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Abstract. Like the classical Gram-Schmidt theorem for symplectic vector spaces, the
sheaf-theoretic version (in which the coefficient algebra sheaf A is appropriately chosen)
shows that symplectic A -morphisms on free A -modules of finite rank, defined on a topo-
logical space X, induce canonical bases (Theorem 1.1), called symplectic bases. Moreover
(Theorem 2.1), if (E , ϕ) is an A -module (with respect to a C-algebra sheaf A without zero

divisors) equipped with an orthosymmetric A -morphism, we show, like in the classical sit-
uation, that “componentwise” ϕ is either symmetric (the (local) geometry is orthogonal) or
skew-symmetric (the (local) geometry is symplectic). Theorem 2.1 reduces to the classical
case for any free A -module of finite rank.

Keywords: symplectic A -modules, symplectic Gram-Schmidt theorem, symplectic basis,
orthosymmetric A -bilinear forms, orthogonal/symplectic geometry, strict integral domain
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Introduction

Abstract Differential Geometry (ADG) offers a new approach to classical differen-

tial geometry (on smooth manifolds). This new approach differs from the classical

way of understanding the geometry of smooth manifolds, differential spaces à la

Mostow [17], Sikorski [19], and the likes, in the sense that, for instance, differential

spaces in general are governed by new classes of “smooth” functions; in ADG the

structural sheaf of functions is replaced instead by an arbitrary sheaf of algebras A ,

based on an arbitrary topological space X . The same (sheaf of) algebras may in

some cases contain a tremendous amount of singularities, while still retaining the

classical character of a differential mechanism, yet without any underlying (smooth)

manifold: see e.g. [9], [12]. This results into significant potential applications, even
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to quantum gravity (ibid.). On the side, we may also point out that the main moral

of ADG is the functorial mechanism of (classical) calculus, cf. [11], viz. Physics is

A -invariant regardless of what A is. Yet, a particular instance of the foregoing

comment that also interests us here is the standard symplectic differential geometry

(on manifolds), where a special important issue is the so-called orbifolds theory; see

e.g. [10, Vol. II, Chapt. X; Section 3a] concerning its relation with ADG, or [4] for the

classical case. The following constitutes a sheaf-theoretic fundamental prelude with

a view towards potential applications of ADG, the whole set-up being in effect a “La-

grangian perspective”. The aim of the paper is to generalize primarily the symplectic

Gram-Schmidt theorem (see [14, p. 184, Theorem 3]) and also characterize the fun-

damental geometries induced by an orthosymmetric A -morphism on an A -module,

see e.g. [6]. Our main reference, throughout the present account, is [9], which may

be useful for the basics of ADG.

This is a continuation of work done by Mallios and Ntumba [14], [15], and [16].

Convention. Throughout the paper, X will denote an arbitrary topological

space, the pair (X, A ) a fixed C-algebraized space, cf. [9, p. 96] with A a uni-

tal, commutative C-algebra sheaf, and all A -modules are understood to be defined

on the topological space X .

For easy referencing, we recall a few basic definitions.

A C-algebraized space on a topological space X is a pair (X, A ), where A ≡

(A , τ, X) is a (preferably unital and commutative) sheaf of C-algebras (or in other

words, a C-algebra sheaf ). A sheaf of A -modules (or an A -module) on X is a sheaf

E ≡ (E , ̺, X) such that the following conditions hold:

(i) E is a sheaf of abelian groups;

(ii) For every point x ∈ X , the corresponding stalk Ex of E is a (left) Ax-module;

(iii) The exterior module multiplication in E , viz. the map A ◦ E −→ E : (a, z) 7−→

a · z ∈ Ex ⊆ E with τ(a) = ̺(z) = x ∈ X , is continuous.

An A -module E is called a free A -module of rank n (n ∈ N), provided E = A n

within an A -isomorphism. The A -module A n is called the standard free A -module

of rank n. For an open subset U ⊆ X , the canonical (Kronecker) basis of the

A (U)-module A n(U) is the set {εU
i }16i6n, where εU

i := δU
ij ∈ A n(U) ∼= A (U)n

such that δU
ij = 1 for i = j and δU

ij = 0 for i 6= j. So one gets, for any x ∈ X ,

εU
i (x) = (δU

ij(x))16j6n ∈ A n
x (1 6 i 6 n), where δU

ij(x) = 1x ∈ Ax, if i = j, and

δU
ij(x) = 0x ∈ Ax, if i 6= j.

