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1994 ACTA UNIVERSITATIS CAROLINAE-MATHEMATICA ET PIIYSICA VOL. 35. NO. I 

Disjointness and Related Properties of Coproducts 

REINHARD BORGER*) 

Fernuniversitat Hagen 

Received 10 April 1993, in revised form 11. November 1993 

We study the relationship between different properties coproducts may have in a category. Besides 
universality there are mainly three types of properties: properties o the coproduct injections, properties 
of the functors — (x)A for all objects, A, and pullback properties of certain diagrams formed by 
coproducts. 

Introduction 

This paper is an attempt towards a systematic study of properties of coproducts 
in a category. The preprint [3] may be regarded as a preliminary version of the 
present paper; sometimes we go beyond the result there and we correct an error of [3]. 

The reason for such a study may be various: For the investigation of coproduct 
preservation by functors in [2] we needed a pullback property, which later turned 
out to be equivalent to the statement that all coproduct injections be regular-monic 
(see 4.3). In particular, it is satisfied in categories with a zero object, as we proved 
directly in [2, Prop 3.8]. In [4] we introduced total disjointness, which is in some 
sense converse to universality, in order to characterize coprime objects, i.e. objects 
representing covariant horn-functors that preserve coproducts. Moreover, 7.2 of the 
present paper can be used to simplify Giraud's characterization of Grothendieck 
topoi and related results on quasitopoi. On the other hand, disjointness implies the 
stronger property of total disjointness in the presence of universality (see 7.4). 

We always work in a fixed category A with finite coproducts (including the 
empty coproduct, i.e. an initial object 0). By a coproduct injection we always mean 
an injection of a binary coproduct. This is justified by the trivial fact that in 
a category with (finite) coproducts any injection of a (finite) coproduct is also an 
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injection of a binary coproduct. In Section 6 and 7 we additionally assume that 
A has pullbacks. 

Section 1 is devoted to the rare case of epic coproduct injections. In Sections 
2 through 4 we give criteria when all coproduct injections or all morphisms with 
domain 0 are (regular-, extremal-) monic. Strong monomorphisms coincide with 
extremal ones under mild conditions and have nicer properties in general; but 
surprisingly extremal monomorphisms seem to be more adequate for our purpose. 

Note that a coproduct injection A -> A (x) B is a unit of the adjunction between 
the functor 5/A -* A, (X -> B) h-> X and its left adjoint A -> B/A, A i-> 
i—> (A -> A (g) B), where B/A is the comma category of objects under B, i.e. of 
arrows out of B. In [5] this was used (in dual version) to characterize properties of 
coproduct injections in terms of the partial coproducts functors — (x) B : A -* A. 

These partial coproduct functors have no nice analogue in the case of arbitrary 
colimits. 

A more formal reason for the exceptional role of coproducts among all colimits 
may be the fact that coproducts commute with connected limits in Set and that 
connectedness of a category D means that every constant diagam indexed by D has 
the identity natural transformation as a limit. 

The conditions that all coproduct injections or all morphisms with domain 0 are 
regularly epic equivalently be described by ihc condition that certain diagrams be 
pullbacks. In Section 5 we study a stronger pullback condition, which we call total 
disjointness. Section 6 is devoted to the question of when coproducts commute with 
pullbacks. 

In Section 7 we show that universality implies some of the conditions considered 
before. Moreover, weaker conditions often imply stronger ones under the additional 
hypothesis of universality. On the other hand, universality is not implied by any 
of the other properties of coproducts. 

We give several counterexamples to show that some implications cannot be 
reversed, but still some questions remain open. 

1. Epimorphism 

1.1 Throughout this paper, we work in a fixed category A with (a fixed choice 
of) finite coproducts, including the empty coproduct, i.e. and initial object 0. 
For A, Be |A| we denote the coproduct injections by j.i(A, B): A -> A (x) B, v(A, B): B 
-> A (x) B\ note that j.i(A, B) and v(B, A) differ only by the canonical isomorphism 
A (x) B = B (x) A, which we cannot assume to be the identity, since for A = |A|, 
<>A: 0 -> A denotes the unique morphism. 

We call an A-morphism v: B -> C coconstant, if xv = yv holds for all pairs (x, 
y) of parallel morphisms with domain C. The coconstant morphisms form an ideal, 
i.e. uvw is coconstant whenever it exists and v is coconstant. 
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Moreover, we call a morphism v: B -> C supercoconstant, if xv = £ holds for 
all morphisms .x, f such that xv is defined and parallel to t. The supercoconstant 
morphisms form a left ideal, i.e. uv is supercoconstant, if v is. But in general, they 
do not form a right ideal: In the category of abelian groups, oA is supercoconstant 
for every A, but a zero morphism with nonzero domain is not (cf. 2.4 below). 

1.2 Proporisition. For A, B e |A|, the following statements are equivalent: 
(i) fi(A, B) is epimorphic. 

(ii) v(A, B) is coconstant. 
(iii) v(A, B) is supercoconstant. 

1.3 Proposition. For an A-morphism n: B -> C the following statements are 
equivalent: 

(i) There exists anAe \A\ such that C = A (X) B with an epimorphic first injection 
u: A —> C and v: B -> C as second injection. 

