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Several sufficient conditions are shown which guarantee that the additional points of the
spectrum of an operator 7" = U + V generated as a sum of a selfadjoint bounded linear operator V'
and a compact perturbation U are located outside the circle {4 : |A| < r(V)}, where (V) is the
spectral radius of V. In particular, a condition is presented under which the intersection of the
spectrum o(7T) and the set {i: |A| = r(T)} contains exactly one point. A conterexample is
constructed which shows that in general none of additional points of o(U+ V) lies outside the
circle {4: |4 = (V).

PpearosbMOBBI TOUKHM OTPaHUYEHHDBIX JIMHEHHBLIX ONEPATOPOB C KOMIIAKTHBIMM BO3MYyLIE-
HUAMHM. B cTaThe cOmep)KUTCA HECKOJBKO AOCTATOYHBLIX YC/IOBHIA FapaHTHPYIOUIMX CJIEAYIOLIYIO
CTpYKTYpYy cnextpa o(T") oneparopa T', KOTODPbIi SIBJISIETCA CYMMO OTPaHHUYEHHOT'O CAMOCONIPSIIKEH-
HOTO omeparopa V' 1 KOMIaKTHOro JiuHeiHoro Bosmyenusi U: Bee Touxn u € 6(T), M KOTOpbIE HaX0-
nsarca BHe kpyra {4 : |A| =< r(V)}, roe #(V) cnexrpansHblf paguyc omeparopa V, sBisioTcs
MOJIIOCaMM  pe3oJibBeHTHOro omepartopa (Al — T)-1. Bosee Toro, mHo)kectBo Touek wu € a(T),
|#| > 7(V), menmycro u He Gosee uem cuetHo. ECTh yKa3aHBI YCIIOBMS, BBINOJIHEHHE KOTOPBIX
Bieuér 3a coboit, uro {u € o(T) : |u| = r(T) > r(V)} comeprxur equHcTBeHHYIO Touky s = r(T).
ITocTpoeH npumep — MOKA3bIBAIOIMIMIA, UTO 6€3 HEKOTOPBIX IOMOJIHHTEIBHBIX IIPEIIOJIOMKEHHIA,
muoxxecTBo {p €a(T) : |u| > r(V)}, rme T = U+ V u rae Un V nogunHAOTCA NPUBEAEHHBIM
BBILIE YCIIOBHAM, IIYCTO.

Fredholmovy body ohraniéenych linedrnich operatort s kompaktnimi poruchami. Obsahem
&lénku je n&kolik postatujicich podminek zaruéujicich, Ze n&které body spektra operatoru T, ktery
vznikl jakoZto soudet samoadjungovaného ohrani¢eného linedrniho operdtoru V a kompaktni
line4rni poruchy U, lezi vn& kruhu {4 : [A] = r(V)}, kde r(V) znali spektrdlni polomé&r ope-
ritoru V, T = U+ V. Je téZ ukdzdna podminka, pfti jejimZ splnéni prunik spektra ¢(7) a mno-
Ziny {4 : |A| = r(T)} obsahuje prédvé jeden bod. Je téZ sestrojen pfiklad, ktery ukazuje, Ze obecn&
#4dny bod spektra operdtoru T = U+ V nele#i vné kruhu {4 : |[A| = »(V)}.

One of the celebrated- Weyl's theorems says [10, p. 395] that a bounded linear
self adjoint operator V' and the operator T = U + V, where U is any compact
symetric operator have the same limit spectra Lo(T) = La(V). As usual, we say
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that a spectral point 1 belongs to the limit spectrum Lo(A) of a linear operator A4
in a Banach space X, if A1 has at least one of the three properties:

a) A belongs to the continuous spectrum Ca(A4);
b) 4 is a limit point of the point spectrum Po(4);
¢) A is an eigenvalue having infinite multiplicity.

A description of the spectrum of 7 = U + V, where V is a self-adjoint
operator and U a compact, generally nonsymetric, operator on a Hilbert space 9,
is given by Gochberg and Krein in [1], Theorem 5.1. Neither of the results by Weyl
nor by Gochberg and Krein gives information concerning the existence of Fredholm
points in the spectrum of 7. In particular, information is needed concerning the
structure of the peripheral part of the spectrum. In some problems of neutron
transport theory [3] and reactor physics [9] it is very important to know that the
peripheral spectrum is discrete and contains only isolated poles of the resolvent
operator. Such behaviour of the peripheral spectrum also has quite interesting con-
sequences concerning some spectral properties for certain classes of cone pre-
serving operators [4], [8].

