Acta Universitatis Carolinae. Mathematica et Physica

Jaroslav Ježek
Free groupoids in varieties determined by a short equation

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 23 (1982), No. 1, 3--24
Persistent URL: http://dml.cz/dmlcz/142478

Terms of use:

© Univerzita Karlova v Praze, 1982

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

Free Groupoids In Varieties Determined By a Short Equation

J. JEŽEK
Department of Mathematics, Charles University, Prague*)

Received 8 May 1981

Abstract

Let x be a variable and t be an arbitrary term of length $\leqq 4$. Free groupoids in the variety determined by $x=t$ are described in any case, with the exception of the variety determined by $x=y(y x . y)$ and its dual.

Bứ dána proměnná x a term t délky $\leqq 4$. Volné grupoidy ve varietě uř̌ené rovnicí $x=t$ jsou popsány ve všech případech, kromě variety určené rovnicí $x=y(y x . y)$ a jejího duálu.

Пусть x - переменная и t - терм длины $\leqq 4$. Свободные группоиды в многообразию, определенном уравнением $x=t$, описаны во всех случаях, с исключением многообразия, определенного уравнением $x=y(y x . y)$, и дуального многообразия.

Given a variety V of universal algebras, we can consider the following three problems:
(P1) Describe the V-free groupoid over an infinite countable set.
(P2) Describe all V-free groupoids.
(P3) Find an algorithm deciding for any pair u, v of terms if the equation $u=v$ is satisfied in V (i.e. solve the word problem for free algebras in V).
Usually, a solution of any one of these three problems gives automatically a solution of the remaining two ones.
In Section 1 we describe a general method enabling to solve these problems in many concrete cases; we introduce the notion of a replacement scheme and show that if a replacement scheme for V is found, then problems (P1) and (P3) are automatically solved. In order to be concise, we restrict ourselves to the case of algebras with a single binary operation - i.e. groupoids. In Sections 2, 3, 4 and 5 we illustrate this method on varieties determined by an equation of the form $x=t$ where t is a term of length $\leqq 4$. Given any term t of length $\leqq 4$, we solve problems (P1) and (P3) for the variety V determined by $x=t$ either by finding a replacement scheme for V or by finding a representative set of terms for V and applying Proposition 1.2. The only two exceptions are the variety determined by the equation

[^0]$$
x=y(y x \cdot y)
$$
and its dual, for which description of free groupoids remains an open problem.
In [1] Austin described another method for solving problem (P3) and illustrated this method on the variety determined by $x=(y x . y) y$. Austin noted that his method can be applied to any equation $x=t$ with t of length $\leqq 4$, with the following six exceptions:
\[

$$
\begin{array}{ll}
x=y(y \cdot x x), & x=(x x \cdot y) y \\
x=y(y x \cdot y), & x=(y \cdot x y) y \\
x=y(x \cdot x y), & x=(y x \cdot x) y
\end{array}
$$
\]

1. Representative sets of terms and replacement schemes

We denote by X the infinite countable set of variables and by W the groupoid of terms - the absolutely free groupoid over X; the binary operation of W will be denoted multiplicatively. If t is a term, then the number of occurrences of variables in t is called the length of t. For every term t and every $n \geqq 0$ define a term $t^{2 n}$ as follows: $t^{1}=t ; t^{2 n+1}=t^{2^{n}} t^{2 n}$.

Equations are ordered pairs of terms; if there is not confusion, an equation (u, v) is sometimes denoted by $u=v$.

Let V be a variety of groupoids. A subset R of W is said to be representative for V if the following two conditions are satisfied:
(i) for every term t there exists exactly one term u such that $u \in R$ and the equation (t, u) is satisfied in V;
(ii) if $t \in R$ then every subterm of t belongs to R.
1.1. Remark. For every variety of groupoids there exists at least one representative set of terms.

Proof. Let V be a variety of groupoids. Denote by S the system of all sets $M \subseteq W$ such that if $t \in M$ then every subterm of t belongs to M and if $u, v \in M$ and $u \neq v$ then the equation (u, v) is not satisfied in V. It follows from Zorn's lemma that S has a maximal member R. Suppose that R is not representative for V. Then there exists a term t such that whenever $u \in R$ then (t, u) is not satisfied in V. Let t be a term of minimal length between terms with this property. Of course, t does not belong to R. If t were a variable, then $R \cup\{t\}$ would belong to S, a contradiction with the maximality of R. Hence $t=v w$ for some terms v, w. By the minimality of t there exist terms $p, q \in R$ such that the equations (v, p) and (w, q) are satisfied in V. Evidently $(t, p q)$ is satisfied in V and so $p q$ does not belong to R. As it is easy to see, $R \cup\{p q\}$ belongs to S, a contradiction with the maximality of R.

Let R be a representative set of terms for a variety V. Then we define a binary operation on R as follows: if $u, v \in R$ then $u \circ v$ is the only term from R such that the equation $(u v, u \circ v)$ is satisfied in V. The groupoid $R(\circ)$ is said to be associated with R and V.
1.2. Proposition. Let V be a non-trivial variety of groupoids and let R be a representative set of terms for V. Then $X \subseteq R$ and the associated groupoid $R(\circ)$ is V-free over X.

Proof. $X \subseteq R$ is easy. Define a binary relation r on W by $(u, v) \in r$ iff (u, v) is satisfied in V. As it is well known, r is a congruence and W / r is V-free over $\{x / r ; x \in X\}$. Since R is representative for V, the mapping $t \mapsto t / r$ is a bijection of R onto W / r and by the definition of \circ it is an isomorphism of $R(\circ)$ onto W.

If J is a set of ordered pairs of terms, then A_{J} denotes the set of all the terms t such that whenever $\left(u, u^{\prime}\right) \in J$ and f is a substitution (i.e. an endomorphism of W) then $f(u)$ is not a subterm of t.

A set J of ordered pairs of terms is said to be a replacement scheme if the following three conditions are satisfied:
(1) if $\left(u, u^{\prime}\right) \in J,\left(v, v^{\prime}\right) \in J$, if f, g are two substitutions such that $f(u)=g(v)$ and if every proper subterm of $f(u)$ belongs to A_{J}, then $f\left(u^{\prime}\right)=g\left(v^{\prime}\right)$;
(2) if $\left(u, u^{\prime}\right) \in J$, if f is a substitution and if every proper subterm of $f(u)$ belongs to A_{J}, then $f\left(u^{\prime}\right) \in A_{J}$;
(3) if $\left(u, u^{\prime}\right) \in J$ then u is not a variable.

If J is a replacement scheme then we can define a mapping J^{*} of W into A_{J} as follows: if $t \in X$, put $J^{*}(t)=t$; if $t=t_{1} t_{2}$ and $J^{*}\left(t_{1}\right) J^{*}\left(t_{2}\right) \in A_{J}$, put $J^{*}(t)=$ $=J^{*}\left(t_{1}\right) J^{*}\left(t_{2}\right)$; if $t=t_{1} t_{2}$ and $J^{*}\left(t_{1}\right) J^{*}\left(t_{2}\right)=f(u)$ for some $\left(u, u^{\prime}\right) \in J$ and some substitution f, put $J^{*}(t)=f\left(u^{\prime}\right)$. It follows from (1) and (2) that J^{*} is a correctly defined mapping of W into A_{J}.

If J is a replacement scheme, we can define a binary operation \circ on A_{J} by $a \circ b=J^{*}(a b)$ for all $a, b \in A_{J}$. Equivalently: if $a, b \in A_{J}$ and $a b \in A_{J}$, then $a \circ b=$ $=a b$; if $a, b \in A_{J}$ and $a b=f(u)$ for some $\left(u, u^{\prime}\right) \in J$ and some substitution f, then $a \circ b=f\left(u^{\prime}\right)$. The groupoid $A_{J}(\circ)$ is said to be connected with J.

Let V be a variety of groupoids. A replacement scheme J is said to be a replacement scheme for V if the following two conditions are satisfied:
(4) if $\left(u, u^{\prime}\right) \in J$ then the equation $\left(u, u^{\prime}\right)$ is satisfied in V;
(5) the groupoid connected with J belongs to V.
1.3. Theorem. Let V be a variety of groupoids and let J be a replacement scheme for V. Then the groupoid connected with J is V-free over X. An equation (u, v) is satisfied in V iff $J^{*}(u)=J^{*}(v)$. If the sets J and the domain of J are both recursive, then the word problem for free groupoids is solvable in V.

Proof. Using (4), it is easy to prove by induction on the length of t that if $t \in W$ then the equation $\left(t, J^{*}(t)\right)$ is satisfied in V. Let $u, v \in A_{J}$ and let (u, v) be satisfied in V. The mapping J^{*} is a homomorphism of W onto $A_{J}(\circ)$; by (5) we get $J^{*}(u)=$ $=J^{*}(v)$. Evidently, J^{*} is identical on A_{J} and so $u=v$. Thus A_{J} is representative for V. The groupoid connected with J coincides with the groupoid associated with A_{J} and V and is thus V-free over X by 1.2. The rest is easy.

Thus if we succeed in finding a replacement scheme for a given variety, we have a nice description of free groupoids in this variety. In many cases it is easy to find a replacement scheme for the variety V determined by an equation $u=v$, where the length of u is greater than the length of v. Put $J_{1}=\{(u, v)\}$ and try to prove (5) for J_{1}. As a matter of rule, we either succeed or the attempt is finished by finding another pair $\left(u_{2}, v_{2}\right)$ which must belong to the desired replacement scheme. In the latter case put $J_{2}=\left\{(u, v),\left(u_{2}, v_{2}\right)\right\}$ and again try to prove (5) for J_{2}; etc. If the chain J_{1}, J_{2}, \ldots is not finite, it is possible that its union will turn out to be a replacement scheme for V. Sometimes (as in the case of the equations $E_{21}, E_{23}, E_{38}, E_{41}$, see the following sections) we find out that there is no replacement scheme for V but the attempt of finding it leads us to another description of a representative set of terms and thus to a nice description of free groupoids in V, too.

If we want to prove that a given set J of ordered pairs of terms is a replacement scheme for V, the verification of (1), (2), (3) is usually trivial and the set J was chosen so that (4) be true; thus the only difficulty is in proving (5).

In concrete cases, the elements $\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right), \ldots$ of a given replacement scheme will be often denoted by $u_{1} \rightarrow v_{1}, u_{2} \rightarrow v_{2}, \ldots$.

2. Equations of the form $x=t(x)$

Consider the following equations:

$$
\begin{array}{ll}
E_{1}: x=x & \\
E_{2}: x=x x & \\
E_{3}: x=x \cdot x x & E_{3}^{*}: x=x x \cdot x \\
E_{4}: x=x x \cdot x x & \\
E_{5}: x=x(x . x x) & E_{5}^{*}: x=(x x \cdot x) x \\
E_{6}: x=x(x x \cdot x) & E_{6}^{*}: x=(x \cdot x x) x
\end{array}
$$

For every $i \in\{1, \ldots, 6\}$ denote by V_{i} the variety determined by E_{i} and for every $i \in\{3,5,6\}$ denote by V_{i}^{*} the variety determined by E_{i}^{*}.

2.1. Proposition.

(i) The empty set is a replacement scheme for V_{1}.
(ii) $\{x x \rightarrow x\}$ is a replacement scheme for V_{2}.
(iii) $\{x . x x \rightarrow x\}$ is a replacement scheme for V_{3}.
(iv) $\{x x . x x \rightarrow x\}$ is a replacement scheme for V_{4}.
(v) $\{x(x . x x) \rightarrow x\}$ is a replacement scheme for V_{5}.
(vi) $\{x(x x . x) \rightarrow x\}$ is a replacement scheme for V_{6}.