(ii) C = B (X) C with injections 1: C -> C a/zd v: B -> C. 
(iii) i; w supercoconstant. • 

Now we look at the special case A = 0 in 1.2, or, equivalently, we consider 
oB: = 0 -> B. We call B e \A\ pre-initial (dual notion: pre-terminal), if for every 
C e |A| there is at most one morphism B -> C. 

1.4 Proposition. For 5 e |A|, the following statements are equivalent: 
(i) ofl: 0 -> B is epimorphic. 

(ii) 1: B -> B /s coconstant. 
(iii) 1: B -> B /s supercoconstant. 
(iv) B /s pre-initial. 
(v) B = B (g) B with both injections being the identity. 

(vi) 77i£re ex/st ,4, i4' e |A| vw'f/i X (x) A' = B such that j.i(A, A') and v(A, A') are 
both epimorphic. 
(vii) n{B, B) = v{B, B). O 

1.5 Proposition. For A, Be |A|, the following statements are equivalent: 
(i) fi(A, B) is an isomorphism. 

(ii) f.i(A, B) is a split-epimorphism. 
(iii) f.i(A, B) is epimorphic and A(A, B) 4= 0. • 

1.6 Proposition. The following statements are equivalent: 
(i) All coproduct injections are epimorphic. 

(ii) oB: 0 -> B /s epimorphic for all B e |A|. 
(iii) For a// B, C, e \A\ there exists at most one morphism B -> C. • 

1.7 Proposition. The following statements are equivalent: 
(i) i4// coproduct injections in A are extremal-epimorphic. 

(ii) o£ /.y extremal-epimorphic for all B e \A\. 
(iii) Evi^ry A-object is initial. • 
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2. Monomorphisms 

2.1 In the sequel we shall concentrate on properties of all coproduct injections 
or all morphisms with domain 0 in A. For B e |A| we denote by | B the class of 
all C e |A| with A(B, C) 4= 0. We call a subclass G cz |A| cogenerating, if for every 
B, C e |A|, v, w: B -> C it follows that v = \v whenever fv = f\v for all G e G, 
fe A(C, G). Rougly speaking, this means that G is a "not necessarily small 
cogenerator". 

First we recall — in dual version — from [5, Prop. 7.2] the following: 

2.2 Proposition. For Be |A| the following statements are equivalent: 
(i) For all A e |A|, ft(A, B): A -* A (X) B is a monomorphism. 

(ii) The functor — (X) B: A -> A, A i-> A (x) B is faithful. 
(iii) | B is cogenerating. 

2.3 If the above conditions are satisfied for all B e |A|, we obtain a characterization 
of supercoconstant morphisms. Obviously, every morphism with pre-initial domain 
is supercoconstant. 

2.4 Proposition. If the equivalent conditions (i) —(iii) of 2.2 are satisfied for 
all B e |A| then any supercoconstant morphism has pre-initial domain. • 

2.5 Remarks. The hypothesis in 2.4 is necessary. Indeed, for every set X, the 
inclusion map 0 ci X is superconstant in Set, i.e. supercoconstant in SetT But its 
codomain X is pre-terminal in Set only if X has at most one element. 

Now we turn to the question of when all oD are monic. Note that the dual statement 
fails in Set, where 0 c; {l}isnot epic We use the following mild hypothesis on A: 

(C) For A, Be |A|, x, ye A(A, B) there exist C e |A|, fe A(5, C) with fx = fy. 

Obviously, (C) is satisfied, if A has coequalizers or a terminal object. 

2.6 Proposition. IfO is pre-terminal, then oD is monomorphic for all Be |A|. 
Conversely, if A satisfies (C) and all oD are monomorphic, then 0 is pre-terminal. 

3. Extremal Monomorphisms 

3.1 Recall that an A-morphism v: B -> C is called an extremal monomorphism, 
if it is monic and additionally satisfies the following condition: 

(*) If D e |A|, e: B -> D, m: D -> C are morphisms with me = v and e epic, 
then e is an isomorphism. 

Note that (*) implies that v is monic, provided A has coequalizers. Extremal 
monomorphisms coincide with the strong monomorphism (cf. [8]) under mild 
conditions, e.g. if A has pushouts. Since we try to keep our results as general as 
possible, we shall work with morphisms satisfying (*). 

46 



We call an A-morphismf: A -> B orthogonal to D e \A\, if the map A(f, D): A(B, 
D) -> A (A, D), h i-> hf is bijective; in this case we write f 1 D. 

Recall that a functor F: X -> Y is called conservative, if F reflects isomorphisms, 
i.e. if an X-morphism f is invertible whenever Ffis. 

3.2 Proposition. The following statements are equivalent: 
(i) For all A, Be \A\, f.i(A, B) satisfies (*). 

(ii) For each B e |A|, any A-morphism with f 1 Dfor allD G | B is an isomorphism. 
(iii) For every B e \A\, the functor — ® A: A -> A is conservative. 
(iv) The functor — ® —: A x A -> A, (A, B) \—> A (X) B is conservative. 