The aim of this note is to show several simple sufficient conditions upon
operators V and U each of which guarantees that the peripheral spectrum of
U + V contains only isolated poles of the resolvent operator R(4, U + V) =
=Al—U-V)L

Let ) be a real Banach space, §)’ its dual and [})] the space of linear endo-
morphisms of 9) into ). If y €% and [yly is the norm of y in ¥), then
y =sup{[y() : xe®, Iy =1, [Tly = sup {ITxly : x €D, lixlly < 1}.

We assume that & is a generating and normal cone in ), i.e.

() &4 & < 8,

B) e < R, =0, «real,

@ fNE8) ={0}

0 K—8=19,

(& 30>0:V xyef=|y+ily = dlxly,
() xn€8 [xn—xly—>0=>x€4.

It follows from («) — () that

' ={eY :<»y>=0 yyei}

isaconein 9 and &' fulfils («) — (%).

In the case that ) is a Hilbert space we denote the inner product in §) by
(x,3), x,y €% and we denote the space by the a symbol . We also consider
the dual ' as identical with § associating to every 3’ € 9’ the representative
yy' €9 according to the Riesz theorem: y'(x) = (x, yy).

We call an operator T €[¥)] positive [2] (more precisely ®-positive) if Tx € &
whenever x € §; a positive operator 7 is called indecomposable (originally
introduced in [11] and called there semi-non-support operator), if to every pair
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x € £\ 0, x' € & \ 0 there corresponds a positive integer p = p(x, x') such that the
value x'(TPx) = {TPx,x’> is positive.

An indecomposable operator T is called $-primitive if there is a positiv
integer po such that (TPx, x'> > 0 for p = po, where x € £ \.0 and x’' € & \0
(originally such an operator was in [11] named non-support operator).

We say that y is a quasiinterior element of the cone & if {y,x'> >0
for all x' € '\ 0. A linear form x' € &’ is called strictly positive if {x, x> >0
for all x € &\ 0.

We denote by ‘27 the complex extension of %), ie. z€ 53) if and only if
z =x +iy, where x,y €Y), and i2 = —1. The norm in 55 is defined by

llzll3 = sup {|lx cos & + ysin 9y : 0 < & < 2a}.

If Y) = 9 is a Hilbert space then §I~) also may have Hilbert space structure

(& w5 = (6w + (3 )] + il ws — (B V), where 2= x +iy,
w=u-+iv, %y uvEY.

Let Te[Y)]. Welet Tz = Tx +iTy for z =x +iy, x,y €9) and call T
the complex extension of 7.

Let 0(7“) be the spectrum of 7 and #(T) = sup {IAl: 2 € o(T)} its spectral
radius. By definition we set o(T) = o(T) and #(T) = ( ).

Let T €[Y]. Then the set no(T) = {A€a(T):|A =r(T)} is never empty
and we call it the peripheral (part of the) spectrum of T.

Our first criterion requires no restriction upon the space ).

Theorem 1. Let U and V, both in [Y)], be K-positive operators. Let U be
compact and o >r(U~+V). Let us assume that for every & >0 there exists a
v, € &' such that

R(o, V') v, v, + w,, w. -+ vev, €K'y, Tev, — w, € ', where v

o —rV)
and T are positive numbers independent of €. Furthermore, let there exist a § > 0
independent of ¢ and x that for every sufficiently small ¢ > 0 the following relation

C(UR(p, U) x5 v, ) = 0{x,7')
holds for all x € . Then the peripheral spectrum no(T), where T = U + V,
contains only isolated poles of the resolvent operator R(A, T) = (Al — T)-1, I being
the identity operator.
Proof. According to [7] it is enough to show that
(V) < n(T). (D
It is known that 7(T) eno(T) < o(T) and also that »(V) e wo(V) [12] and that
r(T) = max [r(U), r(V)] [5]. It follows that for ¢ > r(T) we have that »(R(o, T)) =
=[¢ — ()] and r(R(g, V) = [¢ — r(V)]L.
Let us consider the quantity
svi(R(e, T)) = sup {vreal : <R(o, T) x, v,) = »{x,v,), )
(x, v, # 0, xe€ '\ 0}

R(o, T) = R(o, V) + R(o, V) UR(o, T),

Since
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we derive easily that

<R(@’ T) x, 'vbl> = <R(Q> V) X5 71;> + {R(p, V) UR(Q’ T) X ‘Z);> =

1 , 0 ,
= 0*:707)‘ <%, v ) — 0 _’r( V) Ix, v.0] +
+ (UR(¢, U) %, R(g, V') v.) =

1

P P N ¢ "
= ’J . V(V) [\x’ 'UE/ b|<x3 ve}l] +

+ 9

1 ..
e ¢ N — N
Q r( V) [\xi v£> €I<x, 've/ 1 N

Since & > 0 can be taken arbitrary small this implies that

1
V)
According to Lemma 3.4 in [5] we deduce that

ey = RO T) 2R T > e = R V)

(V)
and finally that (1) holds. This completes the proof.

