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Graphs and quasitrivial groupoids 

MILAN VfTEK 

Faculty of Mathematics and Physics, Charles University, Prague*) 

Received 29 November 1984 

In the paper, some questions concerning graphs and their connection with quasitrival 
groupoids are studied. 

V článku se studují některé otázky týkající se grafů a jejich souvislosti s kvazitriviálními 
grupoidy. 

B CTaTte H3yHaioTC.a HeKOTopwe Bonpocw KacaionrHecH rpa<j>OB H KBa3HTpHBHajn>m>ix rpyn-
HOHAOB. 

1. Introduction 

The solution of some questions from the theory of quasitrivial groupoids (e.g. 
estimations of number of associative triples e.t.c, see [1]) leads to the following 
problem: Let LX,L2 L16 be all pair-wise non-isomorphic graphs with 3 vertices, 
i.e. Lj = (V(Lj), E(Lj)),j = 1,..., 16, where V(Lj) = {1, 2, 3} for every; = 1,..., 16 
and £(L.) = {(1,2), (1,3), (2, 3)}, E(L2) = {(1, 2), (1, 3), (2, 3), (3, 2)}, E(L3) = 
= {(1, 2), (1, 3)}, £(L4) = {(1, 2), (1, 3), (2, 1), (2, 3)}, E(L5) = {(1, 2), (3, 2)}, 
E(L6) = {(1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2)}, £(L7) = 0, £(L8) = {(1, 2), (2, 3), 
(3, 1)}, E(L9) = {(1, 2), (2, 3)}, £(L10) = {(1, 2), (2, 3), (3, 1), (1, 3)}, E(Llt) = 
= {(1, 2), (2, 3), (3, 2)}, £(L12) = {(1, 2), (1, 3), (3,1)}, E(L13) = {(1, 2), (2,1), (2, 3), 
(3, 2)}, £(L14) = {(1, 3), (3,1)}, E(L15) = {(1,2), (2,1), (2,3), (3,1), (3,2)}, E(Ll6) = 

= {(I- 3)}-
In the following text, the word graph is used for the simple antireflexive graph, 

i.e. a couple K = (V(K), E(K)) where V(K) * 0 will be always a finite set and 
E(K) c V(K) x V(K) such that E(K) n {(a, a), a e V(K)} = 0. 

We shall use the symbol N for the set of all natural numbers. The letters i,j, k, I, 
m, n will usually denote elements of N. 

*) Matematicko-fyzikální fakulta, Univerzita Karlova, Sokolovská 83, 186 00 Praha 8, 
Československo. 



Further, an isomorphism of graphs will be denoted by _ . If K is an induced 
subgraph of a graph L(i.e. V(K) _ V(L) and _(K) = E(L) n (V(K) x V(K))) then 
we shall write K _ _ L. 

We shall say (for a graph K) that a couple a, be V(K) is a bolt (denoted by a -> b) 
iff (a, b) e E(K) and (b, a) $ E(K), a couple a, be V(K) is a double-bolt (denoted 
by a^b) iff (a, b) e E(K) and (b, a) e _(K). If (a, b) $ E(K) and (b, a) $ E(K) 
then we shall write a <f> b. 

Now, for any graph G and any 1 = i <; 16, denote by q(G, i) the number of all 
induced subgraphs of G which are isomorphic to Lh i.e. 

q(G, i) = card {H _ _ G, H _ L j . 

Our task is to find which values can be achieved by these numbers, especially to 
determine 

qt(n) = max {q(G, i), card G = n) 

for every natural number n and each 1 = i = 16. 

2. Preliminary results 

2.1. Lemma. The following conditions are satisfied for any 1 ^ i ^ 16: 

(i) if n = 2 then q/n) = 0, 

(ii) for every neN, 0 = qt(n) ^ . 

Proof. Evident. 

2.2. Lemma. FOr any neN, 

(i) q2(n) = q3(n) = q4(n) = q5(n), 

(ii) q9(n) = q10(n), 

(in) qlt(n) = q12(n), 

(iv) q13(n) = q1A.(n), 

(v) q15(") = qi6(4 

Proof. Let us define for a graph G a graph Gop (the opposite graph of G) and a graph 
Gin (the inverse graph of G) by V(G0*) = V(Gin) = V(G) where (a, b) e E(Gop) 
iff (b, a) e E(G) and the set E(Gin) is defined in this way: a -> b in the graph Gin 

iff a -> b in the graph G, a <-• b in the graph Gin iff a <+> b in the graph G. Clearly, 
the applications G -> Gop, G -• G,n, G -• (Gop)'B define mutually unique correspon­
dences of graphs with the same vertices. Now, if we consider the equality L l 6 = 
= (Ll5)

in then we obtain (v). 
The situation in (i) —(iv) is quite analogous. 



