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B. Jonsson [2] has proved that every lattice is a sublattice of a subdirectly irreducible lattice.
Here we strengthen this result.

In order to simplify the notation we shall omit the one-element classes in the ex-
pression § = (Nj)s 4 for a partition on aset M = 8. E. g., 3 = (m, n), (p, ¢) means that
the partition 3 of the partition lattice § (M) consists of two two — element classes (m, 7),
(p, g) and that the other classes of 3 have only one element. If 1 < 32, 33 = 34,
31 A\ 2a=33 and 3 V 34 = 32, then we shall write 32/31 \ 34/33 resp. 3a/31 7 32/#1-

Theorem 1. The partition lattice 3 (M) is simple.
Proof. It may be assumed without loss of generality that card M = 3. We shall
decompose the proof in the following steps (The statement (ii) is contained in [1];
for the sake of completeness we shall give here another proof.):
(i) If 30, 31 are two atoms of (M), then the intervals [0, 30}, [0, 31] are projective.
In fact, the transitivity of the projectivity makes it sufficient to show that for any
two atoms 3, 3" of the form 3’ = (m, n), 3" = (n, p) the intervals [0, 3] [0, 3"] are
projective. But the atoms 3', 3", 3" = (m, p) generate in 3 (M) a sublattice iso-
morphic with the five-element modular lattice M5 having all prime intervals projective.
(ii) Any two prime intervals of 3 (M) are projective. Indeed, if 31 — 3, t.e., if 32
covers 31, and 0 < %, then there exists ([3], Satz 53) a relative complement 3; of
31 in [0, 32). Since 3(M) is relatively atomic in the sense of Szdsz, there is a 3o
such that 0 — 3;o < 3; and 31 \V 310 = 32> 31 A 310 = 0. Consequently, 32/31\ 310/0
which completes by /i/ the proof of /ii/.
fiii/ Let us now consider a maximal system 1) consisting of disjoint two-element
classes of the form (m, mg), m1, me € M which may be interpreted as ordered pairs.
Let Mi={m|aneM(m,n)ey}, Ms={m|aneM (n,m)ecy}. Since card
(M (M Y Ms)) < 1, only two cases are possible:
fiv] Case I: M = M () Ms. Let a = (My), (Mz), 101 = (M1), e = (Mz),q = 0,
mw = 1). Then we have (cf. Fig. 1)

I/ ™ 102/0 7 afto1 ¢))
and Ila w/q » It (2)



[v| Case II: M = M1 |) Mz {gq}. Let (p1, p2) €1 and let tp denote the partition on
M obtained from Y) by replacing the class (p1, p2) by the class (p1, g, p2). Further,
let w1 = (M1 U {g}), toe = (Ma), a = (M1 {g}) (M2), q = (p1, g). It is easy to
check the validity of (1) and (2) also for this case (cf. Fig. 2).

/

Fig. 1. Fig. 2.

/vi] If = denotes a congruence such that 3* = 3+, 3* 7 3%, then thereisa §# € 3 (M)
such that 3* A 3+ — 3# < 3*V 3+ and 3# = 3* A 3*. Hence, by [ii/, I = a, since
I>— a. Therefore I = 1v; and v = q, by (2). Thus a = v; and by (1) we have
I = . Finally, since q >— 0, necessarily also q = 0. Summarizing I =w=q=0
we conclude that 3 (M) is simple.

Remark. By the Whitman's theorem it is now clear that every lattice can be embedded
in a simple lattice. This may be proved directly in the following way:

Theorem 2. Every lattice is a sublattice of a simple lartice.

Proof. Let L be an arbitrary lattice with extreme elements 0 and 1. For everya € L
different from both 0 and 1 we construct a lattice a«q (L) as follows: aq (L) =
= L |J {u, v} where u, v are two different elements not belonging to L; x <y in
aq (L) if and only if one of the following five cases takes place:

il x,yeL&x <yinL;

fif x=u&y=1;

fiiif x=2&y=1;

/ivl xeL&y = u& x =ain L;

vl x=0&y = v.

Evidently, L is a sublattice of aq (L); 0 and 1 are the extreme elements of x4 (L);



whenever @ is a congruence relation of og (L) and a @ x for some x € L where
a < x, then a @ 1. (Proof: We have a \V u ® x \/ u, i.e. u © 1; consequently,
u NvO1 A v,1ie 06, which givesa \V 00a \/ v, ie. ab 1)

We can construct quite similarly for every a € L different from both 0 and 1
a lattice B4 (L) such that L is its sublattice, 0 and 1 are its extreme elements and
whenever @ is a congruence relation of 8, (L) and a @ x for some x € L satisfying
x < a,thena® 0.

Put, moreover, ap (L) = o1 (L) = fo (L) = 1 (L) = L. Arrange elements of L
into a (possibly transfinite) sequence ao, a1, @2, . . ., 4 , - . - ; define lattices Lo,
Ly, Ly, ..., Ly, ...as follows: Ly = L; L, = fa, (xay (Ly-1)) if y — 1 exists;

L, = \J L¢ if y is limit. Put L* = |J L,, so that L* is a lattice, L is its sublattice,
o<y 4
0 and 1 are its extreme elements and whenever x @ y where x and y are two different

elements of L and @ is a congruence relation of L*, then 0 O 1, i.e. @ is the greatest
congruence relation of L*.

The union of the increasing chain (of type w) of lattices L, L*, (L*)*, ... is
a simple lattice containing L as a sublattice. As every lattice can be embedded into
a lattice with extreme elements, the theorem is thus proved.

Added id proof. Theorem 1 has been proved by O. Ore in Duke math. J. 9
1942, p. 626, where, however, the resulting line of reasoning did not possess the
strictly elementary and relatively self-contained character of the proof given in
this paper.
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