Now suppose there is given a presheaf of unital and commutative C-algebras A ≡

(A(U), τU
V ) and a presheaf of abelian groups E ≡ (E(U), ̺U

V ), both on a topological

space X and such that (i) E(U) is a (left) A(U)-module, for every open set U ⊆ X ,
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(ii) For any open sets U , V in X , with V ⊆ U , ̺U
V (a · s) = τU

V (a) · ̺U
V (s) for any

a ∈ A(U) and s ∈ E(U). We call such a presheaf E a presheaf of A(U)-modules onX ,

or simply an A-presheaf on X . A -modules and A-presheaves with their respective

morphisms form categories which we denote A -ModX and A-PShX respectively. By

virtue of the equivalence ShX
∼= CoPShX (cf.[9, p. 75, (13.18)]), an A -morphism

ϕ = (ϕU )X⊇U,open : E −→ F of A -modules E and F may be identified with the

A-morphism ϕ = (ϕU )X⊇U,open : E −→ F of the associated A-presheaves. We shall

most often denote by just ϕ the corresponding A-morphism associated with the

A -morphism ϕ. The meaning of ϕ will always be determined by the situation at

hand. Furthermore, to make the paper more self-contained, we also recall some

notions, which may be found in our recent papers such as [16], [15], and [14]. Let

E and F be A -modules and ϕ : E ⊕ F −→ A an A -bilinear morphism. The

triple (E , F ; A ) ≡ ((E , F ; ϕ); A ) is said to define a pairing of A -modules. Now,

one defines the sub-A -module E ⊥ of F , as the sheaf generated by the presheaf of

sub-A (U)-modules of F (U), given by

E
⊥(U) := {t ∈ F (U) : ϕV (E (V ), gt|V ) = 0},

for any U , V open in X , with V ⊆ U . In the same way, one defines the sub-A -

module F⊥. Thus, for any open U ⊆ X ,

F
⊥(U) := {s ∈ E (U) : ϕV (s|V , F (V )) = 0},

with V open in U . E ⊥ and F⊥ are called right kernel and left kernel of the pairing

(E , F ; A ), respectively. In this context, in the case of free A -modules (:= free

A -pairings, for short), one has, for every open subset U of X ,

F
⊥(U) = F (U)⊥ := {r ∈ E (U) : ϕU (r, F (U)) = 0},

and similarly

E
⊥(U) = E (U)⊥ := {r ∈ F (U) : ϕU (E (U), r) = 0}.

Now, let ((E , E ; ϕ); A ) be a (self) pairing such that the left kernel, E ⊥
l := E ⊥,

coincides with the right kernel E ⊥
r := E ⊤. Then, we call E ⊥ (= E ⊤) the radical sheaf

(or sheaf of A -radicals, or simply A -radical) of E , and denote it by radA E ≡ radE .

An A -module E such that radE 6= 0 (resp. radE = 0) is called isotropic (resp. non-

isotropic); E is totally isotropic if ϕ is identically zero. A non-zero (local) section

r ∈ E (U), U open in X , is called isotropic, if ϕU (r, r) = 0. The A -radical of

a sub-A -module F of E is defined as radF := F ∩ F⊥ = F ∩ F⊤. If (E , F ; A )
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is a free A -pairing, then for every open subset U of X , (radE )(U) = radE (U)

and (radF )(U) = radF (U), where radE (U) = E (U) ∩ E (U)⊥ and radF (U) =

F (U) ∩ F (U)⊥.

1. Symplectic Gram-Schmidt theorem

For the purpose of Theorem 1.1 below, we assume that the pair (X, A ) is a C-

algebraized space, such that every nowhere-zero section of A is invertible; viz. if

s ∈ A (U), where U is open in X , is such that s|V 6= 0 for every open V ⊆ U , then

s ∈ A (U)• ∼= A •(U) (A • denotes the sheaf generated by the complete presheaf

U 7−→ A (U)•, where U runs over the open subsets of X , and A (U)• ∼= A •(U)

consists of the invertible elements of the unital C-algebra A (U); cf. [9, pp. 282,

283]). For convenience, we call the above the “inverse-closed section condition”

of A .

