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1985 ACTA UNIVERSITATIS CAROLINAE — MATHEMATICA ET PHYSICA VOL. 26. NO. 1 

Hamiltonian Quasimodules and Trimedial Quasigroups 

T. KEPKA 

Department of Mathematics, Charles University, Prague*) 

Received 19 October 1984 

Hamiltonian quasimodules and trimedial quasigroups are studied. 

Studuji se hamiltonovske kvazimoduly a trimedialni kvazigrupy. 

M3y4aioTC5i raMHJibTOHOBbi KBa3HMOAyJiw H KBa3Hrpynm>i. 

1. Commutat ive Moufang loops and quas imodules 

A loop Q( + ) satisfying the identity (x + x) + (y + z) = (x + y) + (x + z) 
is commutative and is called a commutative Moufang loop. We denote by C(Q( + )) 
the centre of £>( + ), by A(Q( + )) the associator subloop of g( + ), by 0 = C0(Q( + )) c 
= C1(Q( + )) = C(Q( + )) s C2(Q( + )) = ... = Cn(Q( + )) <= ... the upper central 
series of Q( + ) and by Q = A0(Q( + )) 2 A,(Q(+)) = A(Q( + )) => A2(Q( + )) => ... 
... 2 A„(Q( + )) 2 ... the lower central series of Q( + ) . 

1.1. Lemma. Let Q( + ) be a commutative Moufang loop and let a, b, c e Q 
be such that (a + b) + c = -a + (b + c). Then 2a = 0 and a e C(g( + )). 

Proof. We have (a + b) + (3a + c) = ((a + b) + c) + 3a = ( - a + (b + 
+ c)) + 3a = 2a + (b + c) = (a + b) + (a + c), so that 2a = 0. 

Throughout the paper, let R be an associative ring with unit possessing a ring 
homomorphism d> onto the three-element field Z3. Put I = Ker 4>. By a (^-special 
unitary left R —) quasimodule Q we mean a commutative Moufang loop Q( + ) 
supplied with a scalar multiplication by elements from R such that the usual module 
identities are satisfied and, moreover, rxe C(Q( + )) for all rel and xe Q. In this 
case, all the members of the upper central series as well as of the lower central series 
of Q( + ) are subquasimodules of Q. 

A quasimodule Q is said to be primitive if rx = 0 for all r e I and x e Q. 
If Q is a quasimodule then both A(Q) and QJC(Q) are primitive. 

By a preradical p (for quasimodules) we mean any subfunctor of the identity 
functor. In this case, p(Q) is a normal subquasimodule of Q for any quasimodule Q. 

*) 186 00 Praha 8, Sokolovská 83, Czechoslovakia. 
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For a quasimodule Q, let K(Q) be the subquasimodule generated by all primitive 
subquasimodules of Q. Then K(Q) is a primitive quasimodule and we define L(Q) 
by L(Q) = \JQ„ where Q0 = 0, e«+ i /2a = K(Q\Qa) and Qa = \JQp, p < a, if 
a = 1 is limit. Then both K and Lare hereditary preradicals and Lis a radical. 

For a quasimodule Q, let S(Q) be the subquasimodule generated by all minimal 
subquasimodules. Further, define T(Q) similarly as L(Q). 

For a quasimodule Q, let B(Q) = 3Q. 

1.2. Lemma. Let P be a subquasimodule of a quasimodule Q such that P n 
n C(<2) = 0. Then P is primitive and P c K(Q). Moreover, if P is cyclic then either 
P = 0 or P is isomorphic to Z3 (the module structure on Z3 is induced by #). 

Proof. Obvious. 

1.3. Lemma. Let P be a non-zero normal cyclic subquasimodule of a quasi­
module Q. Then P n C(Q) 4= 0 and if P is simple then P c c(Q). 

Proof. Suppose that Pn C(Q) = 0. By 1.2, P contains just three elements, 
so that P = [a, —a, 0}. Since a $ C(Q) and P is normal, f(a) = a for every inner 
automorphism / of Q (use 1.1). Hence a e C(Q). 