2.3. Lemma. For any n e N, n = 3, we have 

(0 ATOO = ( 3 ) , 

0 0 46(w) = ( 3 ) > 

(iii) .-.(it) = ("J . 

Proof. We must find in all the three cases a graph G, card V(G) = n, such that 

(1) «2(G, I) == ( 3 ) , . = 1 ,6 ,7 . 

Then we shall have the following inequalities: 

<?/«) = ( 3 ) , i = l , 6 , 7 . 

The converse inequalities are satisfied by Lemma 2.1 (ii). We choose the following 
graphs: the empty graph (M, 0) for the case (i), the complete graph (M,M2\ 
\ {(a, a), a e M}) for the case (ii) and the graph 

(M, \J{(i,j),j=l,...,i-l}) 
i=l 

for the case (iii), where M = {1, 2 , . . . , n}. Then the formula (1) is proved by in­
duction. 

Let G be a graph and a e V(G). Then we put 

f(a) = fG'a) = card {b e V(G), a - b} , 

9{?) = 0G(*) = card {b e V(G), ft -> a} , 
A(fl) = fcG'fl) = card {b e V(G), a «-> b} , 

fc(a) = kG(a) = card {fee V(G), a <+» b} . 

The following results are straightforward. 

2.4. Lemma. Let G be a graph card V(G) = n. Then for any a e V(G), f(a) + 
+ g(a) + h(a) + fc(a) = n - 1. 

2.5. Lemma. Let G be a graph. Then 

I A-) - E *(*) • 
aeF(G) aeK(G) 

2.6. Lemma. Let G be a graph. Then 

(i) Z ( / (
2

a ) ) = 9(G, 1) + «(G, 2) + 9(0, 3), 
aeV(G)\ Z / 



00 E i3^) = 9(G, 1) + q(G, 4) + q(G, 5), 
aeV(G)\ Z / 

(iii) X ( ^ ) = a(G, 13) + q(G, 15) + 3 . a(G, 6), 
aeY(G)\ Z / 

(iv) Z f * ^ ) = q(C 14) + q(G, 16) + 3 . q(G, 7). 
aeV(G)\ Z / 

2.7. Lemma. Let G be a graph. Then 

(0 I /(«) 0(«) = «(G- 1) + <?(G> 9) + q(G, 10) + 3a(G, 8), 
aeV(G) 

(ii) £ /(«) *(«) = «(G> 10) + «(G, 12) + a(G, 15) + 2 «(G, 4), 
aeY(G) 

(iii) £ /(a) fe(a) = «(G, 9) + q(G, 11) + q(G, 16) + 2a(G, 5), 
aeV(G) 

(iv) £ 5(a) fc(«) = q(G, 10) + «(G, 11) + q(G, 15) + 2q(G, 2), 
aeV(G) 

(v) J] g(a) k(a) = a(G, 9) + q(G, 12) + a(G, 16) + 2q(G, 3), 
aeY(G) 

(vi) £ fc(a) fc(tt) = <Z(G> U) + «(<?, 12) + 2q(G, 13) + 2g(G, 14). 
aєV(G) 

3. ^ 8 (w) 

3.1. Lemma. Let G be a graph, card V(G) = n, such fhat 

(2) h(a) = k(a) = 0 

for every a e V(G). Then 

(0 «(G,8) - * . £ / («)*(«)-* . z ( / (
2

a ) ) , 
aeF(G) aeV(G)\ ^ / 

(ii) f(a) + g(a) = n — 1 for every a e V(G). 

Proof. The equality (2) implies the fact that every couple of vertices of G is a bolt, 
especially, q(G, 9) = q(G, 4) = q(G, 10) = q(G, 5) = 0. Now, it suffices to consider 
Lemmas 2.6, 2.8 and 2.9. 