Proof, (i) <=> (ii) <=> (iii) is provided like [5, Prop. 7.2] (in dual version). 
(iv) => (iii) is trivial. 
(iii) => (iv): Letf: A -> C, g: B -> D be A-morphism withfCx) g: A (X) B -> C (X) D 
invertible. Since f (x) g = (f Cx) 1^(1,, Cx) g) = ( l c Cx) g)(f (x) 1B), we see that 
f (x) 1D is split-epic and f (X) 1B is split-monic, hence (f (x) 1D) (§) 1B is split-epic 
and (f (g) lfl) (x) 1D is split-monic. But both morphisms differ only by a canonical 
isomorphism from f (X) IB®D> which is therefore invertible. Hence by (iii) f is an 
isomorphism. Symmetry yields invertibility of g, • 

3.3 Remarks If A has coequalizers, the equivalent conditions of 3.2 imply those 
of 2.2 for all B e |A|. 

If A has even coproducts indexed by some (possibly infinite) set /, then the 
equivalent conditions of 3.2 imply that the coproduct functor A7 -> A, (A,)ieI \-> ®A( 

iel 
is conservative. Indeed if (x)f: (x)X, -> ®B, is invertible for a family (f: Ax -> B) 

iel iel iel 

of A-morphisms, then for any fixed i()el we can apply 3.2 (iv) to f: =fn and 
g: = ® fit0 conclude invertibility of fn. 

i€l\{it>) 

Note that conservativity of other types of colimes is quite rare: if D is a small 
connected category and A has all D-colimits, then the colimit functor [D,A] -> 
-> A maps all colimit cones to isomorphisms. Hence the colimit functor is 
conservative if and only if every diagram D -> A is naturally isomorphic to a constant 
diagram. 
Our next results follows immediately from 1.4 and 2.6 

3.4 Proposition. The following statements are equivalent: 
(i) oB satisfies (*)for all B e |A|. 

(ii) Every pre-initial object of A is initial. 
If these conditions are satisfied and if A has coequalizers, then 0 is preterminal. • 
Note that for 3.4 we do not even need existence of finite coproducts; an initial 
object suffices. Using 2.4 we obtain the following: 

3.5 Corollary. Assume that A has coequalizers. Moreover, let all coproduct 
injections in A be monic and let all oB, B e\A\ even be extremal monomorphisms. 
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Then the superconstant morphisms in A are exactly those morphisms whose domain 
is initial. • 

3.6 Example. The equivalent conditions of 2.2 do not imply those of 3.2. Indeed, 
if A 4= {0} is a join semilattice with bottom element, considered as a category in 
the usual way, then all morphisms in A are monic, but only the identity morphisms 
are extremally monic. Note that A has equalizers and coequalizers. If A is a complete 
lattice, it is even complete and cocomplete. • 

3.7 Example. Let 2 be the two-element lattice, i.e. the category with exactly 
two objects 0, 1 and one non-identity morphism 0 -» \. Then 2 is complete and 
cocomplete, and so is Set x 2. The full subcategory A cz Set x 2 of all objects 
=j= (0, 1) is coreflective; the coreflection maps (0, 1) to (0, 0). Hence A is also 
complete and cocomplete, and colimits (particularly coproducts) in A are formed 
as in Set x 2, i.e. componentwise. Thus all coproduct injections in A are monic. 
Moreover, we see that the only pre-initial object of A is the initial object (0, 0), 
hence oB is extremal-monic for all B e |A| by 3.4. On the other hand, the coproduct 
injection f.i(A, B) is not extremal-monic for A: =({0},0), B: =({0},1), since p(A, B) 
factors over the unique orphism A -> B, which is epic. Therefore, the conditions 
of 2.2 do not imply those of 3.2, even if all oB are extremal-monic. • 

4. Regular Monomorphisms 

4.1 In this section we study the question of when all coproduct injections are 
regular-monic in the sense of [9]; note that most results remain valid if we define 
regular monomorphisms in the narrower sense of being an equalizer of a pair of 
morphisms. 

4.2 Lemma. For all A e |A|, the implications (i) <=> (ii) <= (iii) hold between 
the statements below. If all coproduct injections in A are monomorphisms, then all 
three statements are equivalent. 

(i) For all B e |A|, p(A, B) is a regular monomorphism. 
(ii) For all B e |A|, f.i(A, B) is an equalizer of lA (g) /.i(B, B) and 

1A (g) v(B,B):A <g> B - A (g) (B (g) B). 
(iii) For all B, C e |A|, the following diagram is a pullback: 

џ(A,B) 

(1) џ(A,C) 

A®C 
lA®v(B,C) 

A®B 

l,®/i(ß,c) 

_ A®(B<g>C) 
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Proof, (i) <=> (ii): The diagram (1) is always a pushout. Apply this to the case C = B. 
(iii) => (ii): Apply (iii) to the case B = C. 
(ii) => (iii): Consider the following morphisms u, v, w: 
A (g) (B (g) C) - A (g) ((B (g) C) (g) (B (g) C)): n: =1„ (g) /<(£ (g) C, B (g) C) l , 
i;: 1,, Cg) (/((£, C) (g) v(5, C)), vv: = 1 , , (g) v(J5 (g) C, B (g) C). Then we have 
1/(1,, Cg) A<5, C)) = i ^ (g) /<(B, C)) and ^(1, (g) (5, C)) = ^ 1 ^ (g) v(B, C)). By 
(ii) ^(,4, 5 (g) C): 1̂ -> .4 (g) (5 (g) C) is an equalizer of u and vv. 