1.4. Lemma. Let Q be a non-associative quasimodule generated by three ele­
ments. Then: 

(i) A(Q) is isomorphic to the module Z3 . 
(ii) card Q\C(Q) = 27 and Q\C(Q) is isomorphic to Z\. 

(iii) C(Q) = A(Q) + B(Q). 
(iv) If C(Q) + B(g) then QJB(Q) is a free primitive quasimodule of rank 3 and 

of rank 3 and A(Q) n B(Q) = 0. 
(v) If P is a proper subquasimodule of Q and C(Q) ^ P then P is a module. 

(vi) If P is a non-associative subquasimodule of Q then A(Q) .= P, Q = P + 
+ 5(Q) and P is a normal subquasimodule. 

Proof, (i) If Q is generated by {a, b, c) and d = [A, b, c] then Q/Kd is associative 
and A(Q) = Pd. 

(ii) QjC(Q) is not generated by two elements and it is a primitive module 
generated by three elements. 

(iii) Put P = A(Q) + B(Q). Then P c C(Q), Q/P is a primitive module and 
card Q\P = 27. Hence P = C(g). 

(iv) Since B(Q) * C(Q), card G/B(Q) = 81. On the other hand, Q\B(Q) is 
a homomorphic image of the free primitive quasimodule of rank 3 and this contains 
just 81 elements. 

(v) Obviously, f(P) is a proper submodule of Q/C(Q), / being the natural 
homomorphism. By (ii),/(P) can be generated by two elements. Since C(Q) ^ C(P), 
P is associative. 
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(vi) We have A(Q) _ P and P is normal in Q. If P + B(Q) 4. Q then there is 
a normal subquasimodule V of Q such that P _ V and Q/Vis isomorphic to Z3 . 
Consequently, A(Q) and B(Q) are contained in Vand C(Q) _ V. By (v), Vis a module, 

1.5. Lemma. Let Q be an L-torsion quasimodule generated by three elements. 
Then every proper subquasimodule of Q is a module. 

Proof. Use 1.4. 

1.6. Lemma. Let Q be a non-associative subdirectly irreducible quasimodule 
nilpotent of class at most two. Then A(Q) is isomorphic to Z3 and every proper 
homomorphic image of Q is a module. 

Proof. We have 0 =# A(Q) _ C(Q). Since A(Q) is subdirectly irreducible and 
primitive, A(Q) is isomorphic to Z3. The rest is clear. 

1.7. Proposition. The following conditions are equivalent for a non-associative 
L-torsion quasimodule Q: 

(i) Q is subdirectly irreducible and it is generated by at most three elements, 
(ii) Every proper factorquasimodule as well as every proper subquasimodule 

of Q is a module. 

Proof. Apply 1.4, 1.5 and 1.6. 

2. Hamiltonian quasimodules 

A quasimodule Q is said to be hamiltonian if every subquasimodule of Q is 
normal. 

2.1. Proposition. Let Q be a hamiltonian quasimodule. Then Q is nilpotent of 

class at most 2 and S(Q) _ C(Q). 

Proof S(Q) _ C(Q) by 1.3. Further, A(Q) _ K(Q) _ S(Q) _ C(Q), and hence 

Q is nilpotent of class at most 2. 

2.2. Proposition. Let Q be a subdirectly irreducible non-associative hamiltonian 
quasimodule. Then: 

(i) Q is cocyclic and A(Q) = K(Q) = S(Q) is isomorphic to Z3. 
(ii) Every proper homomorphic image of Q is associative, 

(iii) If R is commutative and / finitely generated then Q is L-torsion. If, moreover, 
Q is finitely generated then Q is finite and card Q = 3" for some n _ 4. 

