Acta Universitatis Carolinae. Mathematica et Physica

Ivan Hlaváček

On a conjugate semi-variational method for parabolic equations

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 15 (1974), No. 1-2, 43--45

Persistent URL: http://dml.cz/dmlcz/142324

Terms of use:

© Univerzita Karlova v Praze, 1974

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

On a Conjugate Semi-variational Method for Parabolic Equations

I. HLAVÁČEK
Mathematical Institute, Czechoslovak Academy of Sciences, Prague

Formulating the heat conduction problem in terms of the heat flux vector, a particular case of a general parabolic equation with positive definite and positive semi-definite operator coefficients is obtained. To such problem, the so-called semi-variational method can be applied, yielding a sequence of approximations with an increasing accuracy. Even the first approximation shows favourable numerical results in comparison with the corresponding procedure for the original problem.

Let us consider the following mixed problem

$$
\begin{gather*}
\frac{\partial u}{\partial t}-\Delta u=f, \\
x=\left(x_{1}, x_{2}, \ldots x_{n}\right) \in \Omega, \quad 0<t \leq T<\infty, \tag{1}\\
u(., 0)=\varphi, \tag{2}\\
u=g \quad \text { on } \quad \Gamma_{u} \times(0, T\rangle, \tag{3}\\
\frac{\partial u}{\partial v}=P \quad \text { on } \quad \Gamma_{h} \times(0, T\rangle \tag{4}\\
\alpha u+\frac{\partial u}{\partial v}=P \quad \text { on } \quad \Gamma_{v} \times(0, T\rangle \tag{5}
\end{gather*}
$$

where Ω is a bounded domain with a Lipschitz boundary $\Gamma, \frac{\partial u}{\partial v}=\frac{\partial u}{\partial x_{i}} \nu_{i}$, repeated Latin index implies summation over the range $1,2, \ldots, n, v_{i}$ denote the components of the unit outward normal to Γ. The boundary consists of four mutually disjoint parts $\Gamma_{u}, \Gamma_{h}, \Gamma_{v}$ and Γ_{0}. Each of $\Gamma_{u}, \Gamma_{h}, \Gamma_{v}$ is either open in Γ or empty, mes Γ_{0} is zero. We assume

$$
0<\alpha_{0} \leqq \alpha(x) \leqq \alpha_{1}<\infty, \quad x \in \Gamma_{v} .
$$

Let us denote

$$
\begin{equation*}
\frac{\partial u}{\partial x_{i}}=h_{i}, \quad \Delta u=\frac{\partial h_{i}}{\partial x_{i}}=\operatorname{divh}, \quad h_{i} v_{i}=h_{\gamma} \tag{6}
\end{equation*}
$$

The approach can be applied to more general parabolic problems (cf. [2](b)), e.g. to the equation

$$
\frac{\partial u}{\partial t}-\frac{\partial}{\partial x_{i}}\left(a_{i j}(x) \frac{\partial u}{\partial x_{j}}\right)+a_{0} u=f .
$$

Differentiating (1) with respect to x_{k} and using (6), we are led to problem

$$
\begin{align*}
& \frac{\partial}{\partial t} h_{k}-\frac{\partial}{\partial x_{k}} \operatorname{div} \mathbf{h}=\frac{\partial f}{\partial x_{k}}, \quad k=1,2, \ldots, n, \tag{7}\\
& \mathbf{h}(., 0)=\operatorname{grad} \varphi, \tag{8}\\
& f+\operatorname{div} \mathbf{h}=\frac{\partial g}{\partial t} \quad \text { on } \Gamma_{u} \times(0, T\rangle, \tag{9}\\
& h_{v}=P \text { on } \tag{10}\\
& \Gamma_{h} \times(0, T\rangle, \tag{11}\\
& \alpha(f+\operatorname{div} \mathbf{h})+\frac{\partial}{\partial t} h_{v}=\frac{\partial}{\partial t} P \quad \text { on } \Gamma_{v} \times(0, T\rangle .
\end{align*}
$$

The problem (7) - (11) will be called conjugate to the original problem (1) - (5) (cf. [1]). Henceforth, we set $P=0$ on $\Gamma_{h} \times(0, T\rangle$ for brevity.