Proof. It is easy.
2.2. Proposition. Let t be a term of length $\leqq 4$, containing a single variable x. Then the equation $x=t$ is equal to one of the equations $E_{1}, \ldots, E_{6}, E_{3}^{*}, E_{5}^{*}, E_{6}^{*}$. The varieties $V_{1}, \ldots, V_{6}, V_{3}^{*}, V_{5}^{*}, V_{6}^{*}$ are pairwise different.

Proof. The first assertion is evident, the second follows easily from 2.1.

3. Equations of the form $x=t(x, \ldots, y, \ldots, x)$

Consider the following equations:

$$
\begin{array}{ll}
E_{7}: x=x \cdot y x & E_{7}^{*}: x=x y \cdot x \\
E_{8}: x=x y \cdot z x & \\
E_{9}: x=x y \cdot y x & \\
E_{10}: x=x y \cdot x x & E_{10}^{*}: x=x x \cdot y x \\
E_{11}: x=x(y \cdot z x) & E_{11}^{*}: x=(x y \cdot z) x \\
E_{12}: x=x(y \cdot y x) & E_{12}^{*}: x=(x y \cdot y) x \\
E_{13}: x=x(y \cdot x x) & E_{13}^{*}: x=(x x \cdot y) x \\
E_{14}: x=x(x \cdot y x) & E_{14}^{*}: x=(x y \cdot x) x \\
E_{15}: x=x(y y \cdot x) & E_{15}^{*}: x=(x \cdot y y) x \\
E_{16}: x=x(y x \cdot x) & E_{16}^{*}: x=(x \cdot x y) x \\
E_{17}: x=x(x y \cdot x) & E_{17}^{*}: x=(x \cdot y x) x
\end{array}
$$

For every $i \in\{7, \ldots, 17\}$ denote by V_{i} the variety determined by E_{i} and for every $i \in\{7,10, \ldots, 17\}$ denote by V_{i}^{*} the variety determined by E_{i}^{*}.

3.1. Proposition.

(i) $\{x, y x \rightarrow x, x y, y \rightarrow x y\}$ is a replacement scheme for V_{7}.
(ii) $\{x y . z x \rightarrow x, x(y . x z) \rightarrow x z,(x y \cdot z) y \rightarrow x y\}$ is a replacement scheme for V_{8}.
(iii) $\{x y, y x \rightarrow x\}$ is a replacement scheme for V_{9}.
(iv) $\{x y . x x \rightarrow x,(x x . y) x \rightarrow x x, x(x y . x y) \rightarrow x y\}$ is a replacement scheme for V_{10}.
(v) Denote by D the set of the terms

$$
\left(y_{n}\left(y_{n-1}\left(\ldots\left(y_{2} \cdot y_{1} x\right)\right)\right)\right)\left(z_{m}\left(z_{m-1}\left(\ldots\left(z_{2} \cdot z_{1} x\right)\right)\right)\right)
$$

where $n, m \geqq 0$ and $n-m-1$ is divisible by 3 . The set $J=\left\{t_{1} t_{2} \rightarrow t_{1}\right.$; $\left.t_{1} t_{2} \in D\right\}$ is a replacement scheme for V_{11}.
(vi) Put $D^{\prime}=\{x x . x, x(x x . x x)\} \cup\left\{x^{2 n}(y . y x)^{2 n} ; n \geqq 0\right\} \cup\left\{(y . y x)^{2^{n}} x^{2^{n+1}}\right.$; $n \geqq 0\}$. The set $\left\{t_{1} t_{2} \rightarrow t_{1} ; t_{1} t_{2} \in D^{\prime}\right\}$ is a replacement scheme for V_{12}.
(vii) $\{x(y . x x) \rightarrow x, x x . x \rightarrow x x\}$ is a replacement scheme for V_{13}.
(viii) For every $n \geqq 1$ define terms r_{n}, s_{n} as follows: $r_{1}=x ; s_{1}=x . y x ; r_{n+1}=s_{n}$; $s_{n+1}=s_{n} r_{n}$. The set $\left\{r_{n} s_{n} \rightarrow r_{n} ; n=1,2, \ldots\right\}$ is a replacement scheme for V_{14}.
(ix) $\{x(y y, x) \rightarrow x,(x x \cdot y y) \cdot y y \rightarrow x x, y y\}$ is a replacement scheme for V_{15}.
(x) $\{x(y x, x) \rightarrow x,(x y . y) y \rightarrow x y \cdot y\}$ is a replacement scheme for V_{16}.
(xi) $\{x(x y, \dot{x}) \rightarrow x, x, x x \rightarrow x\}$ is a replacement scheme for V_{17}.

Proof. (v) Evidently, J is a replacement scheme. Denote by P the set of ordered pairs (n, m) of non-negative integers such that the equation $x=x(y . z x)$ implies $\left(y_{n}\left(\ldots\left(y_{2} \cdot y_{1} x\right)\right)\right)\left(z_{m}\left(\ldots\left(z_{2} \cdot z_{1} x\right)\right)\right)=y_{n}\left(\ldots\left(y_{2} \cdot y_{1} x\right)\right)$. Evidently $(0,2) \in P$. We have $(1,0) \in P$, since $x y=(x y)(y(z, x y))=x y . y$ in V_{11}. If $(n, m) \in P$, then $(m, n+1) \in$ $\in P$, too: if $u=y_{n}\left(\ldots\left(y_{2} \cdot y_{1} x\right)\right)$ and $v=z_{m}\left(\ldots\left(z_{2} \cdot z_{1} x\right)\right)$ then $v=v\left(y_{n+1} \cdot u v\right)=$ $=v \cdot y_{n+1} u$ in V_{11}. If $(n, m) \in P$ and $(m, k) \in P$ then $(k, n) \in P$, too: if $u=y_{k}\left(\ldots\left(y_{2}\right.\right.$. .$\left.\left.y_{1} x\right)\right), v=z_{n}\left(\ldots\left(z_{2} \cdot z_{1} x\right)\right)$ and $w=z_{m}\left(\ldots\left(z_{2} \cdot z_{1} x\right)\right)$ then $u=u(v . w u)=u$. $. v w=u v$ in V_{11}. From this it is easy to see that P contains all the pairs (n, m) such that $n-m-1$ is divisible by 3 .
It remains to prove that the groupoid $A_{J}(\circ)$ satisfies $x=x(y . z x)$. For every variable p and every $n \geqq 0$ denote by $U_{n}(p)$ the set of terms of the form $a_{n}\left(a_{n-1} \ldots\right.$ $\left.\ldots\left(a_{2}, a_{1} p\right)\right)$ where a_{1}, \ldots, a_{n} are arbitrary terms. Evidently, every term t determines uniquely a pair p, n such that $t \in \boldsymbol{U}_{n}(p)$. If $u, v \in A_{J}$ then either $u \circ v=u v$ or $u \circ v=$ $=u$; if $u \in U_{n}\left(p_{1}\right)$ and $v \in U_{m}\left(p_{2}\right)$ then $u \circ v=u$ iff $p_{1}=p_{2}$ and $n-m-1$ is divisible by 3. Let $u, v, w \in A_{J}$; we must prove $u \circ(v \circ(w \circ u))=u$. Let $u \in U_{n}\left(p_{1}\right)$, $v \in U_{m}\left(p_{2}\right), w \in U_{k}\left(p_{3}\right)$.

Assume first that $w \circ u=w u$. If, moreover, $v \circ w u=v . w u$, then $u \circ(v \circ(w \circ u))=$ $=u \circ(v . w u)=u$, since $u \in U_{n}\left(p_{1}\right)$ and $v . w u \in U_{n+2}\left(p_{1}\right)$. If $v \circ w u=v$, then $p_{1}=p_{2}$ and $m-(n+1)-1$ is divisible by 3 , so that $u \circ(v \circ(w \circ u))=u \circ v=u$.

Now let $w \circ u=w$, so that $p_{1}=p_{3}$ and $k-n-1$ is divisible by 3. If $v \circ w=v w$ then $u \in U_{n}\left(p_{1}\right)$ and $v w \in U_{k+1}\left(p_{1}\right)$ where $n-(k+1)-1$ is divisible by 3 , so that $u \circ(v \circ(w \circ u))=u \circ v w=u$. If $v \circ w=v$, then $p_{1}=p_{2}$ and $m-k-1$ is divisible by 3 ; we have $u \in U_{n}\left(p_{1}\right)$ and $v \in U_{m}\left(p_{1}\right)$ where evidently $n-m-1$ is divisible by 3 , so that $u \circ(v \circ(w \circ u))=u \circ v=u$.
(vi) In V_{12} we have $x x=x x .(x(x \cdot x x))=x x \cdot x$ and $x=x(x x \cdot(x x \cdot x))=$ $=x(x x \cdot x x)$. If $u v=u$, then $v=v(u \cdot u v)=v . u u$. The rest is easy.

All the remaining assertions are easy.
3.2. Proposition. Let t be a term of length $\leqq 4$ beginning and ending with the variable x and containing not only x. Then the variety determined by $x=t$ is equal to one of the varieties $V_{7}, \ldots, V_{17}, V_{7}^{*}, V_{10}^{*}, \ldots, V_{17}^{*}$; these varieties are pairwise different.

Proof. Evidently, the first assertion will be proved if we show that the equation $x=x(y z, x)$ is equivalent to $x=x \cdot y x$. However, the first equation implies $x=$ $=x((y(y y \cdot y)) x)=x \cdot y x$ and the converse is evident. It follows from 3.1 that the varieties are pairwise different.

4. Equations of the form $x=t(x, \ldots, y)$

Consider the following equations:

$E_{18}: x=x y$	$E_{31}: x=x(y y \cdot z)$
$E_{19}: x=x \cdot y y$	$E_{32}: x=x(y y \cdot y)$
$E_{20}: x=x \cdot x y$	$E_{33}: x=x(y x \cdot z)$
$E_{21}: x=x y \cdot z$	$E_{34}: x=x(y x \cdot y)$
$E_{22}: x=x y \cdot y$	$E_{35}: x=x(x y \cdot z)$
$E_{23}: x=x y \cdot y z$	$E_{36}: x=x(x y \cdot y)$
$E_{24}: x=x y \cdot y y$	$E_{37}: x=x(x x \cdot y)$
$E_{25}: x=x x \cdot x y$	$E_{38}: x=(x y \cdot z) u$
$E_{26}: x=x(y \cdot y y)$	$E_{39}: x=(x y \cdot y) y$
$E_{27}: x=x(y \cdot x y)$	$E_{40}: x=(x y \cdot x) y$
$E_{28}: x=x(x \cdot y y)$	$E_{41}: x=(x x \cdot y) y$
$E_{29}: x=x(x \cdot x y)$	$E_{42}: x=(x \cdot y x) y$
$E_{30}: x=x(y z \cdot y)$	$E_{43}: x=(x \cdot x y) y$

For every $i \in\{18, \ldots, 43\}$ denote by V_{i} the variety determined by E_{i}.