For the sake of Definition 1.1 below (see [13]), let us recall the following lemma,

whose proof may be found in [13].

Lemma 1.1. Let (E , F ; ϕ) be a pairing of A -modules. Then, ϕ induces an

A -morphism, viz.

ϕE : F −→ E
∗ := HomA (E , A ),

given by

ϕE
U (t)(s) := ϕV (s, σU

V (t)) ≡ ϕV (s, t|V ),

where U is open in X , t ∈ F (U), s ∈ E (V ) and the σU
V the restriction maps of the

presheaf of sections of F . Likewise, ϕ gives rise to a similar A -morphism:

ϕF : E −→ F
∗.

Definition 1.1. Let (E , F ; ϕ) be an it A -pairing, and ϕE and ϕF be the in-

duced A -morphisms, according to Lemma 1.1. Then, ϕ is said to be non-degenerate

if E ⊥ = F⊥ = 0, and degenerate otherwise.

Now, let us recall that (see e.g. [14]) a symplectic A -module is a pair (E , ϕ), where

E is an A -module, and ϕ : E ⊕ E −→ A a symplectic A -morphism (or symplectic

A -form), i.e., a skew-symmetric and non-degenerate A -form on E . Skew-symmetry

means that for any open U ⊆ X ,

ϕU (r, s) = −ϕU (s, r) for any r, s ∈ E (U).

We also need for the proof of Theorem 1.1 the following.
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Lemma 1.2. Let (E , ϕ) be a symplectic free A -module of finite rank n, U an

open subset of X and (r1, . . . , rn) ⊆ E (U) a (local) gauge of E . Then, for any r ≡ ri,

1 6 i 6 n, there exists a nowhere-zero section s ∈ E (U) such that ϕU (r, s) is nowhere

zero.

P r o o f. Without loss of generality, assume that r1 = r. On the other hand, since

the induced A -morphism ϕ̃ ∈ HomA (E , E ∗) is one-to-one and both E and E ∗ have

the same finite rank, it follows that the matrix D representing ϕU (see also [1, p. 357,

Theorem 2.21, along with p. 356, Definition 2.19] or [5, p. 343, Proposition 20.3]),

with respect to the basis (r1, . . . , rn), has a nowhere-zero determinant ; so since

detD =

n∑

i=1

(−1)1+iϕ(r1, ri) detD1i = ϕ

(
r1,

n∑

i=1

(−1)1+i detD1iri

)
,

where D1i is the minor of the corresponding ϕ(r1, ri), and detD nowhere zero, we

thus have a section s :=
n∑

i=1

(−1)1+i detD1iri ∈ E (U) such that ϕ(r, s) is nowhere

zero. �

Theorem 1.1 below is the analogue of the classical symplectic Gram-Schmidt the-

orem, the latter being an “important result with many applications” (cf. [7, p. 12,

Theorem 1.15] and [3, p. 10, Proposition 1.13]). It is worth noting that the Gram-

Schmidt orthogonalization process is already available for Riemannian A -modules;

to this end, see [9, pp. 335–341]. In order to achieve the Riemmanian version of this

theorem, Mallios assumes the following conditions:

(1) Every strictly positive section of the coefficient algebra sheaf A is invertible,

viz., for any s ∈ A +(U), U open in X , with s|V 6= 0 for any open V ⊆ U ,

one has that s ∈ A (U)• = A •(U). Indeed, in the proof of Theorem 1.1 below,

we need the “inverse-closed section condition” of A , already formulated at the

beginning of Section 1.

(2) Every positive section of A has a square root ; viz., for every section s ∈ A +(U),

with U open in X , there is a (unique) t ∈ A +(U) such that t2 = s.

Based on the previous condition (1), we have the following.