Let us define the following linear spaces and bilinear forms:

$$
\begin{gathered}
H_{B}=\left\{\boldsymbol{\chi} \in\left[L_{2}(\Omega)\right]^{n}, \chi_{\nu} \in L_{2}\left(\Gamma_{v}\right)\right\}, \quad \bar{H}_{A}=\left\{\boldsymbol{\chi} \in\left[L_{2}(\Omega)\right]^{n}, \operatorname{div} \chi \in L_{2}(\Omega)\right\}, \\
H_{A}=\left\{\boldsymbol{\chi} \in \bar{H}_{A}, \chi_{v}=0 \quad \text { on } \Gamma_{h}\right\}, \quad \mathscr{V}=H_{A} \cap H_{B}, \\
(\varphi, \psi)=\int_{\Omega} \varphi \psi \mathrm{d} x, \quad(\varphi, \psi)_{\Gamma_{S}}=\int_{I_{S}} \varphi \psi \mathrm{~d} \Gamma, \Gamma_{S}=\Gamma_{u} \quad \text { or } \quad \Gamma_{v} \\
B(\mathbf{h}, \boldsymbol{\chi})=\left(h_{i}, \chi_{i}\right)+\left(\alpha^{-1} h_{v}, \chi_{v}\right)_{\Gamma_{v}}, \quad \mathbf{h}, \boldsymbol{\chi} \in H_{B}, \\
A(\mathbf{h}, \mathbf{\chi})=(\operatorname{div} \mathbf{h}, \operatorname{div} \boldsymbol{\chi}), \quad \mathbf{h}, \boldsymbol{\chi} \in \bar{H}_{A} \\
B(\mathbf{h}, \mathbf{h})=\|\mathbf{h}\|_{B}^{2}, \quad A(\mathbf{h}, \mathbf{h})=\|\mathbf{h}\|_{A}^{2}, \quad\|\mathbf{h}\|_{A}^{2}+\|\mathbf{h}\|_{B}^{2}=\|\mathbf{h}\|_{\mathscr{V}}^{2} .
\end{gathered}
$$

Let $L_{2}(\langle 0, T\rangle, H)$ denote the space of measurable mappings $u(t)$ of $\langle 0, T\rangle$ into a normed space H such that

$$
\int_{0}^{T}\|u(t)\|_{H}^{2} \mathrm{~d} t<\infty
$$

Assume that the data satisfy the following conditions: $\operatorname{grad} \varphi \in H_{B}, f(., t) \in L_{2}(\Omega)$, $\frac{\partial}{\partial t} g(., t) \in W_{2}^{(1)}(\Omega), \frac{\partial}{\partial t} P(., t) \in L_{2}\left(\Gamma_{v}\right), t \in\langle 0, T\rangle$.

We say that $\mathbf{h}(x, t)$ is a weak solution of the conjugate problem (7) through (11), if $\mathbf{h} \in L_{2}(\langle 0, T\rangle, \mathscr{V}), \frac{\partial \mathbf{h}}{\partial t} \in L_{2}\left(\langle 0, T\rangle, H_{B}\right)$,

$$
\begin{gather*}
B\left(\frac{\partial \mathbf{h}}{\partial t}, \chi\right)+A(\mathbf{h}, \chi)=-(f, \operatorname{div} \boldsymbol{\chi})+\left(\frac{\partial g}{\partial t}, \chi_{v}\right)_{\Gamma_{u}}+\left(\alpha^{-1} \frac{\partial P}{\partial t}, \chi_{v}\right)_{\Gamma_{v}} \\
0<t \leqq T, \quad \chi \in \mathscr{V}, \\
B(\mathbf{h}(., 0)-\operatorname{grad} \varphi, \chi)=0, \quad \chi \in \mathscr{V} . \tag{12}
\end{gather*}
$$