Remark. It is an obvious consequence of the normality of the cone §t that (1)
holds if »(U) > (V). Thus, se(T) contains only isolated poles of R(4, T) as
well. We also see that the assumptions of Theorem 1 and the Theorems given below
are essentially needed only if »(V) = »(U). If ) = O is a Hilbert space then we
have the following result.

Theorem 2. Let U and V bothin [D] be QK-positive and self-adjoint operators.
In addition, let U be compact and let a quasiinterior element ug of R correspond to
its spectral radius r(U) : Uup = r(U)uo, |luolly = 1. We assume that there is a
system {ve}, ve € KN\ 0, |[velly # 0 such that Vo, = r(V)ve + ye with [[yelly =
=< ¢lvg| and there is a constant » independet of ¢ such that

svi(R(o, T)) > - = r(R(o, V)) for such e.

(yes wo) | < e
(vb uO)

Then the relation (1) holds, where T = U -+ V and therefore, the peripheral spectrum
wa(T) contains only isolated poles of the resolvent operator R(A, T).

Proof. Let o > r(T) and let ¢ > 0 be given. Then, similarly as in the proof
of Theorem 1,

R Nvou) . 1 Gouy) 1 (2 Rle, U) Uny)
(ves uo) T o—rV)  (veu) 0 (ves o)
and, according to the assumptions,
(Re, TYvppup) . 1, 1 U
(e u0)  — o—r(V) e o—r(U) "’
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Since & > 0 can be chosen sufficiently small, we deduce that

Ko Dot > gy = 1R V). 3

On the other hand,

(R(e; T)) = [IR(¢, T)|| = sup

and hence, according to (3)
1 1
rET N 7(R(e, T)) > r(R(e, V)) = =N
which implies the required relation (1) and actually completes the proof.

Remark. The condition concerning the system of approximate eigenvectors
{ve}e>0 is obviously satisfied if »(V) is an eigenvalue of V with an eigenvector
2o € 8. In this case v = vp and y. =0 forall ¢ > 0.

According to Theorem 1 and 2 the peripheral spectrum of T is a finite set.
It is some times needed that it contains exactly one point. We present a simple
condition which guarantees that card no(T) = 1.

Theorem 3. Let U and V both in [Y] be K-positive operators. Let V
satisfy the conditions of either Theorem 1 or Theorem 2 and U let be compact and
R-primitive, and, in addition, if V satisfies the assumption of Theorem 2, let U be
self-adjoint. Then the peripheral spectrum of T contains exactly one point: no(T) =
= {r(T)} and the corresponding eigenspace is one-dimensional.

Proof. It is easy to see that the conclusions of either Theorem 1 or Theorem 2
are valid. Hence no(T) = {r(T) = A0, A1, ..., Aq}» ¢ < + oo. The RK-positivity of
V implies that T = U + V is R-primitive too. The required conclusions then
follows using standard arguments [5]. The proof is complete.

Next we show a model situation which is typical for some neutron transport
problems [6], [9].

Let u be a nonnegative regular measure on a Euclidean space R4, d = 1.
Let Q < R4 be a given closed set with u(£2) = 1. As usual we denote by €(£2) the
Banach space of continuous functions on £ with the supremum norm and by
(2, u), p = 1, the Banach space of classes of u-integrable functions with p-th
power on with the norm

(R(o, T) x, uo)
(%, uo)

1x€Y, (x,uo);éO}

R oy = J |u(s)|Pde .

In particular, 2(£2, 4) has Hilbert space structure with the inner product
(u, v) = _f u(s) v(s) du

Q2

and L*(£, p) is the space of classes of essentially bounded u-measurable functions
with the norm
llllLoo(R,u) = sup ess u =
= sup {|u(s)| : s €2\ E, u(E) =0}.
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Let fe 82(2, u) be such that f(s) =0 u-ae. in 2 andlet U= U(s, ) be
square u X p-integrable on 2 X £ and furthermore let U(s, ) =0 p X p-ae.
in Q x Q.