4.1. Proposition.

(i) $\{x y \rightarrow x\}$ is a replacement scheme for V_{18}.
(ii) $\{x, y y \rightarrow x\}$ is a replacement scheme for V_{19}.
(iii) $\{x, x y \rightarrow x, x x \rightarrow x\}$ is a replacement scheme for V_{20}.
(iv) $\{x y, y \rightarrow x\}$ is a replacement scheme for V_{22}.
(v) $\{x y, y y \rightarrow x,(x, y y) y \rightarrow x\}$ is a replacement scheme for V_{24}.
(vi) $\{x x . x y \rightarrow x, x(x x . y) \rightarrow x x\}$ is a replacement scheme for V_{25}.
(vii) $\{x(y, y y) \rightarrow x\}$ is a replacement scheme for V_{26}.
(viii) $\{x(y . x y) \rightarrow x,(y . x y) x \rightarrow y . x y\}$ is a replacement scheme for V_{27}.
(ix) $\{x(x, y y) \rightarrow x, x x, x x \rightarrow x x\}$ is a replacement scheme for V_{28}.
(x) $\{x(x . x y) \rightarrow x, x x \rightarrow x\}$ is a replacement scheme for V_{29}.
(xi) Put $D=\left\{x\left(\left(\left((y z, y) z_{1}\right) \ldots\right) z_{n}\right) ; n \geqq 0\right\} \cup\left\{x\left(\left(\left(y y . z_{1}\right) \ldots\right) z_{n}\right) ; n \geqq 0\right\}$. The set $\left\{t_{1} t_{2} \rightarrow t_{1} ; t_{1} t_{2} \in D\right\}$ is a replacement scheme for V_{30}.
(xii) Put $D^{\prime}=\left\{x\left(\left(\left(y y, z_{1}\right) \ldots\right) z_{n}\right) ; n \geqq 0\right\}$. The set $\left\{t_{1} t_{2} \rightarrow t_{1} ; t_{1} t_{2} \in D^{\prime}\right\}$ is a replacement scheme for V_{31}.
(xiii) $\{x(y y, y) \rightarrow x\}$ is a replacement scheme for V_{32}.
(xiv) Put $D^{\prime \prime}=\left\{\left(\left(\left(x z_{1} \cdot z_{2}\right) \ldots\right) z_{n}\right)\left(\left(\left(\left(y x . u_{1}\right) u_{2}\right) \ldots\right) u_{m}\right) ; n, m \geqq 0\right\} \cup$
$\left.\cup\left\{\left(\left(\left(y x . u_{1}\right) u_{2}\right) \ldots\right) u_{m}\right)\left(\left(\left(x z_{1} \cdot z_{2}\right) \ldots\right) z_{n}\right) ; n, m \geqq 0\right\}$. The set $\left\{t_{1} t_{2} \rightarrow t_{1}\right.$; $\left.t_{1} t_{2} \in D^{\prime \prime}\right\}$ is a replacement scheme for V_{33}.
(xv) Put $D^{\prime \prime \prime}=\left\{x^{2^{2}}(y x \cdot y)^{2^{n}} ; n \geqq 0\right\} \cup\left\{(y x . y)^{2^{n}} x^{2^{n+1}} ; n \geqq 0\right\}$. The set $\left\{t_{1} t_{2} \rightarrow\right.$ $\left.\rightarrow t_{1} ; t_{1} t_{2} \in D^{\prime \prime \prime}\right\}$ is a replacement scheme for V_{34}.
(xvi) $\{x(x y . z) \rightarrow x, x x \rightarrow x, x . x y \rightarrow x\}$ is a replacement scheme for V_{35}.
(xvii) $\{x(x y, y) \rightarrow x, x x \rightarrow x\}$ is a replacement scheme for V_{36}.
(xviii) $\{x(x x, y) \rightarrow x, x . x x \rightarrow x\}$ is a replacement scheme for V_{37}.
(xix) $\{(x y . y) y \rightarrow x\}$ is a replacement scheme for V_{39}.
(xx) Put $r_{0}=x, r_{1}=x y . x, r_{n+1}=r_{n-1} r_{n}, s_{0}=x, s_{1}=x x . x, s_{n+1}=s_{n-1} s_{n}$. The set $\left\{r_{n} y \rightarrow r_{n-1} ; n \geqq 1\right\} \cup\left\{s_{m} s_{n} \rightarrow s_{m-1} ; 1 \leqq n \leqq m\right\}$ is a replacement scheme for $V_{\mathbf{4 0}}$.
(xxi) $\{(x . y x) y \rightarrow x,(x y)(y . x y) \rightarrow x\}$ is a replacement scheme for V_{42}.
(xxii) Put $r_{0}=x, r_{1}=x . x y, r_{n+1}=r_{n} r_{n-1}$. The set $J=\{x, x x \rightarrow x x, x x, x \rightarrow$ $\rightarrow x, x x . x x \rightarrow x\} \cup\left\{r_{n} y \rightarrow r_{n-1} ; n \geqq 1\right\}$ is a replacement scheme for V_{43}.

Proof. We shall prove only (xxii); all the other assertions are easy. Of course, the equation $x=(x . x y) y$ implies $r_{1} y=r_{0}$; if it implies $r_{n} y=r_{n-1}$, then it implies $r_{n}=\left(r_{n} \cdot r_{n} y\right) y=r_{n} r_{n-1} \cdot y=r_{n+1} y$. It implies

$$
\begin{aligned}
& x \cdot x x=((x \cdot x x)((x \cdot x x) x)) x=((x \cdot x x) x) x=x x, \\
& x=(x(x \cdot x x)) \cdot x x=(x \cdot x x) \cdot x x=x x \cdot x x \\
& x x=(x x \cdot(x x \cdot x x)) \cdot x x=(x x \cdot x) \cdot x x, \\
& x x \cdot x=((x \cdot x)((x x \cdot x) \cdot x x)) \cdot x x=((x x \cdot x) \cdot x x) \cdot x x=x x \cdot x x=x .
\end{aligned}
$$

If a, b are two terms, denote by $r_{n, a, b}$ the term $f\left(r_{n}\right)$ where f is a substitution with $f(x)=a$ and $f(y)=b$. Evidently, if $r_{1, a, b}=r_{n, c, d}$ and $n \geqq 1$ then $n=1, a=c$ and $b=d$. From this it follows by induction that if $r_{n, a, b}=r_{m, c, d}$ and $n, m \geqq 1$ then $n=m, a=c$ and $b=d$. It is easy to see that J is a replacement scheme. Let $u, v \in A_{\boldsymbol{J}}$. It remains to prove that $(u \circ(u \circ v)) \circ v=u$.

Let $u=r_{n, a, b}$ and $v=b$. If $r_{n-1, a, b}=b$ then $n=1$ and $a=b$, a contradiction with $u \in A_{J}$. If either $r_{n, a, b}=p, r_{n-1, a, b}=p p$ or $r_{n, a, b}=p p, r_{n-1, a, b}=p p$ for some term p, we get a contradiction from the fact that the length of $r_{n, a, b}$ is greater than the length of $r_{n-1, a, b}$. If $r_{n, a, b}=p p$ and $r_{n-1, a, b}=p$ for some term p, we get a contradiction, too, since evidently no $r_{n, a, b}(n \geqq 1)$ is a square. Hence $(u \circ(u \circ v)) \circ v=$ $=\left(r_{n, a, b} \circ r_{n-1, a, b}\right) \circ b=r_{n, a, b} r_{n-1, a, b} \circ b=r_{n+1, a, b} \circ b=r_{n, a, b}=u$.

Let $u=a$ and $v=a a$. Then $(u \circ(u \circ v)) \circ v=(a \circ a a) \circ a a=a a \circ a a=a=u$.
Let $u=v=a a$. Then $(u \circ(u \circ v)) \circ v=(a a \circ a) \circ a a=a \circ a a=a a=u$.
Let $u=a a$ and $v=a$. Then $(u \circ(u \circ v)) \circ v=(a a \circ a) \circ a=a \circ a=u$.
Finally, let $u \circ v=u v$. If $u \circ u v \neq u . u v$ then $u=a$ and $u v=a a$ for some term a; then $(u \circ(u \circ v)) \circ v=a a \circ a=a=u$. If $u \circ u v=u$. $u v$ then $(u \circ(u \circ v)) \circ$ $\circ v=u$ is clear.
4.2. Proposition. $\mathrm{Pu} A=X \cup\{x x ; x \in X\}$ and define a binary operation \circ on A as follows: if $x \in X$ and $a \in A$ then $x \circ a=x x$ and $x x \circ a=x$. The groupoid $A(\circ)$ is V_{21}-free over X.

Proof. It is easy.
4.3. Proposition. Denote by A the set of all terms of the form $\left(\left(x u_{1}, u_{2}\right) \ldots\right) u_{n}$ where
$x \in X, n \geqq 0$, every u_{i} is either a variable or a square of a variable and if $i, i+1 \in$ $\in\{1, \ldots, n\}$ then $u_{i} \neq u_{i+1} u_{i+1}$ and $u_{i+1} \neq u_{i} u_{i}$. Define a binary operation \circ on A as follows. Let $a, b \in A$ and $b=\left(\left(x u_{1}, u_{2}\right) \ldots\right) u_{n}$ where $x \in X$. Put
$a \circ b=a x$ if n is even end $a \neq p . x x$ for all terms $p ;$
$a \circ b=p$ if n is even and $a=p . x x$ for some p;
$a \circ b=a . x x$ if n is odd and $a \neq p x$ for all terms p;
$a \circ b=p$ if n is odd and $a=p x$ for some p.
The groupoid $A(\circ)$ is V_{23}-free over X.
Proof. It is easy to prove that $A(\circ) \in V_{23}$. Now it is easy to prove that A is a representative set of terms for V_{23} and that $A(\circ)$ is the groupoid associated with A and V_{23}; now use 1.2.
4.4. Proposition. Put $A=X \cup\{x x ; x \in X\} \cup\{x x . x x ; x \in X\}$ and define a binary operation \circ on A as follows: if $x \in X$ and $a \in A$ then $x \circ a=x x, x x \circ a=x x . x x$ and $x x . x x \circ a=x$. The groupoid $A(\circ)$ is V_{38}-free over X.

Proof. It is easy.
4.5. Proposition. Denote by A the set of terms t such that if a, b are any terms then $a b . b, a . a a, a(a a . a a),(a a . a a)(a a . a a)$ are not subterms of t and if $b \neq a a$ then $a a . b$ is not a subterm of t. Define a binary operation \circ on A :

```
\(a \circ a a=a a ;\)
\(a \circ a a . a a=a a ;\)
\(a a . a a \circ a a=a\);
\(a a . a a \circ a a . a a=a\);
\(a b . a b \circ b=a\);
\(a b \circ b=a a . a a\) if \(a\) is not a square;
\((a b . a b)(a b . a b) \circ b=a a\);
\(a a . a a \circ b=(a b . a b)(a b . a b)\) if \(b \neq a, b \neq a a, b \neq a a . a a\) and \(a \neq p b\) for
all terms \(p\);
\(a a \circ b=a b . a b\) if \(a\) is not a square, \(b \neq a a, b \neq a a . a a\) and \(a \neq p b\) for
all terms \(p\);
\(u \circ v=u v\) in all other cases.
```

The groupoid $A(\circ)$ is V_{41}-free over X.
Proof. The equation $x=(x x, y) y$ implies
$x x=((x x \cdot x x) \cdot x x) \cdot x x=x . x x$,
$x=(x x \cdot(x x \cdot x x))(x x \cdot x x)=(x x \cdot x x)(x x \cdot x x)$,
$x x . x x=(((x x . x x)(x x . x x)) y) y=x y \cdot y$,
$(x x . x x) y=(x y, y) y=(x y \cdot x y)(x y \cdot x y)$,

```
\(x x \cdot y=x^{16} \cdot y=\left(x^{4} \cdot y\right)^{4}=(x y)^{16}=x y \cdot x y\),
\(x(x x, x x)=\left(x^{4}, x^{4}\right) x^{4}=\left(x^{4}\right)^{4}=x^{16}=x x\).
```

It is easy to see that the operation \circ is correctly defined, that A is a representative set of terms for V_{41} and that $A(\circ)$ is just the groupoid associated with A and V_{41}.
4.6. Proposition. Let t be a term of length $\leqq 4$ beginning with x and not ending with x. Then the variety determined by $x=t$ is equal to one of the varieties V_{18}, \ldots \ldots, V_{43}; all these varieties are pairwise different.