Proof (i) and (ii). These assertions are easy. 
(iii) C(Q) is a cocyclic module, and hence it is L-torsion. On the other hand, 

QjC(Q) is primitive and consequently, Q is L-torsion. 
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2.3. Proposition. Let Q be a non-associative hamiltonian quasimodule which is 
generated by at most three elements. Then: 

(i) A(Q) is isomorphic to Z3. 
(ii) C(Q) = B(Q) and Q\C(Q) is isomorphic to Z\. 

(iii) If Q is L-torsion then every proper subquasimodule of Q is a module. 

Proof. Apply 1.4 and 1.5. 

2.4. Proposition. Suppose that R is commutative and I is a finitely generated 
ideal. Let Q be a non-associative hamiltonian quasimodule such that Q is subdirectly 
irreducible and generated by at most three elements. Then Q is finite, L-torsion 
card Q = 3" for some n = 4 and every proper factorquasimodule as well as every 
proper subquasimodule of Q is a module. 

Proof. See the previous results. 

2.5. Proposition. Suppose that R is commutative, I is finitely generated and there 
exists a non-associative hamiltonian quasimodule. Then there exists a finite cocyclic 
L-torsion module M such that M cannot be generated by two elements. 

Proof. There exists a non-associative hamiltonian quasimodule Q' = Qi*, rx) 
such that Q' is subdirectly irreducible, L-torsion, finite and generated by at most 
three elements. Then there are a module Q = Q( + , rx) with the same underlying 
set and the same scalar multiplication and a trilinear mapping Tof Q3 into Q such that 
T(x, x, y) = 0, T{T(x, y, z), u, v) = 0, T(u, v, T(x, y, z)) = 0, sT(x, y, z) = 0 and 
x * y = x + y+ T(x, y, x — y) for all x, y, z, u, v e Q and s el. If P is a non-zero 
cyclic submodule of Q then P is also a subquasimodule of Q' and hence A(Q') ^ P. 
From this we conclude that Q is cocyclic. Obviously, Q is L-torsion. Finally, since Q' 
is not associative, T + 0 and Q is not generated by two elements. 

2.6. Proposition. Suppose that I is finitely generated as a left ideal and let there 
exist a finitely generated cocyclic L-torsion module which is not generated by two 
elements. Then there exists a non-associative hamiltonian quasimodule. 

Proof. Put F = RxRxRxZ3, al = (1, 0, 0, 0), a2 = (0, \, 0, 0), a3 = 
= (0, 0, 1, 0), a4 = (0, 0, 0, 1) and define a trilinear mapping T of F3 into F by 
T(au a2, a3) = a4, T(a2, al9 a3) = — a4 and T(ab aj9 ak) = 0 otherwise. Further, 
put x*y = x + y-\~ T(x, y, x — y) for all x, y e F. Then F' = F(*, rx) is a quasi­
module, namely the free quasimodule freely generated by al9 a2, a3. Now, let B 
be a submodule of N = RxRxR such that M = NjB is a cocylic L-torsion 
module and M is not generated by two elements. The rest of the proof is divided 
into three parts: 

(i) We shall show that B ^ I x I x I and B #= IN. We have J(M) = 
= (IN + B)JB, since M is L-torsion; here, J is the Jacobson radical. Consequently, 
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M]J.yM) is isomorphic to N/(IN + B). Since M cannot be generated by two elements, 
N/(IN + B) has the same property and we have IN = IN + B, so that B _ IN. 
Clearly, B + IN. 

(ii) Let B _ A _ IN be such that AJB is simple (non-zero). There is a surjective 
module homomorphism f of A onto Z3 such that Kerf = B. Now, define a subset P 
of F by (xl9 x2, x3, x4) e P iff x = (x1? x2, x3) e A and x4 = f(x). Obviously, P is 
a submodule of IN x Z3, and therefore P' = P(*) is a subquasimodule of F\ Put 
Q' = F'\P'. Then card Q' = 3card M. 