Theorem 1.1. Let A be an R-algebra sheaf satisfying the inverse-closed section

condition, (E , ϕ) a free A -module of rank 2n, ϕ = (ϕU ) : E ⊕ E −→ A a skew-

symmetric non-degenerate A -bilinear form, and I and J two (possibly empty) sub-

sets of {1, . . . , n}. Moreover, let A = {ri ∈ E (U) : i ∈ I} and B = {sj ∈ E (U) : j ∈

J} such that

(1) ϕU (ri, rj) = ϕU (si, sj) = 0, ϕU (ri, sj) = δij , (i, j) ∈ I × J.

Then, there exists a basis B of (E (U), ϕU ) containing A ∪ B.
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P r o o f. We have three cases. With no loss of generality, we assume that U = X .

(1) Case: I = J = ∅. Since A 2n 6= 0 (we already assumed that C ≡ CX ⊆ A ),

there exists an element

0 6= r1 ∈ E (X) ∼= A
2n(X) ∼= A (X)2n

(take e.g. the image (by the isomorphism E (X) ∼= A 2n(X)) of an element in the

canonical basis of (sections) of A 2n(X)). By virtue of Lemma 1.2, there exists

a section s1 ∈ E (X) such that ϕV (r1|V , s1|V ) 6= 0 for any open subset V in X .

Thus, based on Condition (1), ϕX(r1, s1) is invertible in A (X). Putting s1 := u−1s1,

where u ≡ ϕX(r1, s1) ∈ A (X), one gets

ϕX(r1, s1) = 1.

Now, let us consider

S1 := [r1, s1],

that is, the A (X)-plane, spanned by r1 and s1 in E (X), along with its orthogonal

complement in E (X), i.e.,

S⊥
1 ≡ T1 := {t ∈ E (X) : ϕX(t, z) = 0, for all z ∈ S1}.

The sections are linearly independent, for if s1 = ar1, with a ∈ A (X), then

1 = ϕX(r1, s1) = ϕX(r1, ar1) = aϕX(r1, r1) = 0,

a contradiction. So, {r1, s1} is a basis of S1. Furthermore, we prove that

(i) S1 ∩ T1 = 0, (ii) S1 + T1 = E (X).

Indeed, (i) since ϕX(r1, s1) 6= 0, we have S1 ∩ T1 = 0. On the other hand, (ii) for

every z ∈ E (X), one has

z = (−ϕX(z, r1)s1 + ϕX(z, s1)r1) + (z + ϕX(z, r1)s1 − ϕX(z, s1)r1),

with

−ϕX(z, r1)s1 + ϕX(z, s1)r1 ∈ S1,

and

z + ϕX(z, r1)s1 − ϕX(z, s1)r1 ∈ T1.

Thus,

E (X) = S1 ⊕ T1.
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The restriction ϕ1 ≡ ϕ1,X of ϕX to T1 is non-degenerate, because if z1 ∈ T1 is such

that ϕ1(z1, z) = 0 for all z ∈ T1, then z1 ∈ T⊥
1 and hence z1 ∈ T1 ∩T⊥

1 = S⊥
1 ∩T⊥

1 =

(S1 +T1)
⊥ = E (X)⊥ = 0; so z1 = 0. (T1, ϕ1) is thus a symplectic free A (X)-module

of rank 2(n−1). Repeating the construction above (n−1)times, we obtain a strictly

decreasing sequence

(E (X), ϕX) ⊇ (T1, ϕ1) ⊇ . . . ⊇ (Tn−1, ϕn−1)

of symplectic free A (X)-modules with rank Tk = 2(n−k), k = 1, . . . , n−1, and also

an increasing sequence

{r1, s1} ⊆ {r1, r2; s1, s2} ⊆ . . . ⊆ {r1, . . . , rn; s1, . . . , sn}

of gauges; each satisfying the relations (2).

(2) Case I = J 6= ∅. We may assume without loss of generality that I = J =

{1, 2, . . . , k}, and let S be the subspace spanned by {r1, . . . , rk; s1, . . . , sk}. Clearly,

ϕX |S is non-degenerate; by [1, Lemma (2.31), p. 360], it follows that S ∩ S⊥ = 0.