Now assume (1^ (g) /i(B, C))f = (1„ (g) v(J3, C))g=:k for some Z e |A|, 
f: Z -+ A ® B, g: Z ^ A ® C. Since ufc = w(l„ (g) /x(B, C))f = 
= i ^ eg) p(B, C))f= vk = ^(1^ (g) v(B, C))g = vvk, the equalizer property renders 
a unique h:Z -> A with p(A, B®C)h = k. This yields (1,, (g) v(B, C))p(A, B)h = 
= ^ , B®C)h = k = (1A Cg) A<B, C))f and (1^ eg) v(B, C))/i(^, C)h = 
= (1A (g) v(5, C))g. But 1,, (g) J.L(B, C) and 7^ (g) v(B, C) are coproduct injections; 
hence they are monic by our additional assumption. This gives p(A, B)h = f and 
p(A, C) h = g. Obviously, h is uniquely determined even by each of these two 
equations separately, since j.i(A, B) and j.i(A, C) are both monic. • 

4.3 Theorem. The following statements are equivalent: 
(i) For all A, B e |A|, p(A, B) is a regular monomorphism. 

(ii) For all A, Be |A|, p(A, B) is an equalizer of\A® {i(B, B) and lA (g) p(B, B). 
(iii) For all A, B, C e |A|, the diagram (I) is a pullback. 
(iv) For all B e |A|, the functor — (g) B: A -> A reflects split-monomorphisms into 
regular monomorphisms, i.e. if f (g) lB is split-monic then f is regular-monic. 

Proof, (i) <=> (ii) <=> (iii) follows from 4.2. Note that in 4.2 for (ii) => (iii) we 
needed the additional hypothesis that all coproduct injections be monic. Here this 
hypothesis follows, since (ii) is assumed for all A e |A|. 
(i) <-> (iv) follows from [5, Prop. 7.2]. • 

4.4 Proposition. The implications (i) <-> (ii) <-> (iv) <= (iii) hold for the statements 
below. If all coproduct injections in A are monomorphisms, then all four statements 
are equivalent: 

(i) For all B e |A|, oB is a regular monomorphism. 
(ii) For all Be\A\, oB: 0 -* B is the equalizer offi(B, B) and v(B, B): B -* B (g) B. 

(iii) For all B, C e |A|, the diagram 

(2) oc f(B,C) 

is a pullback. 
.. B®C 

"(B,C) 
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(iv) Every coconstant morphism in A factors through 0. 

Proof, (i) <=> (ii) <=> (iii) follows by specializing 4.2 to the case A = 0. 
(i) o (iv) is trivial. • 

4.5 Remarks. Usually, coproducts are called disjoint, if all coproduct injections 
are monic and condition (iii) of 4.4 holds. By 4.4, the later condition can be replaced 
by the simpler condition (i) or (iv). 

Next we see that the conditions of 4.3 are stronger than those of 3.2: 

4.6 Example of a complete and cocomplete category, in which all f.i(A, B) are 
extremal-monic, but for some B, oB (and hence /((0, B)) is not regular-monic. Let 
Set* denote the category of sets with an assigned base point, which we always 
denote by *; the morphisms are base point preserving maps. Now let A be the 
following (non-full!) subcategory of Set* x Set, A has the same objects as 
Set* x Set, and a morphism (f g): (X, Y) -> (X\ Y') belongs to A if and only if 
Y' #- 0 or f reflects the base point, i.e. f_1{*} = {*}. 

A is cocomplete, and colimits can be formed as in Set* x Set. Indeed, assume 
that (X, Y) e |A| is a colimit in Set* x Set of some small diagram in A. If Y=t= 0, 
then all colimit injections have codomain Y#- 0 and therefore belong to A, and 
the colimit property follows easily. 

Now consider the case Y= 0. Then all objects in the diagram have second 
component 0. Therefore all first components of morphisms in the diagram reflect 
the base points, and we easily see that the colimit injections belong to A. 

For an arbitrary cocone in A of the given diagram with vertex (X\ Y'), we get 
an induced morphism (K, 0) -> (X\ Y') in Set* x Set If Y' #= 0, this morphism 
belongs to A by definition of A. If Y' = 0, then all injections of the cocone belong 
to A, hence their first components reflect base points; and for the induced 
Set x Set*-morphism (X, 0) -> (X\ 0) it is readily checked that the first component 
reflects the base point, hence the arrow belongs to A. • 

This proves cocompleteness of A. Moreover, we see that (X, Y) =" 
S.( <g) ( {* ,*} , 0))<g)(<g)({*}, {>•}))in A. 

xe.Y\{*} yeY 

Therefore, every (X, Y) is a colimit (even a coproduct) of copies of the two elements 
A: =({0, *},0)(where * # 0) and B: =({*},{0}).From [1], Thm. 2 or [6], Cor. 5.5 
we conclude that A is complete. 

Now condition (iii) of 3.2 holds for Set* and Set, hence for Set* x Set. Since 
A contains all isomorphisms of Set* x Set and since coproducts (even colimits) 
are formed in the same way as in Set* x Set, it follows that A satisfies the equivalent 
conditions of 3.2. 