The definition (12) corresponds with the equation

$$
\begin{equation*}
B \frac{\mathrm{~d} \mathbf{h}}{\mathrm{~d} t}+A \mathbf{h}=\bar{f} \tag{13}
\end{equation*}
$$

in \mathscr{V}, where B is a positive definite and A a positive semi-definite operator. Hence the semi-variational method [2a] can be applied. If $\left\{\boldsymbol{\chi}^{1}, \chi^{2}, \ldots, \chi^{N}\right\}$ form a basis of a subspace $\mathscr{M} \subset \mathscr{V}$ and $\tau=T / M$ is the time-increment, then e.g. the first approximation $\mathbf{h}^{(1)}(., m \tau)$ (so-called Crank-Nicolson-Galerkin) is given by

$$
\begin{gather*}
\mathbf{h}^{(1)}(., m \tau)=\sum_{i=1}^{N} w_{i}^{m} \boldsymbol{\chi}^{j}, \quad m=0,1,2, \ldots M, \\
\mathscr{B} \mathbf{w}^{0}=\omega, \quad \mathbf{w}^{m+1}=2 \mathbf{a}^{m}-\mathbf{w}^{m}, \tag{14}\\
\left(\mathscr{B}+\frac{1}{2} \tau \mathscr{A}\right) \mathbf{a}^{m}=\mathscr{B} \mathbf{w}^{m}+\frac{1}{4} \tau(\mathbf{F}(m \tau)+\mathbf{F}(m \tau+\tau)), \\
\mathscr{B}_{i j}=B\left(\chi^{i}, \chi^{j}\right), \quad \mathscr{A}_{i j}=A\left(\boldsymbol{\chi}^{i}, \boldsymbol{\chi}^{j}\right), \\
\omega_{j}=B\left(\operatorname{grad} \varphi, \chi^{j}\right), \quad F_{j}(m \tau)=\left\langle\bar{f}(m \tau), \boldsymbol{\chi}^{j}\right\rangle, \tag{15}
\end{gather*}
$$

by $\langle\bar{f}(t), \boldsymbol{\chi}\rangle$ denoting the right hand side of (12).
Using finite elements with the diameter δ in $\left[W_{2}^{(1)}(\Omega)\right]^{n} \subset \bar{H}_{A} \cap H_{B}$, the estimate of the type

$$
\left\|\mathbf{z}_{m}\right\|_{B}+\left(\sum_{p=0}^{m} \tau\left\|\frac{1}{2}\left(\mathbf{z}_{p}+\mathbf{z}_{p+1}\right)\right\|_{A}^{2}\right)^{\frac{1}{2}}=O\left(\delta^{k}+\tau^{2}\right)
$$

can be proved for $\mathbf{z}_{m}=\mathbf{h}(., m \tau)-\mathbf{h}^{(1)}(., m \tau)$ and any m.
The second approximation (cf. [2]) is proved to be fourth order correct in τ.
Numerical examples of the first approximation were calculated for the case $n=1, \Omega=(0,1), T=1,6, \Gamma=\Gamma_{u}, g=0, \varphi=0$, the solution of which is $u=t e^{-t} . x^{2}(1-x)^{2}$ with the use of cubic elements on $\langle 0,1\rangle$. Comparing the derivatives $\frac{\partial u}{\partial x}(0, t)$, we obtain 10 till 10^{3} times smaller errors by the conjugate method than by the original one, though the gross amounts of the computing work (the size of matrices) were the same.

References

[1] Aubin, J. P., Burchard, H. G.: Some Aspects of the Method of Hypercircle. Numer. Sol. Part. Dif. Eqs. II. Synspade, pp. 1-67 (1970).
[2] Hlavaček, I.: (a) On a Semi-variational Method for Parabolic Equations. Aplikace matematiky 17, (1972), 5, 327-321 and 18, (1973), 1, 43-64; (b) On a Conjugate Semi-variational Method for Parabolic Equations. Aplikace matematiky 18, (1973), 6, 434-444.