We define operators V' and U by putting

Vx=yey)= f5x(s), s O]

Us =y <36 = [ Uls 0) 2() du(s) . (5)

Theorem 4. Let the kernel U = U(s, 1), s,t €2, satisfy the following con-

ditions: (i) to every pair 0 # u and 0 # v in L2(Q, u), where u(s) =0, v(s) =0
u-a.e. in £, there exists an index p = p(u, ) such that

0< !! Qf U(sy t1) ... Ultp-1, tp) u(tp) v(s) du(er) ... du(p), du(s) (6)

U, t) = U@, s), s,tef. (ii)

If U and V defined by (4) and (5) are considered as operators on £2(2, u)

then the peripheral spectrum 7o(T) of T = U+V contains only isolated simple

poles of the resolvent operator R(4, T).
Proof. Let ) = Q2(2,u), & = { be the set of 92(9, 1) -elements whose
representatives assume only nonneganve values. Obviously, & _satisfies () — ()

and its dual is identical with § if we associate the elements in ' with the corre-
sponding representatives via the Riesz representation theorem:

YD =(%9y) ¥y R, %y 82 p).
It is evident that U is~ §—indecomposable, self-adjoint and compact. Thus, there
is an eigenvector #p € &, |jugl| = 1, such that wuo(s) > 0 p-a.e. in Q.
If f(s) = 0 p-a.e. in 2 there is nothing to prove because r(V) = 0. Thus, let
us fix any representative for the class f and let us denote it also by f. Let
Qe={se€2:fs)>r(V)— ¢}.
Since f# 0 u(2e) >0 for every &> 0. Define

7)(s)__{l for s,
7710 elsewhere.
It follows that for ¢ > »(T)
1
_—— Q
[(eI — V)0g) () = { o—J@ OTeT
0 elsewhere,
and hence,
1
R > vV = - >
(0, V) ve o =) T
where
hl ! for sef
y()={e—r") " ¢—1©® SEn
0 elsewhere,
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or else

(V) — £(5) .
e — 7 Tle —Fe1 4 €9

We have that (v, %0) >0 and

ye(s) =

|ye(s)| = evels) u-a.e. in £,
(ye, uO)

('Us, uO)

To complete the proof it is enough to show that »(T') is a simple pole of R(4, T).
But this is a consequence of the fact that each element of zng(T) is a pole of R(4, T)
and the f-indecomposability of 7 [11]. The proof of the Theorem 4 is complete.

Theorem 5. Let f be a continuous and nonnegative function on 2. Let so €2
be such that

which implies that

f(so) = max {f(s) : s €2}.
Let the kernel U = U(s,t) be continuous and nonnegative on 2 X 2 and let
U(so, £) >0 for t €2\ Qo, where mes Qo =0. Then the peripheral spectrum
no(T), where T=U-+V, and U and V considered as operators on E(£),
contains only isolated poles of the resolvent operator R(A, T).

Proof. Let U, V denote the extensionof U and V respectlvcly on the space
20, #) in which G(2) forms a dense subset. We set 7' = U + V. Hence, U
and V remain bounded and U compact.

Using the previous notation we easily see that {J and 7 are ??—positive. An
argument similar to that used in the proof of Theorem 4 shows that all the assump-

tions of Theorem 1 are fulfilled if we put e.g.
UV, =g, W, =Y.

It follows that () contains only isolated poles of the resolvent operator R(4, 7).
Since every eigenfunction of 7' is continuous, we conclude that o(T) = o(T") and
hence 7o(T) has the required form. The proof is complete.

Theorem 6. Let the operators U and V defined by (4) and (5) fulfil the
assumptions of Theorem 4 and, in addition, let U(s,t) >0 u X p-a.e. in 2 X Q.
Then na(T) = {r(T)} if T considered as an operator on R, u) and r(T) is an
eigenvalue of T with a one-dimensional eigenspace.

Proof. Let u and v bein & /0. Then

(Uu,v) >0
and thus, U is §—prirnitive andsois T as well. The assertion is then a consequence
of Theorem 4 and 3 and this completes the proof of Theorem 6.

The following example shows that the conclusions of the previous theorems
are not valid for quite arbitrary ®-positive operators U and V, where V is bounded
and U compact.

Let §) = 22(0, 1) be the Hilbert space of classes of Lebesgue square integrable
functions on [0, 1]. Let ® be the cone of nonnegatively valued functions in
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%0, 1). We define

1) = .
2s—1 se (5‘, 1]
and
% for s,ze[O,—;—]
U(S, t) = 1 1
0 for SE(E’ l], t €[0,1] and s €[0, 1], te[?, 1] .

Let U and V be operators in 22(0, 1) defined by (5) and (4). It is easy to
see that 1
[Ux](s) for se€ [O, ——] s
[Tx] (s) = 0
[Vx](s) for se (7’ l] s
and thus, #(T)=|T||=max(|Ul, V) = V] = (V) = 1. It follows that
no(T) = {r(T)} = {1} however, A =1 is not an isolated point of the spectrum
o(T) and belongs to the continuous spectrum Co(T).
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