Proof. The equation $x=x . y z$ is evidently equivalent to E_{18}. The equation $x=x x . y$ is equivalent to E_{21}, since it implies $x x=(x x, x x) y=x y$. The equation $x=x y \cdot z z$ is equivalent to E_{21}, since it implies $x y \cdot z=x y \cdot(z z \cdot z z)=x$. Hence the equation $x=x y . z u$ is equivalent to E_{21}, too. The equation $x=x y . x y$ is equivalent to E_{21}, since it implies $x y=(x y . x y)(x y . x y)=x x$. Hence each of the equations $x=x y \cdot z y$ and $x=x y . x z$ is equivalent to E_{21}, too. The equation $x=x x \cdot y y$ is equivalent to E_{21}, since it implies $x x, y=x x \cdot(y y, y y)=x$ and $x x . y=x$ is equivalent to E_{21}. Hence $x=x x, y z$ is equivalent to E_{21}, too.

The equation $x=x(y, y z)$ is equivalent to E_{18}, since it implies $x=x(y(y, y y))=$ $=x y$. Hence $x=x(y . z u)$ is equivalent to E_{18}, too. The equation $x=x(y . z z)$ is equivalent to E_{18}, since it implies $x=x(y(z z, z z))=x y$. The equation $x=$ $=x(y \cdot z y)$ is equivalent to E_{18}, since it implies $x=x(y z \cdot(z \cdot y z))=x \cdot y z$ and $x=x \cdot y z$ is equivalent to E_{18}. The equation $x=x(y, x z)$ is equivalent to E_{18}, since it implies $x=x(y(x, y u))=x y$. The equation $x=x(x, y z)$ is equivalent to E_{20}, since it implies $x=x(x(y(y . y y)))=x . x y$.

The equation $x=x(y z \cdot z)$ is equivalent to E_{18}, since it implies $x=x((y(z z \cdot z))$. $.(z z \cdot z))=x(y(z z \cdot z))=x y$. Hence $x=x(y z \cdot u)$ is equivalent to E_{18}, too.

The equation $x=(x y . z) z$ is equivalent to E_{38}, since it implies $x y=((x y$. .z) $z) z=x z$. The equation $x=(x y . z) y$ is equivalent to E_{38}, since it implies $x z=$ $=((x z \cdot y) z) y=x y$. The equation $x=(x y, y) z$ is equivalent to E_{38}, since it implies $x y=((x y, y) y) z=x z$. The equation $x=(x y, x) z$ is equivalent to E_{38}, since it implies $y x=((y x \cdot y) \cdot y x) z=y z$. The equation $x=(x x \cdot y) z$ is equivalent to E_{38}, since it implies $x u=((x x . x x) z) u=x x$. The equation $x=(x x . x) y$ is equivalent to E_{38}, since if we put $\bar{x}=x x . x$, it implies $\bar{x}=(\bar{x} \bar{x} \cdot \bar{x}) y=x \bar{x} \cdot y$, $x \bar{x}=((x \bar{x} \cdot x \bar{x}) \cdot x \bar{x}) y=(\bar{x} \cdot x \bar{x}) y=x y$, so that $x y=x z$.

The equation $x=(x . x x) y$ is equivalent to E_{21}, since it implies $x . x x=$ $=((x . x x)((x . x x)(x . x x))) y=x y$. Hence each of the equations $x=(x . x y) z$, $x=(x, y x) z, x=(x \cdot y y) z, x=(x, y z) u$ is equivalent to E_{21}, too. The equation $x=(x . y z) z$ is equivalent to E_{21}, since it implies $x=(x((y . z z) z)) z=x y . z$.

The equation $x=(x, y z) y$ is equivalent to E_{23}, since it implies $x=(x((u$. $. z v) z)(u . z v)=(x u)(u . z v), x=(x y)(y((z . z z) z))=x y . y z$ and for the converse we can use 4.3.

The equation $x=(x, y y) y$ is equivalent to E_{24}, since it implies $x y=((x) y y$.
. $y y$)) . $y y$) $y=x(y y \cdot y y$), so that $x=(x(y y \cdot y y)) \cdot y y=x y \cdot y y$, and for the converse we may use 4.1.

We have proved that for any term t of length $\leqq 4$ beginning with x and not ending with x the variety determined by $x=t$ is equal to one of the varieties V_{18}, \ldots \ldots, V_{43}. The fact that these varieties are pairwise different follows from 4.1, 4.2, 4.3 4.4 and 4.5.

5. Equations of the form $x=t(y, \ldots, z)$

Consider the following equations:

$$
\begin{array}{lll}
E_{44}: & x=y & \\
E_{45}: & x=y \cdot x y & \\
E_{46}: & x=y y \cdot x y & \\
E_{47}: & x=y x \cdot x z & \\
E_{48}: & x=y x \cdot x y & \\
E_{49}: & x=y(y \cdot x y) & E_{49}^{*}: x=(y x \cdot y) y \\
E_{50}: & x=y(x \cdot x y) & E_{50}^{*}: x=(y x \cdot x) y \\
E_{51}: & x=y(y x \cdot y) & E_{51}^{*}: x=(y \cdot x y) y \\
E_{52}: & x=y(x y \cdot y) & E_{52}^{*}: x=(y \cdot y x) y \\
E_{53}: & x=y(x x \cdot y) & E_{53}^{*}: x=(y \cdot x x) y
\end{array}
$$

For every $i \in\{44, \ldots, 53\}$ denote by V_{i} the variety determined by E_{i} and for every $i \in\{49, \ldots, 53\}$ denote by V_{i}^{*} the variety determined by E_{i}^{*}.

5.1. Proposition.

(i) $\{y, x y \rightarrow x, y x, y \rightarrow x\}$ is a replacement scheme for V_{45}.
(ii) $\{y x . x z \rightarrow x, x(x y . z) \rightarrow x y,(z . x y) y \rightarrow x y\}$ is a replacement scheme for V_{47}.
(iii) $\{y x . x y \rightarrow x\}$ is a replacement scheme for V_{48}.
(iv) Put $r_{1}=x, r_{2}=y, r_{3}=y . x y$ and $r_{n+3}=r_{n+2} r_{n}$ for $n \geqq 1$. The set $\left\{r_{n} r_{n+1} \rightarrow\right.$ $\left.\rightarrow r_{n-1} ; n \geqq 2\right\}$ is a replacement scheme for V_{49}.
(v) $\{y(x x . y) \rightarrow x,(y y . x x) y \rightarrow x\}$ is a replacement scheme for V_{53}.

Proof. It is easy.
5.2. Proposition. For every term t define a term t^{\prime} as follows: if $t \in X$, put $t^{\prime}=t t$ and $(t t)^{\prime}=t$; if $t=u v$ and either $u \neq v$ or $u \notin X$, put $t^{\prime}=u^{\prime} v^{\prime}$. Denote by A the set of terms t such that if a, b are any terms then neither $a b . a b$ nor $b^{\prime} . a b$ nor $b a . b^{\prime}$ is a subterm of t. We can define a binary operation \circ on A as follows:

$$
\begin{aligned}
& a \circ a=a^{\prime} ; \\
& b^{\prime} \circ a b=a \text { whenever } a b \in A \\
& b a \circ b^{\prime}=a \text { whenever } b a \in A \\
& u \circ v=u v \text { in all other cases. }
\end{aligned}
$$

The groupoid $A(\circ)$ is V_{46}-free over X.

Proof. The equation $x=y y . x y$ implies

$$
\begin{aligned}
& x=(y y \cdot y y)(x \cdot y y)=y(x \cdot y y) \\
& (x y \cdot x y) x=(x y \cdot x y)(y y \cdot x y)=y y \\
& x y \cdot x y=x x \cdot((x y \cdot x y) x)=x x \cdot y y \\
& x y \cdot x x=((x x \cdot x x)(y y \cdot y y)) \cdot x x=((x x \cdot y y)(x x \cdot y y)) \cdot x x=y y \cdot y y=y, \\
& y=(x x \cdot y)(x x \cdot x x)=(x x \cdot y) x
\end{aligned}
$$

It is easy to prove (by induction on the length of t) that if t is any term then the equation $t^{\prime}=t t$ is a consequence of E_{46}.

Let us prove by induction on the length of t that if $t \in A$ then $t^{\prime} \in A$ and $t^{\prime \prime}=t$. If either $t=p$ or $t=p p$ for some variable p, it is evident. Let $t=u v \in A$ and $t^{\prime}=$ $=u^{\prime} v^{\prime}$. By the induction assumption, $u^{\prime} \in A, v^{\prime} \in A, u^{\prime \prime}=u$ and $v^{\prime \prime}=v$. We have $u \neq v$. Suppose $t^{\prime} \notin A$. Since $u \neq v, u^{\prime \prime}=u$ and $v^{\prime \prime}=v$, we have $u^{\prime} \neq v^{\prime}$. We have either $t^{\prime}=b^{\prime} . a b$ or $t^{\prime}=b a . b^{\prime}$ for some terms a, b. We shall consider only the case $t^{\prime}=b^{\prime}$. ab, since the other case is similar. We have $u^{\prime}=b^{\prime}$ and $v^{\prime}=a b$. Hence $u=u^{\prime \prime}=b^{\prime \prime}$ and $v=v^{\prime \prime}=(a b)^{\prime}$. If $a=b \in X$, then $u=b^{\prime \prime}=b=(a b)^{\prime}=v$, a contradiction. Hence $(a b)^{\prime}=a^{\prime} b^{\prime}$, so that $t=u v=b^{\prime \prime} . a^{\prime} b^{\prime} \notin A$, a contradiction. This proves $t^{\prime} \in A$. We have $t^{\prime \prime}=\left(u^{\prime} v^{\prime}\right)^{\prime}=u^{\prime \prime} v^{\prime \prime}=u v=t$.

It is easy to prove by induction on b that if $b^{\prime}=a b \in A$ then $a=b \in X$. From this it follows that the operation \circ on A was correctly defined.

Let us prove that the groupoid $A(\circ)$ satisfies $x=y y . x y$. Let $u, v \in A$. If $u=v$, then $(v \circ v) \circ(u \circ v)=u^{\prime} \circ u^{\prime}=u^{\prime \prime}=u$. Let $u \neq v$. If $u=b^{\prime}$ and $v=a b$, then $(v \circ v) \circ(u \circ v)=(a b \circ a b) \circ a=(a b)^{\prime} \circ \dot{a}=a^{\prime} b^{\prime} \circ a=a^{\prime} b^{\prime} \circ a^{\prime \prime}=b^{\prime}=u$. If $u=$ $=b a$ and $v=b^{\prime}$, then $(v \circ v) \circ(u \circ v)=\left(b^{\prime} \circ b^{\prime}\right) \circ a=b^{\prime \prime} \circ a=b \circ a=u$. In all other cases $(v \circ v) \circ(u \circ v)=v^{\prime} \circ u v=u$.

Now it is easy to see that A is a representative set of terms for V_{46} and that $A(\circ)$ is just the groupoid associated with A and V_{46}; use 1.2.
5.3. Proposition. Denote by M the set of all finite sequences of elements of $\{1,2\}$. For every $e \in M$ define three terms r_{e}, s_{e}, t_{e} as follows:

$$
\begin{array}{lll}
r_{\varnothing}=y, & s_{\varnothing}=x . x y, & t_{\varnothing}=x \\
r_{e, 1}=s_{e}, & s_{e, 1}=r_{e} t_{e}, & t_{e, 1}=r_{e} \\
r_{e, 2}=s_{e} \cdot s_{e} r_{e}, & s_{e, 2}=t_{e}, & t_{e, 2}=r_{e}
\end{array}
$$

The set $\{x x . x \rightarrow x\} \cup\left\{r_{e} s_{e} \rightarrow t_{e} ; e \in M\right\}$ is a replacement scheme for V_{50}.
Proof. The equation $x=y(x . x y)$ implies $x=x x .(x(x . x x))=x x . x$. If $e \in M$ and E_{50} implies $r_{e} s_{e}=t_{e}$, then E_{50} implies

$$
\begin{aligned}
r_{e, 1} s_{e, 1} & =s_{e} \cdot r_{e} t_{e}=s_{e}\left(r_{e} \cdot r_{e} s_{e}\right)=r_{e}=t_{e, 1} \\
r_{e, 2} s_{e, 2} & =\left(s_{e} \cdot s_{e} r_{e}\right) t_{e}=\left(s_{e} \cdot s_{e} r_{e}\right) \cdot r_{e} s_{e}= \\
& =\left(s_{e} \cdot s_{e} r_{e}\right)\left(r_{e}\left(r_{e}\left(s_{e} \cdot s_{e} r_{e}\right)\right)\right)=r_{e}=t_{e, 2} .
\end{aligned}
$$

Hence E_{50} implies $r_{e} s_{e}=t_{e}$ for any $e \in M$.
For every $e \in M$ and every pair a, b of terms put $r_{e ; a, b}=f\left(r_{e}\right), s_{e ; a, b}=f\left(s_{e}\right)$
and $t_{e ; a, b}=f\left(t_{e}\right)$, where f is a substitution such that $f(x)=a$ and $f(y)=b$. Evidently, $t_{e ; a, b}$ is a proper subterm of either $r_{e ; a, b}$ or $s_{e ; a, b}$.