(iii) We shall prove that Q' is a non-associative L-torsion hamiltonian quasi-
module. We have P n Ra4 = 0, so that Q' is not associative. Let x = (xl9 x2, x3, x4) e 
e F be such that x £ P and put y = (xl9 x2, x3). Then either y $ A or y e A and 
f(y) + ,x4. First, assume that y $ A. The module M is cocyclic, finitely generated 
and L-torsion. Since I is finitely generated as a left ideal, FN _ £ for some n = 1. 
Clearly, n = 2 and if Iy c B then I(>! + B/B) = 0, y + B e 5(M) = A\B and y e A, 
a contradiction. We have Iy $ B and let m _ 2 be the least with Imy _ B. There is 
relm~l such that ry$B. Since Irj> _ B, ry e A. Moreover, rx = (ry, 0) and let 
z = f(r>) e Ra4. Then (ry, z) e P, rx - z e P, and so r(x + P/P) = (z + P)/P. 
However, z + 0. Finally, let ye A and f(y) 4= x4. Then w = (y,f(y))e P and 
x - u = (0, 0, 0, v), v + 0. 

2.7. Theorem. Suppose that R is commutative and I is a finitely generated ideal. 
Then there exists a non-associative hamiltonian quasimodule iff there exists a finite 
cocyclic L-torsion module which is not generated by two elements. 

Pro0f Apply 2.5 and 2.6. 

2.8. Corollary. Suppose that R is commutative and I/I2 is a simple module 
(e.g. I is principal). Then every hamiltonian quasimodule is a module. 

2.9. Example. Let S = Z9[x, y\ (the polynomial ring), J = 5(x6 — 1) + 
+ S(y6 - 1) and R = SJJ. Put M = Z9 x Z9 x Z9, f(xl5 x2, x3) = ( - x l 5 2x2, 
- x 3 ) and g(x!,x2, x3) = (2x1? - x 2 , - x 3 ) for every (x1? x2, x3) e M. Then M is 
a cocyclic L-torsion R-module (via f and g) and M is not generated by two elements. 
Since f and g are commuting automorphisms, the same is true for S = Z9[x, y, x - 1 , 
y " 1 ] and R = S/J. 

3. Trimedial quasigroups 

Throughout this section, let R = Z[a, p, a"1, / T 1 ] , a and /? being two com­
muting indeterminates over the ring Z of integers. Then K is a finitely generated 
integral domain, and hence R is also a commutative noetherian ring. Moreover, 
there exists a unique homomorphism <P of R onto Z3 and we have #(a) = <P(0) = 
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= - 1 . Clearly, I = Ker # = R3 + R(l + a) + R(i + p). Further, we denote by Jl 
the variety of quasimodules and by Jtc the variety of centrally pointed quasimodules, 
so that a quasimodule Q together with a point a e Q belongs to J/c iff a e C(Q). 

A quasigroup Q is said to be trimedial if every subquasigroup of Q generated 
by at most three elements is medial, i.e. satisfies the identity xy . uv = xu . yv. 
Denote by 0 the variety of trimedial quasigroups. We are going to prove that the 
variety 0>v of pointed trimedial quasigroups is equivalent to the variety Jtc. 

3.1. Lemma. Let Q( + ) be a commutative loop and h SL mapping of Q into Q. 
The following conditions are equivalent: 

(i) (x + h(x)) + (y + z) = (x + y) + (h(x) + z) for all x, y, z e Q. 
(ii) Q( + ) is a commutative Moufang loop and h(x) — xe C(Q( + )) for every 

xeQ. 

Proof, (i) implies (ii). As an immediate consequence of (i) we have (x + h(x)) + 
+ y = x + (h(x) + y) = h(x) + (x + y) for all x, y e Q. Hence (x + h{x)) + 
+ (y + z) = x + (h(x) + (j; + z)) = h(x) + (x + (y + z)) = (x + y) + 
+ (h(x) + z) for all x, y, ze Q. In particular, h(x) + (x + (z — x)) = h(x) + 
+ z (we put y = — x), x + (z — x) = z and we see that g( + ) is an IP-loop. 