On the other hand, A does not satisfy the equivalent conditions of 4.4, because 
the unique morphism A -> B is coconstant, but does not factor through the initial 
object ({*},0). Indeed, the unique morphism A -> ({*},0) in Set* x Set does not 
belong to A, since its first component does not reflect the base point. • 
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Of course, the equivalent conditions of 4.3 imply those of 4,4, On the other hand, 
even condition (i) of 4.4 does not imply that all coproduct injections are monic, as 
shown by the following. 

4.7 Example of a complete and cocomplete category with all oB regularly monic, 
but which a non-monic coproduct injection: Let A be a category whose objects are 
all pairs (X, i), where X is a set and ie {0, 1}; if i = 1 we additionally require 
X 4= 0. The morphisms (X, i) -> (Y, i) correspond to the set maps X -> Y(i e {0,1}); 
the morphisms (X, 0) -> (Y, 1) correspond to the constant maps X -> Y, we always 
consider the inclusion 0 cz y a s constant. So A((X, 0), (y, 1)) has exactly one 
element in case X = 0 and is in bijection with Y if X 4= 0. Moreover, we define 
A((X, 1), (X0)): = 0 for all X, Y 

Let A0 c A be the full subcategory of all objects (X, 0); then the projection 
A0 -» Set to the first component is an isomorphism. Thus all colimits exist in A0, 
and they can easily be seen to be colimits even in A. 

Let A, c A b e the full subcategory, whose objects are (0, 0) and all (X, 1) 
(X e |Set|, X + 0). Then A, is also cocomplete. Moreover, A, is reflective in A, 
the reflection maps all objects (X, 0) with X #= 0 to ({*},1). 

Now we show cocompleteness of A. Consider an arbitrary small diagram in A. 
If it lies in A0, we have already seen that it admits a colimit in A. If it does not 
lie in A0, then all its cocones have vertices with second component 1, which therefore 
belong to A,. Now the colimit in A can be formed by applying the reflector A -> A, to 
the diagram and then taking the colimit in A,. 

In particular, each (X, i)e |A| is the K-th copower of ({*},*)> hence A is also 
complete by [1, Thm. 2] or [6, Cor. 5.5]. 

We easily see that any coconstant A-morphism has domain (0, 0). But for 
X 4= 0 * y we have (X, 0) (x) (Y, 1) =• (Y u {*}, 1) with * <£ Y and injections 
v((X, 0), (Y, 1)): Ycz Yu {*}and fi((X, 0), (Y, 1)) mapping everthing to *. If X has 
at least two points, f.i((X, 0), (Y, 1)) is not monic in A. • 

4.8 In 3.7 we gave an example of a complete and cocomplete category with all 
coproduct injections monic, but in general not extremal-monic. One easily sees that 
the conditions of 4.4 are also satisfied; note that they are equivalent in this situattion. 
Therefore, even disjointness of coproducts does not imply that all coproduct 
injections are extremal-monic. 

Furthermore, even if all oB are regular-monic, the equivalent conditions of 4.3 
do not follow from those of 3.2, as we see from the following: 

4.9 Example of a complete and cocomplete category with all morphisms with 
domain 0 regularly monic and all coproduct injections extremally monic, but not 
necessarily regularly monic: First let C be the category whose objects are all pairs 
(X, y) of sets with Y cz X\ a morphism (X, Y) -> (X\ Y') is given by a set map 
X -> X' with fy cz F or, equivalently, Y a f~]Y'. Then C is cocomplete. 
A colimit is constructed by taking the Set-colimit of the first component; the second 
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component is the union of all images of second components of objects in the diagram 
under colimit injections. 

Now let C c C be the (non-full!) subcategory consisting of all C-objects, but 
only with those morphism / : (X, Y) -> (X', Y') for which f~] Y' = Y holds. Then 
the functor C -> Set, x Set, (X, Y) i-* (Y, X\Y) is an equivalence. (Here X\Y 
denotes the complement of Yin X.) Hence C is cocomplete. 

Comparing these constructions we see that all colimits in C are also colimits in 
C. In particular, copoducts in C can be formed componentwise, because discrete 
diagrams in C even belong to C. 

Now consider the (non-full!) subcategory A c C x Set, which contains all 
objects but only those morphisms (f, g): ((X, Y), Z) -> ((X', Y'\ Z'\ for which 
Z' 4= 0 or f: (X, Y) -> (X', Y') even belongs to C. 

We claim that A is cocomplete and that small colimits in A can be formed as 
in C x Set. Indeed, for a diagram in A, consider its colimit ((X, Y\ Z) in C x Set. 
If Z 4= 0, then all colimit injections belong to A. For an arbitrary cocone from the 
given diagram to some ((X', Y'\ Z') e |A| we have Z' 4= 0; hence the colimit is 
also a colimit in A. 

Now we look at the case Z = 0. Then all objects in the diagram have last 
component 0, and the first components of the morphisms in the diagram must 
belong to C. We can form a colimit in C, which is even a colimit in C, and the 
colimit injections of our original colimits belong to A. 