The rest of the proof will be divided into several lemmas.
5.3.1. Lemma. Let $r_{e ; a, b}=r_{f ; c, d}$ and $s_{e ; a, b}=s_{f ; c, d}$. Then $e=f, a=c$ and $b=d$.

Proof. We shall proceed by induction on the sum of the lengths of e and f. If $e=f=\emptyset$, the assertion is evident. It is enough to consider the following eleven cases.

Case 1: $e=\emptyset$ and $f=h, 1$ for some $h \in M$. Then $r_{e ; a, b}=r_{f ; c, d}$ and $s_{e ; a, b}=$ $=s_{f ; c, d}$ means that $b=s_{h ; c, d}$ and $a . a b=r_{h ; c, d} t_{h ; c, d}$. But then $t_{h ; c, d}=a b=$ $=r_{h ; c, d} S_{h ; c, d}$, a contradiction.

Case 2: $e=\emptyset$ and $f=h, 2$. Then $b=s_{h ; c, d} \cdot s_{h ; c, d} r_{h ; c, d}$ and $a . a b=t_{h ; c, d}$, so that $t_{h ; c, d}$ is longer than $s_{h ; c, d} r_{h ; c, d}$, a contradiction.

Case 3: $e=g, 2$ and $f=1$. Then $s_{g ; a, b} \cdot s_{g ; a, b} r_{g ; a, b}=c . c d$ and $t_{g ; a, b}=d c$, so that $t_{g ; a, b}=r_{g ; a, b} s_{g ; a, b}$, a contradiction.

Case 4: $e=2$ and $f=h, 1,1$. Then $(a . a b)((a . a b) b)=r_{h ; c, d} t_{h ; c, d}$ and $a=s_{h ; c, d} r_{h ; c, d}$, a contradiction.

Case 5: $e=2$ and $f=h, 2,1$. Then $(a . a b)((a . a b) b)=t_{h ; c, d}$ and $a=$ $=\left(s_{h ; c, d} \cdot s_{h ; c, d} r_{h ; c, d}\right) r_{h ; c, d}$, so that $t_{h ; c, d}$ is longer than $s_{h ; c, d} r_{h ; c, d}$, a contradiction.

Case 6: $e=g, 1,2$ and $f=h, 1,1$. Then $r_{g ; a, b} t_{g ; a, b} \cdot\left(r_{g ; a, b} t_{g ; a, b} \cdot s_{g ; a, b}\right)=$ $=r_{h ; c, d} t_{h ; c, d}$ and $r_{g ; a, b}=s_{h ; c, d} r_{h ; c, d}$, a contradiction.

Case 7: $e=g, 1,2$ and $f=h, 2,1$. Then $r_{g ; a, b} t_{g ; a, b} \cdot\left(r_{g ; a, b} t_{g ; a, b} \cdot s_{g ; a, b}\right)=$ $=t_{h ; c, d}$ and $r_{g ; a, b}=\left(s_{h ; c, d} \cdot s_{h ; c, d} r_{h ; c, d}\right) r_{h ; c, d}$, so that $t_{h ; c, d}$ is longer than $s_{h ; c, d} r_{h ; c, d}$, a contradiction.

Case 8: $e=g, 2,2$ and $f=h, 1,1$. Then $t_{g ; a, b}\left(t_{g ; a, b}\left(s_{g ; a, b} \cdot s_{g ; a, b} r_{g, a, b}\right)\right)=$ $=r_{h ; c, d} t_{h ; c, d}$ and $r_{g ; a, b}=s_{h ; c, d} r_{h ; c, d}$, so that $t_{h ; c, d}$ is longer than $s_{h ; c, d} r_{h ; c, d}$, a contradiction.

Case 9: $e=g, 2,2$ and $f=h, 2,1$. Then $t_{g ; a, b}\left(t_{g ; a, b}\left(s_{g ; a, b} \cdot s_{g ; a, b} r_{g ; a, b}\right)\right)=t_{h ; c, d}$ and $r_{g ; a, b}=\left(s_{h ; c, d} \cdot s_{h ; c, d} r_{h ; c, d}\right) r_{h ; c, d}$, so that $t_{h ; c, d}$ is longer than $s_{h ; c, d} r_{h ; c, d}$, a contradiction.

Case 10: $e=g, 1$ and $f=h, 1$. Then $s_{g ; a, b}=s_{h ; c, d}$ and $r_{g ; a, b} t_{g ; a, b}=r_{h ; c, d} t_{h ; c, d}$, so that $r_{g ; a, b}=r_{h ; c, d}$ and $s_{g ; a, b}=s_{h ; c, d}$. By the induction assumption we get $g=h$ (so that $e=f$), $a=c$ and $b=d$.

Case 11: $e=g, 2$ and $f=h, 2$. Then $s_{g ; a, b} \cdot s_{g ; a, b} r_{g ; a, b}=s_{h ; c, d} . s_{h ; c, d} r_{h ; c, d}$ and $t_{g ; a, b}=t_{h ; c, d}$, so that $r_{g ; a, b}=r_{h ; c, d}$ and $s_{g ; a, b}=s_{h ; c, d}$. By the induction assumption we get $g=h$ (so that $e=f$), $a=c$ and $b=d$.
5.3.2. Lemma. $r_{e ; a, b} \neq s_{e ; a, b}$ for all e, a, b.

Proof. By induction on the length of e. For $e=\emptyset$ it is evident. Let $e \neq \emptyset$, and suppose $r_{e ; a, b}=s_{e ; a, b}$. It is clear that $e=f, 1$ for some f. We have $s_{f ; a, b}=r_{f ; a, b} t_{f ; a, b}$. Now it is clear that $f=g, 1$ for some g, so that $r_{g ; a, b} t_{g ; a, b}=s_{g ; a, b} r_{g ; a, b}$ and consequently $r_{g ; a, b}=s_{g ; a, b}$, a contradiction with the induction assumption.
5.3.3. Lemma. Let $r_{e ; a, b}=r_{f ; c, d}$ and $t_{e ; a, b}=s_{f ; c, d}$ where e, f are both non-empty. Then $e=1$ and $f=2$.

Proof. If we do not have $e=1$ and $f=2$, then one of the following 46 cases takes place.

Case 1: $e=g, 1,1$ and $f=h, 1,2$ for some $g, h \in M$. Then $r_{g ; a, b} t_{g ; a, b}=$ $=r_{h ; c, d} t_{h ; c, d} \cdot\left(r_{h ; c, d} t_{h ; c, d} \cdot s_{h ; c, d}\right)$ and $s_{g ; a, b}=r_{h ; c, d}$, so that $t_{g ; a, b}$ is longer than both $r_{g ; a, b}$ and $s_{g ; a, b}$, a contradiction. In the following we shall write less accurately r_{g} instead of $r_{g ; a, b}$, etc.

Case 2: $e=g, 1,1$ and $f=h, 2,2$. Then $r_{g} t_{g}=t_{h}\left(t_{h}\left(s_{h} \cdot s_{h} r_{h}\right)\right)$ and $s_{g}=r_{h}$, so that t_{g} is longer than both r_{g} and s_{g}, a contradiction.

Case 3: $e=g, 1,2$ and $f=h, 1,1$. Then $r_{g} t_{g} \cdot\left(r_{g} t_{g} \cdot s_{g}\right)=r_{h} t_{h}$ and $s_{g}=s_{h} r_{h}$, so that t_{h} is longer than $s_{h} r_{h}$, a contradiction.

Case 4: $e=g, 1,2$ and $f=h, 1,2$. Then $r_{g} t_{g} \cdot\left(r_{g} t_{g} \cdot s_{g}\right)=r_{h} t_{h} \cdot\left(r_{h} t_{h} \cdot s_{h}\right)$ and $s_{g}=r_{h}$, so that $r_{g}=r_{h}$ and $s_{g}=s_{h}$. By 5.3.1 we get $g=h, a=c$ and $b=d$; hence $s_{g}=r_{g}$, a contradiction by 5.3.2.

Case 5: $e=g, 1,2$ and $f=h, 2,1$. Then $r_{g} t_{g} \cdot\left(r_{g} t_{g} \cdot s_{g}\right)=t_{h}$ and $s_{g}=\left(s_{h}\right.$. . $\left.s_{h} r_{h}\right) r_{h}$, so that t_{h} is longer than $s_{h} r_{h}$, a contradiction.

Case 6: $e=g, 1,2$ and $f=h, 2,2$. Then $r_{g} t_{g} \cdot\left(r_{g} t_{g} \cdot s_{g}\right)=t_{h}\left(t_{h}\left(s_{h} \cdot s_{h} r_{h}\right)\right)$ and $s_{g}=r_{h}$, so that $r_{h}=s_{g}=s_{h} \cdot s_{h} r_{h}$, a contradiction.

Case 7: $e=g, 2,1$ and $f=h, 1,1$. Then $t_{g}=r_{h} t_{h}$ and $s_{g} \cdot s_{g} r_{g}=s_{h} r_{h}$, so that t_{g} is longer than $s_{g} r_{g}$, a contradiction.

Case 8: $e=g, 2,1$ and $f=h, 1,2$. Then $t_{g}=r_{h} t_{h} \cdot\left(r_{h} t_{h} \cdot s_{h}\right)$ and $s_{g} \cdot s_{g} r_{g}=r_{h}$, so that t_{g} is longer than $s_{g} r_{g}$, a contradiction.

Case 9: $e=g, 2,1$ and $f=h, 2,1$. Then $t_{g}=t_{h}$ and $s_{g} \cdot s_{g} r_{g}=\left(s_{h} \cdot s_{h} r_{h}\right) r_{h}$, a contradiction evidently.

Case 10: $e=g, 2,1$ and $f=h, 2,2$. Then $t_{g}=t_{h}\left(t_{h}\left(s_{h} \cdot s_{h} r_{h}\right)\right)$ and $s_{g} \cdot s_{g} r_{g}=r_{h}$, so that t_{g} is longer than $s_{g} r_{g}$, a contradiction.

Case 11: $e=g, 2,2$ and $f=h, 1,1$. Then $t_{g}\left(t_{g}\left(s_{g} \cdot s_{g} r_{g}\right)\right)=r_{h} t_{h}$ and $s_{g} \cdot s_{g} r_{g}=$ $=s_{h} r_{h}$, so that t_{h} is longer than $s_{h} r_{h}$, a contradiction.

Case 12: $e=g, 2,2$ and $f=h, 1,2$. Then $t_{g}\left(t_{g}\left(s_{g} \cdot s_{g} r_{g}\right)\right)=r_{h} t_{h} .\left(r_{h} t_{h} . s_{h}\right)$ and $s_{g} \cdot s_{g} r_{g}=r_{h}$, so that $r_{h}=s_{h}$, a contradiction by 5.3.2.