3.2. Lemma. Let G be a graph satisfying (2) such that card V(G) = n. Then 

Z f(af = Z 9(a)2 • 
aeV(G) aeV(G) 

Proof. Let us write (see Lemma 3A): 

Z /(«)2 - Z 9(a)2 = I (f(a)2 - g(a)2) = 
aeV(G) aeV(G) aeV(G) 

= Z (f(a) + g(a))(f(a)-g(a)) = 
aeV(G) 



= I (» - !)(/(«) " 9(a)) = (« - 1)( I /(a) - £ *(«)) = 0. 
aeV(G) aeK(G) aeV(G) 

3.3. Lemma. Let G be a graph with the property (2), card V(G) = n. Then 

a(G, 8) = " ( n - ^ ( " + 1} - i . Z (/(a) - a(«))2 . 

2 4 8 aeV(G) 

Proof First, we shall modify the equality of Lemma 3.1(i) 

q(G, 8) = i( £ 2.f(a). g(a) - £ (f(af - g(af)) = 
aeV(G) aeV(G) 

- * • ! ( - •/(«) • ((» - 1) - A-)) " A*)2 + /(«)) = 
aeV(G) 

- i . I ( ( 2 n - l ) . / ( a ) - 3 . / ( a Y Y 
aeV(G) 

Now, we have by the preceding Lemma the following equality: 

4 . E / ( a ) 2 = 2 . ( £ / ( a ) 2 + £ / ( a ) 2 ) = 
aeF(G) aeV(G) aeV(G) 

= Z ((/(«) + 9(a))2 + (/(a) - <7(a))2) 
aeV(G) 

which is to be substituted for the last term. We get in this way 

,<G..)-» (*Jt^J£ + p . - . ) . ! A - ) ) -
O \ 4 aeF(G) / 

- ; • Z(/(«)-^))2-
O aeV(G) 

We have also to consider the equality 

z / ( a ) = Mi_ii) 
aeV(G) 2 

which follows from Lemma 2.7 and 3.1(ii). 

3.4. Lemma. For every n = 3, 

, x . n . (n - 1) . (n + 1) 

24 

Proof. Let us choose any graph G with n vertices. We shall prove that 

(3) t7(G,8) = " ^ - ^ ( " + 1) = , (")-

First, let the graph G do not fulfill (2), i.e. a «-+ b or a <4» 6 for some a, ft e V(G). 
Then no induced subgraph L^ ^ G with a, b e V(L) is isomorphic to L8. Hence, 
the graph G' defined by V(G') = V(G), E(G') = £(G) u ({(a, b)} \ {(b, a)}), satisfies 



q(G, 8) = q(G', 8). Proceeding similarly for every such a, be V(G) we get (after 
finite number of steps) a graph H satisfying (2) such that 

(4) q(G, 8) __ q(H, 8) . 

If the graph G fulfills (2) then we put H = G. Then Lemma 3.3 implies q(H, 8) ^ 
^ v(n) and (3) is a consequence of (4). 

3.5. Theorem. For every odd n = 3, 

<_( 
, . n . (и - 1). (n + 1) , , 
(n) = — 7—^ '- = v(n) 24 

Proof. Let us define the graph G = ({1,2, ..., n}, E) by 

E = \j\(U i + j [mod n]), j = l , . . . , -L- i l . 

We shall prove by induction that h(i) = k(i) = 0 and /(f) = g(i) = (n — l)/2 for 
every 1 = i = n. Then we get by Lemma 3.3: q(G, 8) = v[n). Hence, qs(n) __ v(n). 
The converse inequality is satisfied by Lemma 3.4. 

3.6. Lemma. For every even number n = 4, 

gs 
(fл й н • (и - 2) . (и + 2) 

24 

Proof. Let G be a graph with n vertices. Similarly as in the proof of Lemma 3.4, 

we obtain a graph H, V(H) = V(G), q(G, 8) = q(H, 8) which fulfills the assumptions 

of Lemma 3.3. Hence, 

q{H, 8) = " • ( " - ! ) • ( " + -) _ 1 Z {fB{a) _ , f f ( a ) ) 2 . 
2 4 8 aeV(H) 

Now, the number fH(a) + g^(^) = n - 1 is an odd number. Therefore, 

(Ua) - gB'a)f _ 1 . 
This inequality implies: 

24 8 aeV(H) 2 4 

3.7. Theorem. For every even number n = 4, 

H B . ( » - 2 ) . ( n + 2 ) j 

v 7 24 



Proof. Let us define a graph G = ({l, 2,..., n}, JE) by 

E = ( U j(»\ i + I [mod n]), 1 = 1,..., ^ 1 \ u 

u ( U |(i, i + I [mod n]), I = 1,..., -^ i j \ . 