On the other hand, let z ∈ E (X). One has

z =

(
−

k∑

i=1

ϕX(z, ri)si +

k∑

i=1

ϕX(z, si)ri

)
+

(
z +

k∑

i=1

ϕX(z, ri)si −
k∑

i=1

ϕX(z, si)ri

)
,

with

−
k∑

i=1

ϕX(z, ri)si +

k∑

i=1

ϕX(z, si)ri ∈ S,

and

z +

k∑

i=1

ϕX(z, ri)si −
k∑

i=1

ϕX(z, si)ri ∈ S⊥.

Thus,

E (X) = S ⊕ S⊥.

Based on the hypothesis on S1 the restriction ϕX |S is a symplectic A -bilinear form.

It is also easily seen that the restriction ϕXS⊥ is skew-symmetric. Moreover, since

S ⊕ S⊥ = E (X) and E (X)⊥ = 0, if there exist z1 ∈ S⊥ such that ϕX(z1, z) = 0 for

all z ∈ S⊥, then z1 ∈ E (X)⊥ = 0, i.e., z1 = 0. Thus, ϕX |S⊥ is non-degenerate and

hence a symplectic A -form. Applying Case (1), we obtain a symplectic basis of S⊥,

which we denote as

{rk+1, . . . , rn; sk+1, . . . , sn}.
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Then,

B = {r1, . . . , rn; s1, . . . , sn}

is a symplectic basis of E (X) with the required property.

(3) Case J\I 6= ∅ (or I\J 6= ∅). Suppose that k ∈ J\I; since ϕX is non-degenerate

there exists rk ∈ E (X) such that ϕX(rk, sk) 6= 0 in the sense that ϕV (rk|V , sk|V ) 6= 0

for any open V ⊆ X . In other words, the section v ≡ ϕX(rk, sk) ∈ A (X) is nowhere

zero, and is therefore invertible. So, if rk := v−1rk, we have ϕX(rk, sk) = 1. Next,

let us consider the sub-A (X)-module R, spanned by rk and sk, viz. R = [rk, sk]. As

in Case (1), we have

E (X) = R ⊕ R⊥.

Clearly, for every i ∈ I, ri ∈ R⊥. To show this, fix i in I, and assume that ri =

ark + bsk + x, where a, b ∈ A (X) and x ∈ R⊥. So, one has

0 = ϕX(ri, sk) = a, 0 = ϕX(ri, rk) = b,

which corroborates the claim that ri ∈ R⊥ for all i ∈ I. Furthermore, we also clearly

have that for every j 6= k in J , sj ∈ R⊥. Then A ∪ B ∪ {rk} is a family of linearly

independent sections: the equality

akrk +
∑

i∈I

airi +
∑

j∈J

bjsj = 0

implies that ak = ai = bj = 0. Repeating this process as many times as necessary,

we are led back to Case (2), and the proof is finished. �

Referring to Theorem 1.1, the basis B is called a symplectic A (U)-basis of

(E (U), ϕU ). The affine Darboux theorem (cf. [14]) is a major application of the

symplectic Gram-Schmidt theorem in Abstract Differential Geometry.

Theorem 1.1 helps improve on Lemma 1.2 as we see it in the following.

Corollary 1.1. Let (E , ϕ) be a symplectic free A -module of finite rank. For

any nowhere-zero (local) section r ∈ E (U) (U is an open subset of X), there exists

a nowhere-zero section s ∈ E (U) such that ϕU (r, s) is nowhere zero.

P r o o f. Apply Theorem 1.1 to find a symplectic basis of (E (U), ϕU ) containing

the given nowhere-zero section r, then apply Lemma 1.2 to find a nowhere-zero

section s ∈ E (U) such that ϕU (r, s) is nowhere zero. �

Corollary 1.2. If (E , ϕ) is a symplectic free A -module of rank 2n, then, for

every open U ⊆ X ,

E (U) = HU
1 ⊕ . . . ⊕ HU

n ,

where HU
1 , . . . , HU

n are pairwise orthogonal non-isotropic sub-A (U)-modules of

rank 2.
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P r o o f. The proof is similar to a good extent to the first part of the proof of

Theorem 1.1. In fact, let U be an open subset of X and r1 ∈ E (U), a nowhere-zero

section. There exists a section s1 in E (U) such that ϕV (r1|V , s1|V ) 6= 0 for any open

V ⊆ U . Clearly, r1, s1 must be linearly independent, and the sub-A (U)-module

H1 ≡ HU
1 := [r1, s1], spanned by r1 and s1, is non-isotropic. As in the proof of

Theorem 1.1, Case (1), one has

E (U) = H1 ⊕ H⊥
1 .