Case 13: $e=g, 2,2$ and $f=h, 2,1$. Then $t_{g}\left(t_{g}\left(s_{g} \cdot s_{g} r_{g}\right)\right)=t_{h}$ and $s_{g} \cdot s_{g} r_{g}=$ $=\left(s_{h} \cdot s_{h} r_{h}\right) r_{h}$, evidently a contradiction.

Case 14: $e=g, 2,2$ and $f=h, 2,2$. Then $t_{g}\left(t_{g}\left(s_{g} \cdot s_{g} r_{g}\right)\right)=t_{h}\left(t_{h}\left(s_{h} \cdot s_{h} r_{h}\right)\right)$ and $s_{g} \cdot s_{g} r_{g}=r_{h}$, evidently a contradiction.

Case 15: $e=g, 1,1,1$ and $f=h, 1,1,1$. Then $s_{g} r_{g}=s_{h} r_{h}$ and $r_{g} t_{g}=r_{h} t_{h} \cdot s_{h}$, evidently a contradiction.

Case 16: $e=g, 1,1,1$ and $f=h, 2,1,1$. Then $s_{g} r_{g}=\left(s_{h} . s_{h} r_{h}\right) r_{h}$ and $r_{g} t_{g}=$ $=t_{h}\left(s_{h} \cdot s_{h} r_{h}\right)$, so that $s_{g}=t_{g}$ and t_{g} is longer than r_{g}, a contradiction.

Case 17: $e=g, 2,1,1$ and $f=h, 1,1,1$. Then $\left(s_{g} . s_{g} r_{g}\right) r_{g}=s_{h} r_{h}$ and $t_{g}=$ $=r_{h} t_{h} \cdot s_{h}$, so that t_{g} is longer than $s_{g} r_{g}$, a contradiction.

Case 18: $e=g, 2,1,1$ and $f=h, 2,1,1$. Then $\left(s_{g} \cdot s_{g} r_{g}\right) r_{g}=\left(s_{h} \cdot s_{h} r_{h}\right) r_{h}$ and $t_{g}=t_{h}\left(s_{h} \cdot s_{h} r_{h}\right) ;$ a contradiction follows from 5.3.1.

Case 19: $e=g, 1,1,1$ and $f=1,1$. Then $s_{g} r_{g}=d c$ and $r_{g} t_{g}=(c . c d) d$, a contradiction.

Case 20: $e=g, 2,1,1$ and $f=1,1$. Then $\left(s_{g} . s_{g} r_{g}\right) r_{g}=d c$ and $t_{g}=(c . c d) d$, so that t_{g} is longer than $s_{g} r_{g}$, a contradiction.

Case 21: $e=1,1$ and $f=h, 1,1$. Then $b a=r_{h} t_{h}$ and $a \cdot a b=s_{h} r_{h}$, evidently a contradiction.

Case 22: $e=g, 1,1,1$ and $f=h, 1,2,1$. Then $s_{g} r_{g}=r_{h}$ and $r_{g} t_{g}=\left(r_{h} t_{h}\right.$. . $\left.\left(r_{h} t_{h} \cdot s_{h}\right)\right) s_{h}$, evidently a contradiction.

Case 23: $e=g, 1,1,1$ and $f=h, 2,2,1$. Then $s_{g} r_{g}=r_{h}$ and $r_{g} t_{g}=\left(t_{h}\left(t_{h}\left(s_{h}\right.\right.\right.$. . $\left.\left.s_{h} r_{h}\right)\right)$) $\left(s_{h} \cdot s_{h} r_{h}\right)$, evidently a contradiction.

Case 24: $e=g, 2,1,1$ and $f=h, 1,2,1$. Then $\left(s_{g} \cdot s_{g} r_{g}\right) r_{g}=r_{h}$ and $t_{g}=$ $=\left(r_{h} t_{h} \cdot\left(r_{h} t_{h} \cdot s_{h}\right)\right) s_{h}$, so that t_{g} is longer than $s_{g} r_{g}$, a contradiction.

Case 25: $e=g, 2,1,1$ and $f=h, 2,2,1$. Then $\left(s_{g} \cdot s_{g} r_{g}\right) r_{g}=r_{h}$ and $t_{g}=$ $=\left(t_{h}\left(t_{h}\left(s_{h} \cdot s_{h} r_{h}\right)\right)\right)\left(s_{h} \cdot s_{h} r_{h}\right)$, so that t_{g} is longer than $s_{g} r_{g}$, a contradiction.

Case 26: $e=g, 1,1,1$ and $f=2,1$. Then $s_{g} r_{g}=c$ and $r_{g} t_{g}=((c . c d)$. . $((c . c d) d)) d$, a contradiction.

Case 27: $e=g, 2,1,1$ and $f=2,1$. Then $\left(s_{g} \cdot s_{g} r_{g}\right) r_{g}=c$ and $t_{g}=((c . c d)$. $.((c . c d) d)) d$, so that t_{g} is longer than $s_{g} r_{g}$, a contradiction.

Case 28: $e=1,1$ and $f=h, 2,1$. Then $b a=t_{h}$ and $a \cdot a b=\left(s_{h} \cdot s_{h} r_{h}\right) r_{h}$, so that t_{h} is longer than $s_{h} r_{h}$, a contradiction.

Case 29: $e=1$ and $f=h, 1,1$. Then $a . a b=r_{h} t_{h}$ and $b=s_{h} r_{h}$, so that t_{h} is longer than $s_{h} r_{h}$, a contradiction.

Case 30: $e=1$ and $f=h, 2,1$. Then $a . a b=t_{h}$ and $b=\left(s_{h} \cdot s_{h} r_{h}\right) r_{h}$, so that t_{h} is longer than $s_{h} r_{h}$, a contradiction.

Case 31: $e=1$ and $f=1$. Then $a . a b=c . c d$ and $b=d c$, a contradiction.
Case 32: $e=1$ and $f=h, 1,2$. Then $a . a b=r_{h} t_{h} \cdot\left(r_{h} t_{h} . s_{h}\right)$ and $b=r_{h}$, so that $r_{h}=s_{h}$, a contradiction by 5.3.2.

Case 33: $e=1$ and $f=h, 2,2$. Then $a . a b=t_{h}\left(t_{h}\left(s_{h}, s_{h} r_{h}\right)\right)$ and $b=r_{h}$, a contradiction.

Case 34: $e=2$ and $f=h, 1,1$. Then $(a . a b)((a . a b) b)=r_{h} t_{h}$ and $b=s_{h} r_{h}$, a contradiction.

Case 35: $e=2$ and $f=h, 2,1$. Then $(a . a b)((a . a b) b)=t_{h}$ and $b=\left(s_{n}\right.$. . $\left.s_{h} r_{h}\right) r_{h}$, so that t_{h} is longer than $s_{h} r_{h}$, a contradiction.

Case 36: $e=2$ and $f=1$. Then $(a . a b)((a . a b) b)=c . c d$ and $b=d c$, a contradiction.

Case 37: $e=2$ and $f=h, 1,2$. Then $(a . a b)((a . a b) b)=r_{h} t_{h} \cdot\left(r_{h} t_{h} \cdot s_{h}\right)$ and $b=r_{h}$, so that $r_{h}=s_{h}$, a contradiction by 5.3.2.

Case 38: $e=2$ and $f=h, 2,2$. Then $(a . a b)((a . a b) b)=t_{h}\left(t_{h}\left(s_{h} \cdot s_{h} r_{h}\right)\right)$ and $b=r_{h}$, a contradiction.

Case 39: $e=2$ and $f=2$. Then $(a . a b)((a . a b) b)=(c . c d)((c . c d) d)$ and $b=d c$, a contradiction.

Case 40: $e=g, 1,1$ and $f=1$. Then $r_{g} t_{g}=c . c d$ and $s_{g}=d c$, so that t_{g} is as long as s_{g} and longer than r_{g}, a contradiction.

Case 41: $e=g, 2,1$ and $f=1$. Then $t_{g}=c . c d$ and $\left(s_{g} \cdot s_{g} r_{g}\right) r_{g}=d c$, so that t_{g} is longer than $s_{g} r_{g}$, a contradiction.

Case 42: $e=g, 2$ and $f=1$. Then $s_{g} \cdot s_{g} r_{g}=c . c d$ and $r_{g}=d c$, a contradiction.
Case 43: $e=g, 1,1$ and $f=2$. Then $r_{g} t_{g}=(c . c d)((c . c d) d)$ and $s_{g}=c$, so that t_{g} is longer than both r_{g} and s_{g}, a contradiction.

Case 44: $e=g, 2,1$ and $f=2$. Then $t_{g}=(c . c d)((c . c d) d)$ and $s_{g} \cdot s_{g} r_{g}=c$, so that t_{g} is longer than $s_{g} r_{g}$, a contradiction.

Case 45: $e=g, 1,2$ and $f=2$. Then $r_{g} t_{g} \cdot\left(r_{g} t_{g} \cdot s_{g}\right)=(c . c d)((c . c d) d)$ and $s_{g}=c$, so that t_{g} is longer than both r_{g} and s_{g}, a contradiction.

Case 46: $e=g, 2,2$ and $f=2$. Then $t_{g}\left(t_{g}\left(s_{g} \cdot s_{g} r_{g}\right)\right)=(c . c d)((c . c d) d)$ and $s_{g} \cdot s_{g} r_{g}=c$, so that t_{g} is longer than $s_{g} r_{g}$, a contradiction.
5.3.4. Lemma. Let $r_{e ; a, b}=t_{e ; a, b}$. Then $e=\emptyset$ and $a=b$.

Proof. Suppose $e \neq \emptyset$. If $e=g, 1$ for some $g \in M$, then $s_{g ; a, b}=r_{g ; a, b}$, a contradiction with 5.3.2. If $e=g, 2$ for some $g \in M$, then $s_{g ; a, b} \cdot s_{g ; a, b} r_{g ; a, b}=r_{g ; a, b}$, a contradiction.
5.3.5. Lemma. Let $r_{e ; a, b}=r_{\varnothing ; c, d}$ and $t_{e ; a, b}=s_{\varnothing ; c, d}$ where $e \neq \emptyset$. Then $e=2,1$.

Proof. Suppose $e=g, 2$ for some $g \in M$. Then $s_{g ; a, b} \cdot s_{g ; a, b} r_{g ; a, b}=d$ and $r_{g ; a, b}=c . c d$, a contradiction.

Suppose $e=g, 1,1$. Then $r_{g ; a, b} t_{g ; a, b}=d$ and $s_{g ; a, b}=c . c d$. Evidently $g \neq \emptyset$. If $g=h, 1$ for some h, then $s_{h ; a, b} r_{h ; a, b}=d$ and $r_{h ; a, b} t_{h ; a, b}=c . c d$, so that $t_{h ; a, \prime}$, is longer than $s_{h ; a, b} r_{h ; a, b}$, a contradiction, If $g=h, 2$ for some h, then $\left(s_{h ; a, b} \cdot s_{h ; a, b} r_{h ; a, b}\right) r_{h ; a, b}=d$ and $t_{h ; a, b}=c . c d$, so that $t_{h ; a, b}$ is longer than $s_{h ; a, b} r_{h ; a, b}$, a contradiction again.

Suppose $e=1$. Then $a . a b=d$ and $b=c . c d$, a contradiction.
Hence $e=g, 2,1$ for some $g \in M$. We have $t_{g ; a, b}=d$ and $s_{g ; a, b} \cdot s_{g ; a, b} r_{g ; a, b}=$ $=c . c d$. Consequently $t_{g ; a, b}=r_{g ; a, b}$, so that $g=\emptyset$ by 5.3.4. We get $e=2,1$.
5.3.6. Lemma. The set $\{x x . x \rightarrow x\} \cup\left\{r_{e} s_{e} \rightarrow t_{e} ; e \in M\right\}$ is a replacement scheme.