By induction we can show that h(i) = k(i) = 0 and \f(i) _ ^(j)| = _ for every 
1 —~ i = n. The rest is similar to the proof of Theorem 3.5. 

4. ql3(n) and q14(«) 

We have demonstrated in Lemma 2.2 that q13(n) = q^(n) for every n. We shall 
find therefore only gi3(n). 

4.1. Lemma. Let G be a graph which satisfies 

(5) /(a) = g(a) = 0 , for every a e V(G) . 
Then 

(i) k(a) -1- h(a) = n — 1 /or euery a e V(G), 

(ii) a(G, 13) + q{G, 14) = " ' ( " " ^ - 1 I (fc(a) - k{a)f . 
5 8 aeV(G) 

Proof. The equality (i) is a consequence of (5) and of Lemma 2.6. Analogously, 
the following equality is a consequence of Lemma 2.9: 

q(G, 13) + q(G, 14) = ±. _T *<*) *(*) = 
2 aeF(G) 

_ I . _; (fc(a) + fc(a))a _ i . -r W a ) _ f c ( a ) ) 2 . 
8 aeF(G) 8 aeK(G) 

The equality (5) implies that the last term is equal to the expression in (ii). 

4.2. Lemma. For every even n = 4, 

, . n2(n - 2) 
giaW ._ — ^ -' • 

Proo/. Let us choose a graph G with n vertices. Similarly as in Lemma 3.4 we 
shall find a graph H such that V(H) = V(G), and g(G, 13) __ ?(#, 13). 

Now, Lemma 4.1 says that 

q{H, 13) g " • ( » - - ) * - i Z (hH{a) - kH{a)f -
O 8 aeF(ff) 

The end of the proof is similar to the proof of Lemma 3.6. 



4.3. Theorem. For every even n = 4, 

( n2(n - 2) 

Proof. Let us divide some set V, card V = n, into two parts M and K, such that 
cardK = cardM = n\2, and define: 

a <H> b for every a,be M (or a, be K); 

a <-• b whenever a e M , b e K. 

We have constructed a graph G with V(G) = V which contains induced subgraphs 
isomorphic to L13 of just two types: in the first case, one vertice lies in M and two 
in K and in the second case one vertice lies in K and two in M. The number of the 
subgraphs of both these types is equal to njl. \ . n\2 . (n\2 — 1), since card M = 
= card K = n\2. 

From this: 

i.e. 
/ x . n2(n - 2) 

qis(n) _ - ^ L • 

The converse inequality is satisfied by Lemma 4.2. 

4.4. Lemma. Let n — 3 be an odd number and G a graph, card V(G) = n, 
which satisfies (5). Let a, be V(G) be a couple of vertices such that 

(6) a <-> b and h(a) = h(b) = . 

Then there exists c e V(G) such that the induced subgraph {a, b, c} _ _ G is 
isomorphic to L14. 

Proof. Put 

[d e V(G), d 4= b and a <-> d] = {al9..., ah}, 

{de V(G)9 d<**b} = {bl5 ..., bfc} where the vertices a, be V(G) fulfill the sup­
positions of the Lemma. The equalities (6) and Lemma 4.1(i) imply that 

k(a) = k(b) = -1=- - . 

Hence, /i = ft(a) — 1 = k(b) — 1 < k and there is an i, 1 ^ i ^ k, such that 
bi${al9..., ah}. Then b,-^^ a and the induced subgraph {a, b, bj _ _ G is iso­
morphic to L14. 

10 



4.5. Lemma. For every odd n _ 3, 

, , . (n2-l)(n-2) 
« i3 («) = - ^ -' • 

Proof. Let G be a graph, card V(G) = n. There exists a graph H satisfying (5) 
such that V(G) = V(H) and q(G, 13) _ a(H, 13). 

We have to prove that 

(7) ^..s)^"'-"^-2)-^). 