The restriction ϕH⊥
1

≡ (ϕU )|H⊥
1

of ϕU to H⊥
1 is non-degenerate, because if t ∈ H⊥

1

is such that ϕH⊥
1

(t, z) = ϕU (t, z) = 0 for all z ∈ H⊥
1 , then t ∈ H⊥⊥

1 ≡ (H⊥
1 )⊥ and

hence t ∈ H⊥
1 ∩ H⊥⊥

1 = (H1 + H⊥
1 )⊥ = E (U)⊥ = 0, which implies that t = 0.

Thus, (H⊥
1 , ϕH⊥

1

) is a symplectic free A (U)-module of rank 2(n − 1). Next, take

a nowhere-zero r2 ∈ H⊥
1 ; since ϕU (r2, r1) = ϕU (r2, s1) = 0, there exists a section

s2 ∈ H⊥
1 such that ϕV (r2|V , s2|V ) 6= 0 for any open V ⊆ U . As above, one has

H⊥
1 = H2 ⊕ H⊥

2 ,

where H2 := [r2, s2]. The direct decomposition sum of E (U) follows by repeating the

construction above (n − 2)times. �

Each sub-A (U)-module HU
i in Corollary 1.2 has an ordered basis (ri, si) such that

(ϕU (ri, si))|V ≡ ϕV (ri|V , si|V ) := ai|V 6= 0 for any open subset V of U . Then, based

on the hypothesis that every nowhere-zero section of A is invertible, the restriction

of ϕU to HU
i with respect to the basis (ri, a

−1
i si) has matrix

(
0 1

−1 0

)
.

Hence, we have

Corollary 1.3. If (E , ϕ) is a symplectic free A -module of rank 2n, then for every

open subset U of X , there exists an ordered basis of E (U) with respect to which

ϕU has matrix

AU
2n =




0 1

−1 0

. . .
0 1

−1 0




.

Moreover, symplectic A -modules of the same rank are isometric.
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2. Orthosymmetric A -bilinear forms

We shall see in this section that the “geometry of an A -bilinear form” (see e.g. [2,

p. 111]) is “local” (par abus de langage) on arbitrary A -modules, (Theorem 2.1)

but “global” on free A -modules of finite rank (Theorem 2.2). We will assume that

the C-algebra sheaf A has no zero-divisors (=: “strict integral domain”), that is, for

any open U ⊆ X , if r, s ∈ A (U) are nowhere-zero sections, then their product rs is

nowhere zero.

For convenience, we state hereby the definition of orthosymmetric A -bilinear

forms (cf. [18] and [8, p. 90, 91]): An A -bilinear form ϕ on an A -module E is

called orthosymmetric if the following is true:

(2) E
⊥ = E

⊤.

Equivalently, for every open U ⊆ X and (local) sections t ∈ E (U), s ∈ E (V ),

where V is an open subset of U , we have

ϕV (s, t|V ) = 0 if, and only if, ϕV (t|V , s) = 0.

It is clear that if ϕ is orthosymmetric, then ⊥(ϕ) ≡ ⊥ = ⊤ ≡ ⊤(ϕ), i.e. F⊥ = F⊤

for any sub-A -module F of E , which entails that orthosymmetry is hereditary, with

respect to sub-A -modules. Of course, if ϕ is symmetric or skew-symmetric, then

ϕ is orthosymmetric. We will show (Theorem 2.2) that the converse of the preceding

statement holds in the special case of free A -modules of finite rank, and A has no

zero divisors. However, for arbitrary A -modules, we have the following.