Proof. It follows from 5.3.1 and from the following assertion, which can be proved easily: if a, b are terms and $e \in M$ then $r_{e ; a, b} \neq s_{e ; a, b} s_{e ; a, b}$.
5.3.7. Lemma. Denote by $A(\circ)$ the groupoid connected with the replacement scheme from 5.3.6. Let $u, v \in A$ and $u \circ v=u v$. Then $v \circ(u \circ(u \circ v))=u$.

Proof. If $u \circ u v=u . u v$, then everything is evident. Now let $u \circ u v \neq u . u v$, so that $u=r_{e ; a, b}$ and $u v=s_{e ; a, b}$ for some $e \in M$ and some terms a, b. We have $s_{e ; a, b}=r_{e ; a, b} v$. If it were $e=f, 1$ for some $f \in M$, we would have $r_{f ; a, b} t_{f ; a, b}=s_{f ; a, b} v$, so that $r_{f ; a, b}=s_{f ; a, b}$, a contradiction with 5.3.2. If it were $e=f, 2$ for some $f \in M$, we would have $t_{f ; a, b}=\left(s_{f ; a, b} \cdot s_{f ; a, b} r_{f ; a, b}\right) v$, so that $t_{f ; a, b}$ would be longer than $s_{f ; a, b} r_{f ; a, b}$, a contradiction. Hence $e=\emptyset$, so that $u=b$ and $u v=a . a b$; hence $a=b, u=a, v=a a$. We get $v \circ(u \circ(u \circ v))=a a \circ(a \circ a . a a)=a a \circ a=a=u$.
5.3.8. Lemma. Let $u, v \in A$, and let there exist a term a such that $u=a a$ and $v=a$. Then $v \circ(u \circ(u \circ v))=u$.

Proof. We have $v \circ(u \circ(u \circ v))=a \circ(a a \circ(a a \circ a))=a \circ(a a \circ a)=a \circ a=u$.
5.3.9. Lemma. Let $u, v \in A$ and let there exist terms a, b and a sequence $e \in M$ such that $u=r_{e ; a, b}$ and $v=s_{e ; a, b}$. Then $v \circ(u \circ(u \circ v))=u$.

Proof. Let $r_{e ; a, b} \circ t_{e ; a, b}=r_{e ; a, b} t_{e ; a, b}$. Then $v \circ(u \circ(u \circ v))=s_{e ; a, b} \circ r_{e ; a, b} t_{e ; a, b}=$ $=r_{e, 1 ; a, b} \circ S_{e, 1 ; a, b}=t_{e, 1 ; a, b}=r_{e ; a, b}=u$.

Suppose that $r_{e ; a, b}=c c$ and $t_{e ; a, b}=c$ for some term c. If it were $e=\emptyset$, then $b=c c$ and $a=c$, so that $s_{e ; a, b}=a . a b=c(c . c c) \notin A$, a contradiction. If it were $e=g, 2$ for some $g \in M$, then $s_{g ; a, b} . s_{g ; a, b} r_{g ; a, b}=c c$, a contradiction. Hence $e=g, 1$ for some g. If it were $g=h, 1$ for some h, then $r_{h ; a, b} t_{h ; a, b}=c c$ and $s_{h ; a, b}=c$, so that $r_{h ; a, b}=t_{h ; a, b}=s_{h ; a, b}$, a contradiction. If it were $g=h, 2$ for some h, then $t_{h ; a, b}=c c$ and $s_{h ; a, b}, s_{h ; a, b} r_{h ; a, b}=c$, so that $t_{h ; a, b}$ would be longer than $s_{h ; a, b} r_{h ; a, b}$, a contradiction. Hence $h=\emptyset$, so that $a . a b=c c$ and $b=c$, a contradiction.

It remains to consider the case when $r_{e ; a, b}=r_{f ; c, d}$ and $t_{e ; a, b}=s_{f ; c, d}$ for some $f \in M$ and some terms c, d.

Suppose that $e=1$ and $f=2$. Then $a . a b=(c . c d)((c . c d) d)$ and $b=c$, so that $b=c=d$ and $a=b . b b$; we have $s_{e ; a, b}=b a=b(b . b b) \notin A$, a contradiction.

Suppose that $e=2,1$ and $f=\emptyset$. Then $a=d$ and $(a . a b)((a . a b) b)=c . c d$, so that $a=b=d$ and $c=a . a a$; we have $s_{e ; a, b}=((a . a a)((a . a a) a)) a=$ $=r_{2 ; a, a} s_{2 ; a, a} \notin A$, a contradiction.

It follows from 5.3.3 and 5.3 .5 that $e=\emptyset$. Hence $b=r_{f ; c, d}$ and $a=s_{f ; c, d}$; we have $v \circ(u \circ(u \circ v))=s_{e ; a, b} \circ\left(r_{f ; c, d} \circ s_{f ; c, d}\right)=a . a b \circ t_{f ; c, d}=s_{f ; c, d}$. $. s_{f ; c, d} r_{f ; c, d} \circ t_{f ; c, d}=r_{f, 2 ; c, d} \circ s_{f, 2 ; c, d}=t_{f, 2 ; c, d}=r_{f ; c, d}=b=u$.

It follows from 5.3.7, 5.3 .8 and 5.3.9 that the groupoid $A(\circ)$ satisfies $x=$ $=y(x . x y)$. This completes the proof of 5.3.
5.4. Proposition. For every $n \geqq 1$ define terms r_{n} and s_{n} as follows:

$$
\begin{array}{llll}
r_{1}=x, & r_{2}=y, & r_{3}=x y \cdot y, & r_{n+3}=r_{n} r_{n+2}, \\
s_{1}=x, & s_{2}=x x, & s_{3}=(x x \cdot x) . x x, & s_{n+3}=s_{n} s_{n+2} .
\end{array}
$$

The set $J=\{(x x . x) x \rightarrow x, x . x x \rightarrow x x . x\} \cup\left\{r_{n} r_{n+1} \rightarrow r_{n-1} ; n \geqq 2\right\} \cup\left\{s_{n} s_{n+1} \rightarrow\right.$ $\left.\rightarrow s_{n-1} ; n \geqq 2\right\}$ is a replacement scheme for V_{52}.

Proof. The equation $x=y(x y \cdot y)$ implies $r_{n} r_{n+1}=r_{n-1}$ for every $n \geqq 2$, since for $n=2$ it is trivial and if it is true for some n, then

$$
r_{n}=r_{n+1}\left(r_{n} r_{n+1} \cdot r_{n+1}\right)=r_{n+1} \cdot r_{n-1} r_{n+1}=r_{n+1} r_{n+2}
$$

Since E_{52} implies $r_{3} r_{4}=r_{2}$, it implies

$$
\begin{aligned}
& x=(x x \cdot x)(x(x x \cdot x))=(x x \cdot x) x \\
& x x \cdot x=x(((x x \cdot x) x) x)=x \cdot x x
\end{aligned}
$$

Now evidently E_{52} implies $s_{2} s_{3}=s_{1}$ and so (by induction on n) $s_{n} s_{n+1}=s_{n-1}$ for all $n \geqq 2$.

For every pair a, b of terms and every $n \geqq 1$ put $r_{n, a, b}=f\left(r_{n}\right)$ and $s_{n, a}=f\left(s_{n}\right)$, where f is a substitution such that $f(x)=a$ and $f(y)=b$. Evidently, if $n<m$ then either $n=1, m=2$ or $r_{n, a, b}$ is a proper subterm of $r_{m, a, b}$; if $n<m$ then $s_{n, a}$ is a proper subterm of $s_{m, a}$. The rest of the proof will be divided into several lemmas.
5.4.1. Lemma. Let $n, m \geqq 3$ and $r_{n, a, b}=r_{m, c, d}$. Then $n=m, a=c$ and $b=d$.

Proof. By induction on $n+m$. If $n=m=3$, it is clear. If $n=3$ and $m \geqq 4$ then $a b . b=r_{m-3, c, d} r_{m-1, c, d}$, so that $r_{m-3, c, d}$ is longer than $r_{m-1, c, d}$, a contradiction. Similarly, we can not have $n \geqq 4$ and $m=3$. Let $n, m \geqq 4$. We have $r_{n-1, a, b}=$ $=r_{m-1, c, d}$ and the assertion follows from the induction assumption.
5.4.2. Lemma. Let $n, m \geqq 2$ and $s_{n, a}=s_{m, b}$. Then $n=m$ and $a=b$.

Proof. By induction on $n+m$. If $n, m \geqq 4$, the assertion follows from the induction assumption. If $n, m \leqq 3$, it is evident. If $n=2$ and $m \geqq 4$, then $a a=$ $=s_{m-3, b} s_{m-1, b}$, so that $s_{m-3, b}=s_{m-1, b}$, a contradiction. If $n=3$ and $m \geqq 4$, then ($a a \cdot a$). $a a=s_{m-3, b} s_{m-1, b}$, so that $s_{m-3, b}$ is longer than $s_{m-1, b}$, a contradiction.
5.4.3. Lemma. Let $n \geqq 3$ and $m \geqq 2$. Then $r_{n, a, b} \neq s_{m, c}$ for any terms a, b, c.

Proof. By induction on $n+m$. Suppose $r_{n, a, b}=s_{m, c}$. If $n, m \geqq 4$, we get a con-
tradiction from the induction assumption. If $n=3$ and $m \geqq 4$ then $a b . b=$ $=s_{m-3, c} s_{m-1, c}$, so that $s_{m-3, c}$ is longer than $s_{m-1, c}$, a contradiction. If $v \geqq 4$ and $m=2$ then $r_{n-3, a, b} r_{n-1, a, b}=c c$, so that $r_{n-3, a, b}=r_{n-1, a, b}$, a contradiction. If $n \geqq 4$ and $m=3$ then $r_{n-3, a, b} r_{n-1, a, b}=(c c . c) . c c$, so that $r_{n-3, a, b}$ is longer than $r_{n-1, a, b}$, a contradiction. If $n=3$ and $m \in\{2,3\}$, it is clear.
5.4.4. Lemma. If $a \in A_{J}$ then $a a . a \in A_{J}$ and $s_{n, a} \in A_{J}$ for all $n \geqq 1$.

Proof. It is easy.

5.4.5. Lemma. J is a replacement scheme.

Proof. It follows from the previous lemmas and the obvious fact that if $n \geqq 2$ then $r_{n+1, a, b} \neq r_{n, a, b} r_{n, a, b}$ and $s_{n+1, a} \neq s_{n, a} s_{n, a}$.
5.4.6. Lemma. Let $n \geqq 1, r_{n, a, b} \in A_{J}$ and $r_{n+2, a, b} \in A_{J}$. Then either $r_{n+3, a, b} \in A_{J}$ or $n=1, a=b$.

Proof. Suppose $r_{n, a, b} r_{n+2, a, b}=r_{m, c, d} r_{m+1, c, d}$ for some $m \geqq 2$ and c, d. It follows from 5.4.1 that $n=1$ and $a=b$.

Suppose $r_{n, a, b} r_{n+2, a, b}=s_{m, c} s_{m+1, c}, m \geqq 2$. Then $r_{n+2, a, b}=s_{m+1, c}$, a contradiction with 5.4.3.

Suppose $r_{n, a, b} r_{n+2, a, b}=(c c . c) c$ for some c. Then $r_{n, a, b}$ is longer than $r_{n+2, a, b}$, a contradiction.

Suppose $r_{n, a, b} r_{n+2, a, b}=c . c c$. Then $r_{n+2, a, b}=c c$, which is evidently impossible. 5.4.7. Lemma. The groupoid $A_{J}(\circ)$ connected with J satisfies $x=y(x y, y)$.

Proof. Let $u, v \in A_{J}$. If $u \circ v=u v$ then either $v \circ((u \circ v) \circ v)=v \circ u v . v=u$ or $u=v v$ and then $v \circ((u \circ v) \circ v)=v \circ v=u$.