Further (x + y) + (h(x) + (z - y)) = (x + h(x)) + z, h(x) + (z - y) = 
= ((x + h(x)) + z) + (-x - y), -h(x) + (y - z) = ((-x - h(x)) - z) + 
+ (x + y), and hence (x + y) + (( — x — h(x)) + z) = — h(x) + (y + z) for all 
x, y, z e Q. On the other hand x + (h(x) + ( ( - x - h(x)) + z)) = (x + h(x)) + 
+ (( —x — h(x)) + z) = z, h(x) + (( —x — h(x)) + z) = z — x, and therefore 
(x + (x + y)) + (z - x) = (x + h(x)) + ((x + y) + ((-x - h(x)) + z)) = 
= (x + h(x)) + (~h(x) + (y + z)) = x + (y + z), i.e. (x + (x + y)) + z = x + 
+ (y + (x + z)) for all x, y, z e Q. From this, (x + x) + z = x + (x + z) and we 
have (x + y) + (x + z) = (x + (x + (y - x)) + (x + z) = x + ((y - x) + 
+ ((x + x) + z)) = x + (x + (z + y)) = (x + x) + (y + z), so that Q( + ) is 
a commutative Moufang loop. Finally, h(x) + ((y + z) — x) = (— x + x + h(x)) + 
+ ((y + z) - x)= -2x + ((x + h(x)) + (y + z)) = - 2 x + ((x + y) + 
+ (h(x) + z) = y + (-x + (h(x) + z)), hence h(x) + (y - x) = y + (h(x) - x), 
(h(x) - x) + (y + z) = h(x) + ((y + z) - x) = y + (-x + (h(x) + z)), (h(x) -
- x) + z = - x + (h(x) + Z), (h(x) - x) + (y + z) = y + (z + (h(x) - x)) and 
h(x)-xeC(S(+)). 

(ii) implies (i). We have (x - h(x)) + ((x + y) + (h(x) + z)) = (x + y) + 
+ (x + z) = (x + x) + (y + z) = (x - h(x)) + ((x + h(x) + (y + z)) for all 
x, y, z G Q. 

Let Q be a quasigroup. A quadruple (Q( + ),f, g, a) is said to be an arithmetical 
form of Q if Q(+) is a commutative Moufang loop defined on the same underlying 
set, / and g are commuting 1-central automorphisms of Q( + ) (i.e. x + f(x), x + 
+ g(x) e C(Q(+))), a is an element from C(g( + )) and, finally, xy = f(x) + g(y) + 
+ a for all x, y e Q. 
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3.2. Lemma. Let (Q( + ),f, g, a) and (Q(*),p,q,b) be arithmetical forms of 
the same quasigroup Q. Suppose that the loops Q( + ) and Q(*) have the same zero 
element 0. Then Q( + ) = Q(*), f = p, g = q and a = b. 

Proof We have f(x) + g(y) + a = p(x) * q(y) * b for all x, y e Q. Hence 
a = b, g(y) + a = q(y) * a, f(x) + z = p(x) * z, f = p, + = * and g = q. 

3.3. Lemma. Let Q be a quasigroup having an arithmetical from (Q(+),f, g, a) 
and let u e Q. Then there is an arithmetical form (Q(*), p, q, b) of Q such that u 
is the neutral element of S(*). 

Proof Put v = — u and x * y = (x + y) + v for all x, y e Q. Then Q(*) is 
a loop and u is the neutral element of Q(*). Moreover, the mapping h: x -> x + v 
is an isomorphism of Q(*) onto Q(+)', we have h-1(x) = x + u. Further, p(x) = 
= h-'fh(x) = (f(x) + f(v)) + u, q(x) = h~lg h(x) = (g(x) + g(v)) + u and both 
p and q are 1-central automorphisms of Q(*). Now, put c = a + 3v + (u — f(v)) + 
+ (u — g(v)) and b = c + u. Then b, c e C(Q(*)) and p(x) * q(y) * b = 
= (((((A*) + /(»)) + ") + ((*G0 + 8(v)) + u)) + v) + (c + u)) + v= f(x) + 
+ g(y) + a = xy. 

