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B. Jonsson [2] has proved that every lattice is a sublatticeofasubdirectly irreducible lattice. 
Here we strengthen this result. 

In order to simplify the notation we shall omit the one-element classes in the ex­
pression g = (Nj)x€A for a partition on a set M ^ 0. E. g., g = (m, n), (p, q) means that 
the partition g of the partition lattice g (M) consists of two two - element classes (m, «), 
(/>, q) and that the other classes of g have only one element. If gi fg g2, g3 ^ g4, 
gi A *4 = g3 and gi V M = fc> then we shall write g2/gi \ g4/g3 resp. g4/gi / g2/gi. 

Theorem 1. The partition lattice g (M) is simple. 
Proof. It may be assumed without loss of generality that card M ^ 3. We shall 
decompose the proof in the following steps (The statement (ii) is contained in [1]; 
for the sake of completeness we shall give here another proof.): 
(i) If go, gi are two atoms of (M), then the intervals [0, go], [0, gi] are projective. 
In fact, the transitivity of the projectivity makes it sufficient to show that for any 
two atoms g', g" of the form g' = (m, n), g" = (ny p) the intervals [0, g'] [0, g"] are 
projective. But the atoms g', g", g'" = (m, p) generate in g (M) a sublattice iso­
morphic with the five-element modular lattice M5 having all prime intervals projective. 
(ii) Any two prime intervals of g (M) are projective. Indeed, if gi -< g2, i.e., if g2 
covers gi, and 0 < gi, then there exists ([3], Satz 53) a relative complement g{ of 
gi in [0, g2]. Since g(M) is relatively atomic in the sense of Szasz, there is a g(0 

such that 0 -< %[0 < i[ and gi V g/o = fr-> gi A g{0 = 0. Consequently, g2/gi\ g(o/0 
which completes by /i/ the proof of /ii/. 
/iii/ Let us now consider a maximal system t) consisting of disjoint two-element 
classes of the form (m, m2), mi, m2e M which may be interpreted as ordered pairs. 
Let Mi = {m \ 3 n e M (m, n) e t)}, M2 = {m\ineM (n, m) e t)}. Since card 
(M \ (Mi (J M2)) ^ 1, only two cases are possible: 
/iv/ Case I: M = Mi |J M2. Let a - (Mi), (M2), toi = (Mi), tv2 - (M2), q = 0, 
tv = t). Then we have (cf. Fig. 1) 

I/trj\ tt)2/0/r a/tui ( 0 

and I/a\ ro/q /f I/roi (2) 
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/v/ Case II: M = Mi (J M2 (J {q}. Let (pi, p2) e t) and let tv denote the partition on 
M obtained from t) by replacing the class (pi, p2) by the class (pi, q, pi). Further, 
let tt>i = (Mi [) {q}), tt>2 = (Af2), a = (M1 (J {q}), (M2), q = (px, q). It is easy to 
check the validity of (1) and (2) also for this case (cf. Fig. 2). 

V 

Fig. 1. Fig. 2. 

/vi/ I f = denotes a congruence such that j * = j + , 5* 7-= ă+> ™en there is a j# є % (M) 
such that j*Л 5+ -< 5* — S* V ă+ a n d ã# = 5*Л ă+- Hence, by /ii/, / = a, since 
/>— 0. Therefore I =tvi and tt) = q, by (2). Thus a = tvi and by (1) we have 
/ = tt>. Finally, since q >— 0, necessarily also q = 0. Summarizing / = tv = q == 0 
we conclude that j (Aí) is simple. 

Remark. By the Whitman's theorem it is now clear that every lattice can be embedded 
in a simple lattice. This may be proved directly in the following way: 

Theorem 2. Every lattice is a súblattice of a simple lattice. 

Proof. Let L be an arbitrary lattice with extreme elements 0 and 1. For every aєL 
different from both 0 and 1 we construct a lattice a a (L) as follows: a a (L) = 
= L\J {u, v) where u, v are two difřerent elements not belonging to L; x < y in 
a a (L) if and only if one of the following five cases takes place: 

/i/ x,y єL&x <yinL; 
/ii/ x = u & y = 1; 

/iii/ x = v & y = 1; 
/iv/ x є L & y = u& x 5g a in L; 
/v/ x = 0 &y = v. 

Evidently, L is a sublattice of a a (L); 0 and 1 are the extreme elements of a a (L); 
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whenever is a congruence relation of <xa (L) and a x for some xeL where 
a < x, then a \. (Proof: We have a \j u x \j щ i.e. ù 1; consequently, 
u f\ v \ A v, i.e. O v, which gives a \J O a v> i.e. a 1.) 

We can construct quite similarly for every aeL different from both 0 and 1 
a lattice ßa (L) such that L is its sublattice, 0 and 1 are its extreme elements and 
whenever is a congruence relation of ßa (L) and a x for some xeL satisŕying 
x < a, then a O. 

Put, moreover, ao (L) = ai (L) = ßo (L) = ß\ (L) = L. Arrange elements of L 
into a (possibly transfinite) sequence ao, ai, aг, . . . , ÛÛ, , . . . ; define lattices Lo, 
Li, L2, . . . , Lm , . . . as follows: Lo = L; Ly = /?ay (aoy (Ly_i)) if 7 — 1 exists; 
Ly = (J Lø if y is limit. Put L* = (J Ly, so that L* is a lattice, L is its sublattice, 

ô<y y 

0 and 1 are its extreme elements and whenever x y where x andy are two diíҒerent 
elements of L and is a congruence relation of L*, then 0 0 1, z.e. ö is the greatest 
congruence relation of L*. 

The union of the increasing chain (of type a>) of lattices L, L*, (L*)*> . . . is 
a simple lattice containing L as a sublattice. As every lattice can be embedded into 
a lattice with extreme elements, the theorem is thus proved. 

Added id proof. Theorem 1 has been proved by O. Ore in Duke math. J. 9 
1942, p. 626, where, however, the resulting line of reasoning did not possess the 
strictly elementary and relatively self-contained character of the proof given in 
this paper. 
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