Theorem 2.1. Let A be an strict integral domain C-algebra sheaf, E an A -

module and ϕ ≡ (ϕU ) : E ⊕ E −→ A an orthosymmetric A -bilinear form. Then,

“componentwise” (i.e., for every ϕU ), ϕ is either symmetric or skew-symmetric.

P r o o f. Let U be an open subset of X , and r, s, t ∈ E (U). Clearly, we have

ϕU (r, ϕU (r, t)s) − ϕU (r, ϕU (r, s)t) = ϕU (r, t)ϕU (r, s) − ϕU (r, s)ϕU (r, t) = 0,

but

ϕU (r, ϕU (r, t)s − ϕU (r, s)t) = 0

is equivalent to

ϕU (ϕU (r, t)s − ϕU (r, s)t, r) = 0;

thus we obtain

(3) ϕU (r, t)ϕU (s, r) = ϕU (r, s)ϕU (t, r).
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For t = r, ϕU (r, r)ϕU (s, r) = ϕU (r, s)ϕU (r, r). If

(4) ϕV (r|V , s|V ) 6= ϕV (s|V , r|V ), for any open V ⊆ U,

then (A is an strict integral domain algebra sheaf )

ϕU (r, r) = 0.

(We note in passing that (4) suggests that both ϕV (r|V , s|V ) and ϕV (s|V , r|V ) are

nowhere zero on V , because if, for instance, ϕV (r|V , s|V )(x) = 0 for some x ∈ V

then ϕV (r|V , s|V ) = 0 on some open neighborhood R ⊆ V of x (cf. [9, (3.7), p. 13]),

i.e., assuming that (̺U
V ) and (σU

V ) are the restriction maps for the presheaves of

sections of E and A , respectively, we have

σU
R(ϕU (s, r)) = ϕR(̺U

R(s), ̺U
R(r)) ≡ ϕR(s|R, r|R) = 0,

which, by hypothesis, is equivalent to ϕR(r|R, s|R) = 0. That is a contradiction

to (4)).

Similarly, as

ϕU (s, ϕU (s, t)r) − ϕU (s, ϕU (s, r)t) = 0,

which, obviously, leads to

(5) ϕU (s, t)ϕU (r, s) = ϕU (s, r)ϕU (t, s),

one has, for t = s,

ϕU (s, s)ϕU (r, s) = ϕU (s, r)ϕU (s, s).

Using (4), we have

ϕU (s, s) = 0.

We actually have more than just what we have obtained so far. Indeed, if (4) holds,

then ϕU (t, t) = 0 for all t ∈ E (U). We prove this statement as follows.

(A) Let ϕV (r|V , t|V ) 6= ϕV (t|V , r|V ) for any open V ⊆ U . Since

(6) ϕU (t, r)ϕU (s, t) = ϕU (t, s)ϕU (r, t),

by putting s = t, we have ϕU (t, t) = 0.

(B) Suppose that there exists an open W ⊆ U such that ϕW (r|W , t|W ) =

ϕW (t|W , r|W ). Then, by virtue of (3) and since ϕW (r|W , s|W ) 6= ϕW (s|W , r|W )

everywhere on W , it follows that

ϕW (r|W , t|W ) = ϕW (t|W , r|W ) = 0.
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On the other hand, suppose that ϕV (s|V , t|V ) 6= ϕV (t|V , s|V ) for any open V ⊆ U .

Putting r = t in (6), one gets ϕU (t, t) = 0. Now, assume that there exists an open

T ⊆ U such that ϕT (s|T , t|T ) = ϕT (t|T , s|T ) and for any open subset V ⊆ U \ T ,

where T is the closure of T in X , ϕV (s|V , t|V ) 6= ϕV (t|V , s|V ). By virtue of (5) and

of

ϕT (s|T , r|T ) 6= ϕT (r|T , s|T ),

it follows that

ϕT (s|T , t|T ) = ϕT (t|T , s|T ) = 0.

Hence,

ϕT (r|T + t|T , s|T ) = ϕT (r|T , s|T ) 6= ϕT (s|T , r|T ) = ϕT (s|T , r|T + t|T ),

and if we substitute r|T + t|T and s|T for t|V and r|V respectively in (A), we get

ϕT (r|T + t|T , r|T + t|T ) = 0.