First, we suppose that there does not exist a vertice a e V(H) with the following 
property: 

(8) hH(a) = fcH(«) = ^ • 

As foH(a) H- kH(a) = n — 1 is an even number, we have for every a e V(H), 
(hH(a) - kH(a))2

 = 4. Hence, 

I (*_•(«) " kH(a))2
 = 4n . 

aeY(ff) 

We substitute this inequality in the equality from Lemma 4.1(ii), and so we get the 
inequality (7). Now, let a e V(H) be a vertice which fulfills (8). Denote M = {beK, 
hH(b) 4= kH(b)} where K = {b e V(H), b^a}. If card M = m then q(H, 14) = 

= card K — card M = (n — l)/2 — m, since for every _ e K \ M we find (by 
Lemma 4.4) an induced subgraph of H which is isomorphic to L1 4 and these sub­
graphs are pair-wise different. Further, for every b e M, (hH(b) — kH(b))2 ^ 4. 
Hence, 

i • Z M*) - U*))2 = i • _ (*_(«) - M«))2 = 
aeV(H) aeM 

> i . 4 . card M = — 
2 

From this: 

a(H, 14) + i . I (Ma) - kH(a)Y = H-L - 11 _ n-Ji , 
aeF(H) 2 2 4 

since card M = m = (n — l)/2 = card K. 
We substitute the last inequality into the equality from Lemma 4.1(ii), and so 

we get the inequality (7). 

4.6. Theorem. For every odd n _ 3, 

g.,w-(n'-1)
8

("-2). 

11 



Proof. If we find a graph G such that card V(G) = n and 

(r . (n2 -l)(n~2) , . 
4{°> 1 3 ) = ~ " = vKn) 

we are ready, since the rest follows by the preceding lemma. We shall construct 
such a graph G similarly as in the proof of Theorem 4.3 but we choose card M = 
= (n + l)/2, card K = (n + l)/2. 

5. q15(n) and a16(n) 

Analogously to the previous part we shall find only qi5(n), because ql5(n) = 
= qi6(n)> f ° r every n. 

5.1. Lemma. Let G be a graph satisfying for every a e V(G): 

(9) k(a) = 0. 

Then 

(i) h(a) + / (a) + g(a) = n - 1, for every a e V(G), 

(ii) q(G, 15) + a.(G, 4) + q(G, 2) + q(G, 10) = n . (n - l)2)/8 -

- E (h(«)-/(a)-a(a))2. 
aeF(G) 

Proof The equality (i) is a consequence of (9) and Lemma 2.6. Similarly, 
Lemma 2.9 implies: 

q(G, 15) + a(G, 4) + q(G, 2) + q(G, 10) = 

= i- Z (%)/(«) + *(«)»(«))-
fl€V(G) 

- i • I ((*(«) +»(«)+f(«))2 - (*(«) -«( - ) - f(«))2) • 
aeF(G) 

This expression is equal to that in (ii), since the equality (i) is true. 

5.2. Lemma. For every even n _ 4, 

n2(n - 2) 
qisW = - ^ z • 

Proof is analogous to that of Lemma 4.2. 

5.3. Theorem. For every even n = 4, 

, , n2(n - 2) 

12 



Proof. It is similar to that of Theorem 4.3 but the graph G is defined in this way: 
a <-> b whenever a e M, b e K and if a, b e M (or a, b e K) then the couple of 
vertices a, b e V is any bolt. 

5.4. Lemma. Let n ^ 3 be an odd number and G a graph, card V(G) = n, 
which fulfills (9). Let a,b e V(G) be a couple of vertices such that a <-+ b and 

(10) h(a) = fc(ft) = ^ 1 . 

Then there exists c e V(G) such that the induced subgraph {a, b, c} _= c G is 
isomorphic to L2 (or L4, or L10). 

Proof. Let us denote 

{d e V^G), d + b and a <-> d} = {at, ..., ah} , 

{deVKG), b->d} = {bu...,bf}, 

{deVKG), d-+b} = {bf+1,...,bf+g} 

where the vertices a, be V(G) satisfy the suppositions of the lemma. The equalities 
(10) and Lemma 5A imply that 

h = h(a) - 1 =f(b) + g(b) - K / + g. 

Hence, there exists i, 1 = i ^ / + g, such that b( $ {au ..., ah}. Then either bt -» a 
or a -> bt. If bt ̂  a then {a, fe, b,} _ L10 (for 1 = i = f) or {a, b, b,} _ L2 (for 
/ + 1 < i = / + g). If a - i>( then {a, b, b;} = L4 (for 1 < i < f) or {a, b, b,} _ 
_ L 1 0 ( f o r / + 1 = i=f+g). 

5.5. Lemma, for euery odd n _ 3, 

, , . ( n 2 - l ) ( n - 2 ) 
9is(n) _ r 1 ' • 

O 

Proof. Let G be a graph, card V(G) = n. We find a graph H satisfying (9) such 
that V(H) = V(G) and a(G, 15) = q(H, 15). 