3.4. Lemma. Let (Q( + ),f, g, a) and (P( + ), p, q, b) be arithmetical forms of 
quasigroups Q and P, resp. Let h be a mapping of Q into P such that h(0) = 0. 
Then h is a homomorphism of the quasigroups iff h is a homomorphism of the 
commutative Moufang loops, hf = ph, hg = qh and h(a) = b. 

Proof. Clearly, h is a homomorphism of the quasigroups iff h(f(x) + g(y) + a) = 
= ph(x) + qh(y) + b for all x, y e Q. This equality implies h(a) = b, h/(x) = 
= ph(x) + qhg~\-a) + b, qhg~\-a) + b = 0, h/ = ph, % = qh, h(x + y + 
+ a) = h(x) + h(y) + h{a), h(y + a) = h(y) + h(a), h(x + z) = h(x) + h(z). The 
rest is clear. 

3.5. Lemma. Let Q be a quasigroup having an arithmetical form. Then Q is 
trimedial. 

Proof Let b, c, d e Q. By 3.3, there is an arithmetical form (Q( + ),f, g, a) of Q 
such that b = 0. Denote by P( + ) the subloop of Q(+) generated by {c, d] u 
u C((?(+))• Then P (+) is an abelian group, aeP and f(P) = P = #(P). Con­
sequently, P is a subquasigroup of Q and P is medial. 

Let Q be a quasigroup and a, b e Q. Put Pa(x) = xa and Lfr(x) = bx for all 
x, y e Q. Then Ra, Lb are permutations of Q. 

3.6. Lemma. Let Q be a trimedial quasigroup, a, b e Q and x + }> = 
= Pfl

_1(x) Lft
_1(v) for all x, y e Q. Then: 

(i) Q(+) is a loop and ba = 0. 
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(ii) Q( + ) is commutative iff bx . ya = by . xa for all x, y e Q. 
(iii) If both a and b belong to the subquasigroup generated by an element c 

then Q( + ) is commutative. 
(iv) If Q( + ) is commutative and RaLb = LbRa then Q( + ) is a commutative 

Moufang loop. 

Proof, (i) This is obvious. 
(ii) We have (x + y) (aa) = xL;\y) a, (y + x) (aa) = yL~ \x) a. Hence 

x + y = y + x for all x, y e Q iff bx . ya = by . xa. 
(iii) This is an immediate consequence of (ii). 

(iv) Let r, s e Q be such that rb = v and as = a. Put h = LrR;1. We have 
(h(x) h(x)) (yz) = (h(x) y) (h(x) z) for all x, y, z e Q. But h(x) h(x) = (rR;\x)) . 
. (bL~b'h(x)) = b(R;\x) L-b'h(x)), yz = (R~a\y) R;\z)) a, h(x) y = b(R;\x) . 
. Lb \y)) and h(x) z = (Ra

 lh(x) Rs \z)) a. Consequently, Lb(x + h(x)) Ra(y + z) = 
Lb(x + y) Ra(h(x)) + z) for all x, y, z e Q. But Lbb(xy) = Lb(x) Lb(y), hence 
L-bb\xy) = Lb\x)L-b\y) for all x, y e Q. Similarly, R;a\xy) = R;\x) R;\y). 
Now, (x + h(x)) + (y + z) = R;\x + h(x)) L'b

l(y + z) = L~bb
lR~aa\Lb(x + h(x)). 

. Ra(y + z) = L-bb
lR;a\Lb(x + y) Ra(h(x) + z)) = R; \X + y) L^(h(x) + z) = 

= (x + y) + (h(x) + z) for all x, y, z e Q. By 3.1, Q( + ) is a commutative Moufang 
loop. 