Now consider an arbitrary cocone in A from the given diagram to some ((X', 
Y'\ Z') e |A|. If Z' 4= 0, the colimit property in C x Set yields a unique morphism 
((X, Y), 0) -> ((X\ Y'\ Z'\ which belongs to A because Z' 4= 0. If Z' = 0, all 
first components of the cocone must belong to C, since the cocone lies in A. This 
gives a unique A-morphism ((X, Y), 0) -> ((Xf, Y'\ 0). 

This proves our claim. In particular, coproducts in A can be formed componentwise. 
This implies the equivalent conditions of 3.2. Hence all coproduct injections are 
extremally monic. Moreover we obtain ((X, Y), Z) =" ((x)-4) (g) (cx)J5 ) (g) ( (x) C) 

yeY zeZ xeWZ 

for all (X, Y,Z)e |A|, where A := (({*}, {*}),0), B := ((0, 0), {*}), C := (({*},0), 
0). Form [1, Thm. 2] or [6, Cor. 5.5] we conclude that A is also complete. 

On the other hand, we have B Cx) B =• ((0, 0), {0, 1}) with the two distinct 
morphisms B -» B (x) B as injections; furthermore we get A (g) B ;= (({*},{*}),{*}) 
and A (x) (B (x) B) =- (({*}, {*}), {0, 1}). Since the last component of A (x) B is 
4= 0, the unique C x Set-morphism f:C -> A (x) B belongs to A, and we 
immediately get (1,, (x) fi(B,B))f = (1^ (x) v(B,B))f On the other hand, the unique 
C x Set-morphism g: C -> A is not in A, since the last component of A is 0 and 
since g_1{*}= {*} 4= 0. Therefore fi(A, B) is not the equalizer of \A (x) f,i(B, B) 
and lA (x) v(B, B\ hence fi(A, B) is not regular-monic. • 

Obviously, everything becomes trivial if all coproduct injections (or at least all 
oD) are split-monic: 
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4.10 Proposition. The implications (i) <=> (ii) <=> (iii) <=> (iv) <= (v) hold between 
the statements below. If A satisfies (C), all five statemens are equivalent: 

(i) For all A, Be \A\, fi(A, B) is a split-monomorphism. 
(ii) For all B e\A\, oB is a split-monomorphism. 

(iii) T-5 = \A\forallBe\A\. 
(iv) A(B, 0) 4= 0forallBe\A\. 
(v) A has a zero object. • 

5. Total Disjointness 

5.1 In this section we shall study a property of coproducts, which is in some 
sense converse to universality and which was used in [2] in order to characterize 
coprime objects. We say that coproducts in A are totally disjoint if for all 
A-morphisms f:B-+C,g:A-*D the two squares of the following diagram are 
pullbacks: 

»(A,B) , ^ »(A,B) 
A *A®B 

(3) g 

D 
џ{D,C) v{D,C) 

By symmetry it suffices to assume the pullback property only for one of the 
squares in all instances. Moreover, if A even has arbitrary coproducts, total 
disjointness even implies that the following diagram with coproduct injections is 
a pullback for all small families (f: J5, -• C,),e/ of A-morphisms and all ia e I: 

(4) /.. 

Indeed, just use the decomposition (g)B, £ Bin (x) ( Cx) J3,). 
16/ l eA( i ) 

We call a full subcategory C c A weakly terminal, if for every A e \A\ there 
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exists an objects C e |C| and a morphism A -> C. In particular, A is always weakly 
terminal in itself. If A has terminal object 7, then (7) is weakly terminal in A. 

5.2 Theorem. If C c A is a weakly terminal full subcategory, then the 
following statements are equivalent: 

(i) Coproducts are totally disjoint in A. 
(ii) The left-hand square of (3) is a pullbackfor all A,Be\A\9C,De |C|, / : B -> C, 

g: A -> D. 
(iii) FY?r a// A9 B e |A|, C 6 |C|, f: £ -> C, the following diagrams are pullbacks: 

(5) 

(6) 

B 

.-И.Я) 

MЛ,C) 

iҶЛ,Я) 

- A®B 

l ® f 

/4®С 

/4®Я 

l® f 

_ A®C 

Proof, (i) => (ii) and (i) => (iii) are trivial; for the latter implication note that 
(5) and (6) are special cases of the two squares in (3) for D := A, g := 1A. 
(ii) =>(i) Let A, B,C,De |A|, f:B-+C,g:A-+D. Since C is weakly terminal, 
there exist C, D' e |C| and c: C -» C, d: D -• D'. Now the outer rectangle and 
the right-hand square of the following diagram are pullbacks by (ii): 

(7) џ(A,B) 

A®B' 

џ(D,C) 

g®f D®C d®c 

џ(D',C) 

D'®C 
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Thus the left-hand square is also a pullback. 
(iii) => (i): For A, B, C, D e |A|, f:B->C,g:A-+D, we choose C, D' e |C| and 
c: C -> C, d: D -+ D'. Then the right-hand square and the outer rectangle of the 
following diagram are instances of (5) and thus pullbacks by (iii): 

1 1 

(8) џ(A,B) џ(A,C) џ(A,C) 

A®b' -—— 'A ® C) 77: * A ® C 
1 ® / ; l ® c 

Hence the left-hand square is a pullback by cancellation. Moreover, the right-hand 
side and the outer rectangle of the following diagram are isomorphic to instances 
of (6) and therefore pullbacks by (ii): 

d 
- D' 

(9) џ(A,C) 

A®C 

џ(D',C) 

D'®C 

Hence the left-hand square is also a pullback by cancellation. Now (iii) follows, 
because the left-hand square of (3) is a composite of pullbacks: 

1 

(10) џ(A,B) 

A®B 

џ(D,C) 

U®f 
~A®C 

0®1< 
D®C 

5.3 Remarks. Note that (i) o (ii) is trivial in the case C = A. On the other 
hand, (i) o (iii) gives new information even in this case; it splits total disjointness 
into two different conditions, which we shall sometimes consider separately in the 
sequel. 