But ϕT (r|T , r|T ) = 0 (since ϕU (r, r) = 0 and T ⊆ U is open), then if ϕT (r|T , t|T ) =

ϕT (t|T , r|T ) = 0, one has

(7) ϕT (t|T , t|T ) = 0.

If both ϕT (r|T , t|T ) and ϕT (t|T , r|T ) are nowhere zero on T , and ϕT (r|T , t|T ) 6=

ϕT (t|T , r|T ), we deduce from (6), by putting s = t, ϕT (t|T , t|T ) = 0. If instead we

have ϕT (r|T , t|T ) = ϕT (t|T , r|T ), we will end up with

ϕT (r|T , t|T ) = ϕT (t|T , r|T ) = 0,

which leads to (7) as previously shown. If there exists an open subset L ⊆ T such that

ϕL(r|L, t|L) = ϕL(t|L, r|L) = 0 and ϕV (r|V , t|V ) 6= ϕV (t|V , r|V ) for every V ⊆ T \L,

where L is the closure of L in X , then ϕL(t|L, t|L) = 0 and ϕV (t|V , t|V ) = 0 for every

open V ⊆ T \ L. Hence, by the fact that sections are continuous ϕT (t|T , t|T ) = 0.

Next, ϕV (s|V , t|V ) 6= ϕV (t|V , s|V ) for every open V ⊆ U \ T , so ϕV (t|V , t|V ) = 0

for every such V ; coupling the latter observation with (7) and continuity of sections,

one gets in this case too that ϕU (t, t) = 0.

We have shown that there are only two cases: either ϕU (r, r) = 0 for all r ∈ E (U),

or for some r ∈ E (U), ϕU (r, r) 6= 0, from which we deduce that ϕU (s, t) = ϕU (t, s)

for all s, t ∈ E (U).

Finally, we notice in ending the proof that if ϕU (r, r) = 0 for all r ∈ E (U), then

ϕU (r, s) = −ϕU (s, r)

for all r, s ∈ E (U). �
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Referring still to Theorem 2.1, if ϕU is symmetric, the geometry is called orthog-

onal. If ϕU is skew-symmetric, the geometry is called symplectic. No other case can

occur if ϕ must be orthosymmetric. A pairing (E , ϕ) is called symmetric, respec-

tively, skew-symmetric if ϕ is such componentwise.

The classical case (cf. [6, p. 4, Proposition 1.1.3]) turns out to be a particular case

of Theorem 2.1, as we see it in the following.

Corollary 2.1. Let E be a free A -module of finite rank (with respect to a C-

algebra sheaf A that has no zero divisor sections) and ϕ : E ⊕E −→ A an orthosym-

metric A -bilinear form. Then, ϕ is either symmetric or skew-symmetric.

P r o o f. Let us assume that {s1, . . . , sn} is a basis of E (X). According to

Theorem 2.1, ϕX is either symmetric or skew-symmetric, and since for any open U

in X , {s1|U , . . . , sn|U} is a basis of E (U), it follows that ϕU is symmetric (resp.

skew-symmetric) if ϕX is symmetric (resp. skew-symmetric). �

The above discussion can be summarized in the following.

Theorem 2.2. Let A be a C-algebra sheaf with no zero divisors, E a free A -

module of finite rank and an A -bilinear form ϕ : E ⊕E −→ A . Then, ϕ is orthosym-

metric if, and only if, it is either symmetric or skew-symmetric.

Acknowledgement. I am indebted to Professor A. Mallios for his many construc-

tive remarks, which led to the present form of the article. In particular, Theorem 2.2

was obtained after his suggestion of retrieving the classical case.

References

[1] W.A. Adkins, S.H. Weintraub: Algebra. An Approach via Module Theory. Springer,
New York, 1992.

[2] E. Artin: Geometric Algebra. John Wiley & Sons/Interscience Publishers, New York,
1988.

[3] R. Berndt: An Introduction to Symplectic Geometry. American Mathematical Society,
Providence, 2001.

[4] A. Cannas da Silva: Lectures on Symplectic Geometry. Springer, Berlin, 2001.
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