Let $u=r_{n, a, b}$ and $v=r_{n+1, a, b}, n \geqq 2$. If $r_{n-1, a, b} r_{n+1, a, b} \in A_{J}$ then $v \circ((u \circ v)$ 。 $\circ v)=r_{n+1, a, b} \circ\left(r_{n-1, a, b} \circ r_{n+1, a, b}\right)=r_{n+1, a, b} \circ r_{n+2, a, b}=r_{n, a, b}=u$. In the opposite case it follows from 5.4.6 that $n=2$ and $a=b$, so that $v \circ((u \circ v) \circ v)=a a . a \circ$ $\circ(a \circ a a . a)=a a . a \circ a=a=u$.

Let $u=s_{n, a}$ and $v=s_{n+1, a}, n \geqq 2$. Then $v \circ((u \circ v) \circ v)=s_{n+1, a} \circ\left(s_{n-1, a} \circ\right.$ $\left.\circ s_{n+1, a}\right)=s_{n+1, a} \circ s_{n+2, a}=s_{n, a}=u$.

Let $u=a a . a$ and $v=a$ for some a. Then $v \circ((u \circ v) \circ v)=a \circ(a \circ a)=$ $=a . a a=u$.

Let $u=a$ and $v=a a$. Then $v \circ((u \circ v) \circ v)=a a \circ(a a . a \circ a a)=s_{2, a} \circ s_{3, a}=$ $=s_{1, a}=a=u$.

This completes the proof of 5.4.
5.5. Proposition. Let t be a term of length $\leqq 4$ neither beginning nor ending with x. Then the variety determined by $x=t$ is equal to one of the varieties V_{44}, \ldots, V_{53}, $V_{49}^{*}, \ldots, V_{53}^{*}$; all these varieties are pairwise different.

Proof. If t does not contain x, then $x=t$ is equivalent to E_{44}. The equation $x=y . x z$ is equivalent to E_{44}, since it implies $x=y(x . u v)=y u$. Evidently, E_{45} is equivalent to its dual.

The equation $x=y y . x z$ is equivalent to E_{44}, since it implies $x=(y y \cdot y y)$. $. x z=y . x z$; hence every one of the equations $x=y x . z z, x=y z . x u, x=y x . z u$ is equivalent to E_{44}. The equation $x=y z . x z$ (and hence $x=y x . y z$, too) is equivalent to E_{44}, since it implies $x=(y z . y z)(x, y z)=y(x, y z)$ and so $x x=$ $=x(y(x . y z))=y$. The equation $x=y z \cdot x y$ (and hence $x=y x . z y$, too) is equivalent to E_{44}, since it implies $x=(z u, y z)(x . z u)=y(x . z u)$ and so $x x=$ $=x(y(x . z u))=y$. As it is proved in 5.2, $x=y x . y y$ is equivalent to E_{46}.

The equation $x=y(y . x z)$ (and hence $x=y(z . x u)$, too) is equivalent to E_{44}, since it implies $y x=y(y . x z))=y$ and so $x=y$. The equation $x=y(z . x z)$ is equivalent to E_{44}, since it implies $y x=y(x z .(z . x z))=z$. The equation $x=$ $=y(z . x y)$ is equivalent to E_{44}, since it implies $x=u z \cdot(z(x . u z))=u z . u$. The equation $x=y(x . y z)$ (and so $x=y(x . z u)$, too) is equivalent to E_{44}, since it implies $x x=x(y(x, y z))=y$. The equation $x=y(x . z z)$ is equivalent to E_{44}, since it implies $u . z z=u(y(z z . z z))=y$. The equation $x=y(x . z y)$ is equivalent to E_{44}, since it implies $x=z x .(x(z \cdot z x))=z x \cdot z, x=y(x(y z \cdot y))=y \cdot x z$. The equation $x=y(x \cdot y y)$ is equivalent to E_{44}, since it implies $x=x x \cdot(x(x x . x x))=x x \cdot x x$, $x=y y \cdot(x(y y \cdot y y))=y y . x y$ and conversely E_{46} implies $x=(y y \cdot y y)(x, y y)=$ $=y(x \cdot y y)$. The equation $x=y(x . x z)$ is equivalent to E_{44}, since it implies $y \cdot y x=$ $=y(y(y(x . x z)))=y, x=y x, x=z$.

The equation $x=y(z x . z)$ (and hence $x=y(z x . u)$, too) is equivalent to E_{44}, since it implies $z x . z=u((z(z x . z)) z)=u . x z, x=y(z x . z)=y(u . x z)$ and $x=$ $=y(u . x z)$ was already proved to be equivalent to E_{44}. The equation $x=y(z x . y)$ is equivalent to E_{44}, since it implies $z x . y=z((y(z x \cdot y)) z)=z \cdot x z, x=y(z x \cdot y)=$ $=y(z . x z)$ and $x=y(z . x z)$ was already proved to be equivalent to E_{44}. The equation $x=y(y x . z)$ is equivalent to E_{44}, since it implies $y x=y(y x .((y x . x) z))=$ $=x, x=z$. The equation $x=y(x z \cdot z)$ (and hence $x=y(x z \cdot u)$, too) is equivalent to E_{44}, since it implies $x=y((x(z z \cdot z))(z z \cdot z))=y(z(z z \cdot z))$. The equation $x=y(x z \cdot y)$ is equivalent to E_{44}, since it implies $x=y((x(y y . x)) y)=y . y y$. The equation $x=y(x y . z)$ is equivalent to E_{44}, since it implies $y x=y(x y .((x$. $. x y) z))=x, x=z$. The equation $x=y(x x . z)$ is equivalent to E_{44}, since it implies $x=y(x x .(u u \cdot u))=y u$.

It is easy to prove that the varieties $V_{44}, \ldots, V_{53}, V_{49}^{*}, \ldots, V_{53}^{*}$ are pairwise different.

6. Some remarks

As a summary of the above results, we have
Theorem. If t is any term of length $\leqq 4$, then the variety determined by $x=t$ is equal
to one of the varieties $V_{1}, \ldots, V_{53}, V_{3}^{*}, V_{5}^{*}, V_{6}^{*} . V_{7}^{*}, V_{10}^{*}, \ldots, V_{17}^{*}, V_{18}^{*}, \ldots, V_{43}^{*}, V_{49}^{*}, \ldots$ \ldots, V_{53}^{*} (where V_{i}^{*} are the duals of V_{i}); all these varieties are pairwise different. If V is any of these varieties and $V \neq V_{51}, V_{51}^{*}$, then the word problem for free groupids in V is solvable.

Problem. Describe free groupids in the variety determined by $x=y(y x . y)$.
Remark. The notions of a representative set of terms and a replacement scheme can be defined for an arbitrary similarity type in the same way as in Section 1 for the type consisting of a single binary symbol. Consider the following two conditions for a given variety V :
(C1) There exists a replacement scheme for V.
(C2) There exists a representative set R of terms for V such that whenever $a \in R$ and b is a term such that $b \leqq a$ (i.e. $f(b)$ is a subterm of a for some substitution f) then $b \in R$.
Evidently, (C1) implies (C2). The converse is not true; for example, the variety of semigroups satisfies (C2) but does not satisfy (C1).

Example. Let E be a set of equations of the form $(u v, u)$ where u, v are any terms and let V be the variety of groupoids determined by E. We shall show that there exists a replacement scheme for V.

Denote by J the set of all the equations of the form $(u v, u)$ that are satisfied in V. Evidently, J is a replacement scheme and in order to prove that it is a replacement scheme for V, it is enough to show that the groupoid $A_{J}(\circ)$ connected with J belongs to $V . A_{J}$ is the set of terms that do not contain a subterm $h(u v)$ where h is a substitution and $(u v, u) \in J$. The binary operation \circ on A_{J} is defined as follows: if $a, b \in A_{J}$ and $a b \in A_{J}$ then $a \circ b=a b$; if $a, b \in A_{J}$ and $a b \notin A_{J}$ then $a \circ b=a$. Let f be any homomorphism of the absolutely free groupoid W into $A_{J}(\circ)$. Denote by g the substitution such that $g(x)=f(x)$ for all variables x.

Let us prove by induction on the length of t that if t is any term then the equation $(f(t), g(t))$ is satisfied in V. If t is a variable, it is evident. Let $t=a b$. Then $(f(a), g(a))$ and $(f(b), g(b))$ are satisfied in V by induction. If $f(a) \circ f(b)=f(a) f(b)$ then $(f(t), g(t))=(f(a) f(b), g(a) g(b))$ is evidently satisfied in V. Now consider the remaining case, i.e. $f(a) \circ f(b)=f(a)$ and $f(a) f(b)=h(u v)$ for some substitution h and some $(u v, u) \in J$. Since $(u v, u)$ is satisfied in $V,(h(u), h(u v))$ is satisfied in V, too, i.e. $(f(a), f(a) f(b))$ is satisfied in V; but $(f(a) f(b), g(a) g(b))$ is satisfied in V, so that $(f(a), g(t))$ is satisfied in V. This means that $(f(t), g(t))$ is satisfied in V.

Let $(u v, u) \in E$. Then $(g(u v), g(u))$ is satisfied in V; by the above proved $(f(u), g(u))$ and $(f(u v), g(u v))$ are satisfied in V, so that $(f(u v), f(u))$ is satisfied in V, i.e. $(f(u) \circ f(v), f(u))$ is satisfied in V. If it were $f(u) \circ f(v)=f(u) f(v)$, then the equation $(f(u) f(v), f(u))$ would be satisfied in V, so that it would belong to J and thus $f(u) f(v) \notin A_{J}$, a contradiction. Hence $f(u) \circ f(v)=f(u)$, i.e. $f(u v)=f(u)$.

We have proved that J is a replacement scheme for V. However, the construction of J was not recursive and so we do not know if the word problem for free groupoids in V is solvable.

Problem 2. Let E be a finite set of equations of the form $(u v, u)$ where u, v are arbitrary terms. Is it true that the word problem for free groupoids in the variety determined by E is solvable?

Problem 3. Investigate the collection of varieties satisfying either (C1) or (C2).

Remark. Let V be a given variety. If we find a replacement scheme J for V, then J can be often successfully used in proving that V has some properties (like extensivity or the strong amalgamation property); for example in [2] this method was chosen for the proof of the fact that several varieties are extensive. (A variety V is called extensive if any algebra from V can be extended to an algebra from V having an idempotent.) One could expect that every variety V such that there exists a replacement scheme for V is extensive. However, this is not true.

Example. Consider the variety V determined by the following two equations:

$$
\begin{aligned}
& x((x x \cdot y y) \cdot x x)=x \\
& (x((x x \cdot(y \cdot y y)) \cdot x x))(x((x x \cdot y(y \cdot y y)) \cdot x x))=x((x x \cdot(y \cdot y y)) \cdot x x) .
\end{aligned}
$$

Denote these two equations by $a b=a$ and $c d=c$. It is easy to see that $\{a b \rightarrow a$, $c d \rightarrow c\}$ is a replacement scheme for V. If a groupoid G from V contains an idempotent e, then

$$
\begin{aligned}
x x & =(x((x x \cdot e e) \cdot x x))(x((x x \cdot e e) \cdot x x))= \\
& =(x(((x x \cdot(e \cdot e e)) \cdot x x))(x((x x \cdot e(e \cdot e e)) \cdot x x))= \\
& =x((x x \cdot(e \cdot e e)) \cdot x x)=x((x x \cdot e e) \cdot x x)=x
\end{aligned}
$$

for all $x \in G$, so that G is idempotent. However, there are non-idempotent groupoids in V and so V is not extensive.

References

[1] Austin A. K.: A Note on Decision Procedures For Identities. Algebra Universalis 9, 1979, 146-151.
[2] Ježek J., Kepka T.: Extensive Varieties. Acta Univ. Carolinae, Math. Phys. 16/2, 1975, 79-87.

[^0]: *) 18600 Praha 8, Sokolovská 83, Czechoslovakia.