5.4 Proposition. If diagram (6) is a pullback for all A, B, Ce |A|, f: B -> C, 
then all coproduct injections in A are regular monomorphisms. 
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Proof. For A, B, C, the diagram (6) for A replaced by B, B replaced by A, 
C replaced by A (g) C and f replaced by /i(_4, JB) is isomorphic to (1), the rest 
follows from 4.3. • 

5.5 Proposition. The following statements are equivalent: 
(i) For all B9 C e |A|, the following diagram is a pullback: 

( Ц ) 

oc 

(ii) Every morphism into 0 is invertible. 
(iii) Every B e |A| with A(.B, 0) + 0 is initial. 
(iv) Every B e |A| with f 5 = |A| w i/ii//a/. 

Proof, (i) => (ii): Let /: B -> 0 be an A-morphism. Then by (i) diagram (11) 
is a pullback for C := 0. Since 1: 0 -> 0 is an isomorphism, oB is also invertible. 
(ii) <-> (iii) o (iv) is trivial, (iii) => (i): For Z e |A|, u: Z -+ 0, v: Z -+ B, assume 
ocu = fv. Since w e A(Z, 0) 4= 0, Z is initial by (iii), hence oBu = v. Obviously, 
we have lw = w, and u is uniquely determined by these equations. • 

5.6 Note that (11) is isomorphic to the special case A = 0 of (5). Moreover (5) 
is obtained from (11) (up to a canonical isomorphism) by an application of the 
functor -(g) A to (11). 

On the other hand, note that (6) trivially is a pullback for A = 0. 

5.7 Proposition. If all A e |A| with A(A, 0) 4= 0 are initial, then oB: 0 -> B is 
a monomorphism for all B e |A|. 

Proof. The result follows immediately from 2.6. • 

5.8 Remarks. In contrast to 5.7 the equivalent conditions of 5.5 together with 
the assumption that all oB are split-monic imply that A is trivial by 4.10 and 5.5. 

• 

6. Coproducts Commuting with Pullbacks 

6.1 From now on, we always assume that A has pullbacks. We consider the 
question of when finite coproducts commute with pullbacks, i.e. hen each finite 
pointwise coproduct of pullbacks squares is itself a pullback square. By induction, 
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we can restrict our attention to nullary and binary coproducts. but nullary coproducts 
i.e. initial objects trivially even commute always with all connected colimits. 
Therefore, finite coproducts in A commute with pullbacks if and only if the coproduct 
functor A x A —• A, (A, B) \—• A (x) B preserves pullbacks. 

If A is a semiadditive category, then finite coproducts coincide with finite products 
and hence commute with all existing limits (cf. [7, Thm. 40.8] and [7, Thm. 25.4]). 
In Set, arbitrary coproducts commute with all connected limits, in particular with 
pullbacks. 

6.2 Proposition. In A finite coproducts commute with pullbacks, if and only if 
the following two conditions are satisfied: 
(i) For any A e |A| the functor — (g)_4: A -> A preserves pullbacks. 

(ii) For all Ah Bf e |A|, f: A, -> B, (i e {0,1}) the following diagram is a pullback: 

Ą,® Л, 

(12) fo®l 

Bo®Лi 

l®f. 
А,®B, 

fo®l 

l®f, 
- ß o ® ß . 

Proof "=>": (i): Application of the functor — (xM to a pullback square yields 
the pointwise coproduct of the given square with a constant square, which is 
obviously a pullback. 

(ii): (13) is the pointwise coproduct of two pullback squares, one with the vertical 
arrows being identies, and one square with both horizontal arrows equal to f, and 
identifies as vertical ones. 
"<=": Consider pullback squares 

Ar 
/ . 

BІ 

(13) hi 

CІ. -, DІ 

ki 

for ie {0, 1}. Then their pointwise coproduct is the outer square of the following 
diagram: 

57 



Л ® Л, 

Øo® 1 

1 ®ö. 

l®f, 
- Л 0 ® ß , 

(a) öo ® 1 

(c) 1 ® h, 

l®fc. 

fo®l 
- ß0 ® ß, 

(6) Ь o ® l 

l® f , * ^ o ® l 
(14) C 0 ® A , ' C o ^ ß , - A ) ® ß , 

(d) 

feo® 1 

l ® / l . 

C0® C, - C o ® Ð , Ð o ® Ð , 

Now squares (b), (c) are pullbacks by (i), while (a) and (d) are pullbacks by (ii), 
hence the outer square is also a pullback. • 

6.3 Proposition. Assume that the functor — ®A: A -> A preserves pullbacks 
for every A e |A| and that oB is a (regular) monomorphism for all Be |A|. Then 
j.i{A, B) is a (regular) monomorphism for all A, B e |A|. 