We have to prove that 

(ii) „(» . i s ) S (" 2 - 'H"- 2 > = „;„). 
o 

First, we suppose that there is no vertice a e V(H) with the following property: 

(12) hH(a)=fH(a) + gH(a)=^-~. 

As hH(a) + fH(a) + gH(a) = n — I is an even number, we have for every a e V(H): 

(hB'a)-fH'a)-gH(a)f = 4. 

13 



Hence, 
I (hH(a)-fH(a)-gH(a))2^4n. 

aeV(H) 

We substitute this inequality in the equality from Lemma 5.1 (ii), and so we get 
the inequality (11). 

Now, let ae V(H) be a vertice which fulfills (12). Put M = {beK9 hH(b) * 
4= (n - l)/2} where K = {b e V(H)9 a^b}. Then (for card M = m): q(H92) + 
+ q(H9 4) + q(H9 10) = (n - l)/2 - m, since for every beK\M we have (by 
Lemma 5.4) an induced subgraph of H which is isomorphic to L 2 (or L4, or L 1 0) and 
these subgraphs are pair-wise different. Further, for every beM, 

(hH(b)-fH{b)-gH(b))27>4. 
Therefore, 

and 

ł . E ( V « ) - / * ' * ) - ^ ) ) 2 ^ -
aєY(Я) 2 

* • I (*«(«) - /*'«) " 9s'a))2 + q(H, 2) + 
aeV(H) 

/rr A\ /tr m\ ^ n — 1 Wl ^ tt — 1 

+ a(H, 4) + f̂(H, 10) > > , 
v } } ~ 2 2 " 4 

(similarly as in Lemma 4.5). 
We substitute this inequality in the equality from Lemma 5.1(ii) and we obtain (11). 

5.6. Theorem. For every odd n — 3, 

(n2 - l ) ( n - 2) 
« isW = " J -' • 

Proof. Analogously to the proof of Theorem 5.3 (or Theorem 4.3 or 4.6). 

6. Some estimations 

Now, we shall find an estimation of q2(n) (hence also of q3(n) and qjn) and q5(n); 
see Lemma 2.2). 

Let {Pi(n)}™=l9 i = 0, 1, 2, ... be a sequence defined by 

P0(n) = n9 Pi+l(n) = [i(P/n) + 1)] 

where [x] denotes the integral part of x. 
Further, we put for every n: 

(13) Q(n) = Z ( i Pin) (Pi-1(«) - IV*)) (IV i(») - ^ » ) - 1)) 
iel(n) 

where /(n) = {ieN, P/n) 4= 0}. 
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6.1. Lemma. Let n ^ 3. Then 

Q(n) = G(Pi(n)) + i Pi(n) (n - Px(n)) (n - Px(n) - l) . 

Proof. Obviously, for any ieN, P((n) = P^^P^n)). We substitute this equality 
into (13) and we have: 

6(n) = Z (iPl-1(P1(n))(Pl-a(P1(n)) - P . -^W)) . 
»e/(n) 

. ( P . - ^ W ) - P i_1(P1(«)) - 1)) + i P1(n) (n - P.(«)) (« - P^n) - 1)) . 

Now, it suffices to consider the definition of Q(n) and the fact that i e I(n) iff i — 1 e 

e/(Pi(»))-

6.2. Lemma. For euery n, q2(n) = 6(n). 

Proof We shall define by induction a graph G which satisfies 

(14) q(G,2)=Q(n). 

Let V be a set with n elements. 

I. If n = 1 then E = 0. 

II. Divide the set Vinto two parts: V=MuK, M n K = 0, such that card M = 
= m = [£(n + 1)]. The graph G is defined on the set M, since card M < n, and 
we put a -> b for a e M, b e K, and a «-> b for a, beK. Now, the equality (14) 
proved by induction (and Lemma 6.1). 

6.3. Remark. We can show by induction (and Lemma 6.1) that for every n, 

Q(n + l ) ^ e ( n ) + ^ . 

6.4. Corollary. For every n = 3, 

2n3 — 3n2 

27 

6.5. Theorem. For every n ^ 3, 

2n3 - 3n2 
^ / \ -̂ П(П 

= q2(n) = -*— 27 

Proof. See Lemmas 5.1, 6.2 and 6.4 
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