3.7. Lemma. Let Q be a trimedial quasigroup and let a, b, c, d e Q be such that 
ba = a = ac and bd = b. Then dc = c, RCLC = LbRc and the elements b, c belong 
to the subquasigroup generated by a. 

Proof. We have a . dc = ba . dc = bd. ac = ba = a = ac, so that dc = c. 
On the other hand, bx . c = bx . dc = bd. xc = b . xc for every xe Q. 

3.8. Lemma. Let Q be a trimedial quasigroup. Then every loop isotopic to Q 
is a Moufang loop. 

Proof. By 3.7, 3.6(iii), (iv), Q is isotopic to a commutative Moufang loop. 
However, as it is well known, the class of Moufang loops is closed under isotopy. 

3.9. Lemma. Let Q be a trimedial quasigroup. Then Q has an arithmetical form. 

Proof. Let u, v e Q be such that g( + ) is commutative where x + y = R; \X) . 
. L~1(y) for all x, y e Q (see 3.6(h), (iii)). By 3.8, Q(+) is a commutative Moufang 
loop and we have xy = p(x) + q(y), p = Ru, q = Lv. Now, p(p(x) + q(x)) + 

+ q(p(y) + i(-)) = ** • y~ = *y • x z = P{P(X) + q(y)) + g(K*) + g(z))> s o t h a t 

p(x + qp~\x)) + q(y + z) = p(x + qp~\y)) = q(x + z) for all x,y,ze Q. Con­
sequently, b + q(y + z) = pqp~\y) + q(z), b = pqp~\0). Further, (b + q(y)) -
- c = pqp~\y\ c = g(0), and b + q(y + z) = ((b + q(y)) - c) + q(z) for all 
y, z e Q. But q(y + z) = q(z + y), so that ((b + y) - c) + z = ((b + z) - c) + y, 
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(b + y) - c = (b - c) + y, ((b - c) + y) + z = ((b - c) + z) + y and b - ce 
e C(6( + )). Then c + q(y + z) = (c - b) + (b + q(y + z)) = (c - b) + 
+ ((b - c) + q(y)) + q(z) = q(y) + q(z) and the mapping g, g(x) = q(x) - c is 
an automorphism of 2( + ). Dually, the mapping f, f(x) = p(x) — d, d = p(0). is 
an automorphism of Q(+). Now, xy = p(x) + q(y) = (f(x) + d) + (g(y) + c) for 
all x, y e Q. In the rest of the proof, let u = v = ww for some w e Q. Put h = 
= RuL~u

l. Wehaveh(x + y) = RJ^\R;l(x) L~u\y)) = R^R^x) L ; 1 L ; 1 ( J ; ) ) = 

= Ru(R^L-w\x)L-iL-\y)) = RWR~J L~\x) RwL~w
l L-u\y) = L~\x) RwL'w

l L~u\y) = 
= Ru-1RuL-\x)Lu~1RuL-\y) = h(x) + h(y) for all x, y e Q; take into account 
that u . xw = ww . xw = wx . ww = wx . u, L^1Ru

1(x) = R~1L~1(x) and 
RuL-\x) = RwL^\x) for every x e Q. We have proved that h is an automorphism 
of the loop Q( + ) . Further, (h(x) + x) + (y + z) = Ru-\R^h(x)L-\x)) . 
.L-u\R-u\y)L-u\z)) = (R^L;i\x)R-lL-u\x))(L-jR;\y)L-jL-u\z)) = 
= (R;1R'U\X) R:1L-u\y))(R-jL-u\x)L-w

