈ f(A). Let B ∈ C be such that y ∈ B. Then f(x) /∈ f(B) ∋ f(y),

i.e. f(x) 6= f(y).
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Theorem 3.4. Let F be a family of continuous functions f : X → Yf where X

is a T0-space and Yf are arbitrary topological spaces. If F weakly separates points

from closed sets, then the evaluation map embeds X into
∏

f∈F0

Yf where F0 ⊆ F is

such that |F0| 6 w(X).

P r o o f. By Lemma 3.3, we can find F0 ⊆ F which satisfies the condition (WS).

Since e is injective, we only need to check that the evaluation map e is closed. Let

f ∈ F0 and A ⊆ X . We calculate:

f−1(f(A)) = (πf ◦ e)−1((πf ◦ e)(A))

⊇ e−1(π−1
f (πf (e(A))))

⊇ e−1(e(A)),

so that
⋂

f∈F0

f−1(f(A)) ⊇ e−1(e(A)) and hence K ⊇
⋂

C∈Covfin(K)

⋃

A∈C

e−1(e(A)).

We calculate further as follows:

e(K) ⊇
⋂

C∈Covfin(K)

e

(

⋃

A∈C

e−1(e(A))

)

⊇ e(e−1(e(K)))

= Cle(X)e(K),

since e maps X onto e(X). �

4. Separating families in the sense of Mrówka

To treat Mrówka’s approach (see [9]), we need more notation. If f : X → Yf is

continuous for all f ∈ F, then the evaluation map associated with F ⊆ F will be

written as eF : X →
∏

f∈F

Yf .

Definition 4.1 ([9, Def. 2.2]). The family F is called separating if for each closed

set K ⊆ X and each x ∈ X \ K there exists a finite subfamily F ⊆ F such that

eF (x) /∈ eF (K).

Let Ffin denote the family of all finite subsets of F. It should already be clear that

a family F is separating iff for all closed K ⊆ X we have

(S) K =
⋂

F∈Ffin

e−1
F (eF (K)).
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Remark 4.2. It follows that F is separating iff {eF : F ∈ Ffin} separates points

from closed sets. Also, if X is T0 and F is separating, then F separates points.

Consequently, if F is separating and X is T0, then—by Theorem 2.2—X embeds

into
∏

F∈Ffin

(

∏

f∈F

Yf

)

. In particular, if Yf = Y for all f ∈ F, then X embeds into

Y w(X) (cf. the theorem of Mrówka stated in Section 1).

The following result improves and extends the just mentioned Mrówka’s theorem

provided X is T0. It will be convenient to denote the evaluation map from X into
∏

f∈F

Yf by eF .

Theorem 4.3. Let F be a separating family of functions f : X → Yf where X is

a T0-space and Yf are arbitrary topological spaces for all f ∈ F. Then the evaluation

map embeds X into
∏

f∈F0

Yf where F0 ⊆ F is such that |F0| 6 w(X).

P r o o f. By Lemma 3.3, we can find F0 ⊆ F which satisfies the condition (S). For

each F ⊆ F0 let πF :
∏

f∈F0

Yf →
∏

f∈F

Yf be the (continuous) projection determined

by eF = πF ◦ eF0
. We can now continue precisely as in the proof of Theorem 2.2

replacing f and F by F and F, respectively. �

5. Separating points from closed sets in terms of open sets

Let OX stand for the topology of X . One can go further in dismantling the concept

of separating points from closed sets not only from points but also from closed sets

and formulate it purely in terms of open sets. Namely, if in K =
⋂

f∈F

f−1(f(K)) we

put K = X \ U and take complements on both sides, then we obtain

U =
⋃

f∈F

f−1(Y \ f(X \ U)).

Further, Y \ f(X \ U) = f∗(U) where f∗ : OX → OY is the right adjoint of the

inverse image map f−1 : OY → OX , i.e.

f∗(U) =
⋃

{V ∈ OY : f−1(V ) ⊆ U}

(see [8]). Consequently, F separates points from closed sets iff for each open U ⊆ X

the following formula holds:

U =
⋃

f∈F

f−1(f∗(U)).

This is an invitation to both localic and many-valued setting (cf. [2] and [6]).
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