lL-u\z)) = (R^R^^x) R:1L~u\y)) . 
.(L-JR;\X)L~JL-U\Z)) = R;\R^h(x)L:\y))L'u\R;\x)L:\z)) = 
= (h(x) + y) + (x + z). By 3.1, h{x) - x e C(Q( + )). Now, we have h(c) = 
= pq-1 q(0) = p(0) = d, and so xy = (f{x) + d) + (g(y) + c) = (f(x) + h(c)) + 
+ (g(y) + c) = (f(x) + g(y)) + a, a = c + h(c), for all x, y e Q. Further, (gf(x) + 
+ f(a)) + a = (f((j\0) + g(0)) + a) + g((f(x) + gg-\-a)) + a)) + a = 00 . 
. xg-\-a) = Ox . 0g~\-a) = (f((f(0) + g(x)) + a) + g\f(0) + gg'\-a)) + 
+ a)) + a = (fg(x)+f(a)) + a, so that fa = af Further, h(x) = RUL-U\x) = 
= pq~\x) = (fg~\x) - fg~\c)) + d, h(0) = d - fg~\c)e C(Q( + )), and hence 

fg~\x) - x e C(Q( + )) for every xeQ. Consequently,f(x) - g(x) e C(Q(+)). Now, 
the equality (xx . x) (yz) = (xx . y) (xz) for all x, y, z e Q, yields ((((f2a-1(x) + 
+ f(x)) + f\a)) + x)+ f(a)) + ((y + z) + g(a)) = ((((f2g~\x) + f(x)) + f\a)) + 
+ y) + /(«)) + ((* + z) + 9(a)) for all x, y, z e Q. Butf(x) - f2g~ \x) e C(Q( + )) 
and 3f(x) e C(Q(+)). Hence we have m = n where m = (((-f(x) + f\a)) + x) + 
+ f(a)) + ((y + z) + g(a)) and n = (((-f(x) + f\a)) + y)+ f(a)) + (x + z) + 
+ g(a)). Further, f(a) — a(a) e C(Q( + )) and from the equality m + f(a) — g(a) = 
n + f(a) - g(a) we get ((- f(x) + f2(a)) + x) + (y + z) = ((-f(x) + f\a)) + 
+ y) + (x + z). Now, by 3.1, the element — x + (— f(x) +f2(a)) is contained 
in C(2( + )) for every x e Q. We have proved that f is 1-central. Similarly, using the 
equality (yz) (x . xx) = (yx) (z . xx), we can show that g is 1-central. 

3.10. Theorem. The varieties 0>p of pointed trimedial quasigroups and Mc of 
centrally pointed quasimodules are equivalent. 

Proof. Apply the preceding results. 

4. Hamiltonian trimedial quasigroups 

A quasigroup Q is called hamiltonian if every subquasigroup of Q is normal. 
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4.1. Proposition. Let Q be a trimedial quasigroup and Q' the corresponding 
quasimodule. 

(i) If Q' is hamiltonian then Q is hamiltonian. 
(ii) If Q contains at least one idempotent and is hamiltonian then Q' is 

hamiltonian. 

Proof, (i) Let P be a subquasigroup of Q and let b e P. Let (Q", a) be the centrally 
pointed quasimodule corresponding to (Q, b), so that b = 0. Then P is a subquasi-
module of Q\ P is a normal subquasimodule (Q" is isomorphic to Q') and P is 
a normal subquasigroup of Q. 

(ii) Let b e Q be such that bb = b and let (Q", a) be the centrally pointed quasi­
module corresponding to (Q, b). Let P be a subquasimodule of Q". We have a = 
= bb = b = 0, a e P, P is a subquasigroup of Q and P is normal. Hence P is 
a normal subquasimodule. 

4.2. Proposition. Let Q be a trimedial quasigroup such that g is subdirectly 
irreducible and nilpotent of class at most two. Let P be a subquasigroup of Q and 
suppose that P is not idempotent. Then P is a normal subquasigroup. 

Proof. By 3.3, Q has an arithmetical form (Q( + ),f, g, a) such that 0 =# a e P 
and 0 e P. Then P is a subloop of Q( + ) and the intersection P n C(Q(+)) is non-
trivial. Consequently, the centre is contained in P and P is normal. 

4.3. Corollary. Let Q be a trimedial quasigroup with 81 elements such that Q 
contains no idempotent. Then Q is hamiltonian. 
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