Proof. If oB is a monomorphism, then the pullback of oB with itself is trivial. 
(This argument even remains valid, if pullbacks are replaced by arbitrary connected 
limits.) By hypothesis, this pullback is preserved by — (x)A for A e |A|, hence 
oB (x) lA: 0 (x) A -> B (x) A and therefore /.i(A, B) is monic. 

If all oB are even regular-monic, then by above argument all coproduct injections 
are monic. By 4.4, (2) is a pullback for all B, C e |A|. For any A e |A|, this diagram 
is preserved by the functor — (x) A Hence and all coproduct injections are even 
regular-monic by 4.3. • 

6.4 Proposition. If(\ 3) is a pullback for all Ah J5, e |A|, f: Aj —> Bh then diagram 
(6) is a pullback for all A, B, C e |A|, f: B -> C. 

Proof. (6) is isomorphic to (13) for A0 : = B,AX : = 0, B0 : = C, B{ : = A, f0 : = f 

/ : = 0 A . • 

6.5 Examples. Now it is easy to see that in 6.2 condition (i) does not imply 
(ii). Let Lbe a lattice with a bottom element 0, considered as a category in the 
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usual way. Then (i) is satisfied if and only if Lis distributive. In the other hand, if 
(ii) holds, then in the special case A0:= Ax:= 0, B0:= Bx:= B we have 
A0 (x) B{ = A{ (x) B0 = Ax (x) B{ = B, and the pullback property of (13) yields 
B = 0. Therefore only the trivial lattice C = {0} satisfies (ii). 

In a cartesian closed category, the functor — nA has a right adjoint and thus 
preserves colimits, in particular pushouts. Hence, if A has pushouts, Cop satisfies 
(i). On the other hand, it Cop satisfies (ii), then coproducts commute with pullbacks 
in Cop, thus all product projections in C are regular-epic by (the dual of) 6.4 and 
5.4. But if C also has an initial object 0, this is preserved by the right-adjoint 
functor — nA for any object A, thus oA: 0 -> A is regular-epic for all A, and A is 
trivial by 1.7. 

In a semi-additive category A, finite coproducts coincide with finite products; 
and if they exist, (i) is satisfied by the above argument, thus (6) is always a pullback 
by 6.4. On the other hand, (12) is a pullback only for B = 0, thus (5) is not a pullback 
for A = C = 0, B £ 0. This shows that (5) is essential in 5.2 (iii). • 

6.6 Theorem. Assume that in A finite coproducts commute with pullbacks. Then 
coproducts are totally disjoint in A if and only if every B e \A\ with A(B, 0) + 0 
is initial. 

Proof. The "only if" part follows immediately from 5.2 and 5.5. If all B e |A| 
with A(B, 0) #= 0 are initial, we get from 5.5 that diagram (11) is a pullback for 
all B, C e |A|, / : B -> C. For A e |A|, this pullback is preserved by — (x),4 (see 
6.2), hence (5) is a pullback. Moreover, (6) is also a pullback by 6.5, since (13) is 
always a pullback by 6.2. Thus coproducts are totally disjoint by 5.2. • 

7. Universality 

7.1 The notion of universality is defined for arbitrary colimits, but we restrict 
our attention to finite coproducts, because we are only interested in the relationship 
to the previous notions. Note that universality of finite coproducts is a fairly weak 
condition: in the category of small categories, arbitrary coproducts are universal, 
but coequalizers are not, and in the category of compact Hausdorff spaces, finite 
colimits are universal, while countable coproducts are not. 

For some type of colimits existing globally in A, these colimits can be formed 
in A/A as in A for all A e |A|. Here A/A denotes the comma category of objects 
over A, i.e. of morphisms into A. In this case, universality of these colimits means 
the same as preservation by all pullbacks functors /*: A/.B -• A/A for / : A -> B. 
In particular, finite coproducts are universal if and only if nullary and binary 
coproducts are universal. 

Universality of nullary coproducts, i.e. of the initial objects means the same as 
the equivalent conditions of 5.5 (look at condition (iii)!). Universality of binary 
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coproducts means that Z = X (x) Y with injections u: X 
the two squares in the following diagram are pullbacks: 

u 
X " Z 

(15) 9 

Z, v: Y -> Z whenever 

џ(A,B) u(A,B) 

Note that universality of binary coproducts implies universality of the initial 
object. Indeed, for arbitrary / : Z - > 0 ® 0 ^ 0 consider (19) for A := B : = 0, 
X:=Y:=Z, u:=v:=\z; g:=h:=^i(0, 0)~f=v(0, 0 ) " 1 / (Note that 
/*(0, 0) = v(0, 0) is obviously invertible). Then both squares are pullbacks, 
universality gives Z = Z (x) Z with both injections being l z . By 1.4, Z is pre-initial 
and thus even initial, because / e A(Z, 0) 4= 0. 

The next result from [3] can be used for a characterization of locally presentable 
quasi-topoi. 

7.2 Proposition. If finite coproducts are universal in A, then all coproduct 
injections in A are monomorphisms, and for all A, B e |A|, the object Ye |A| is 
pre-initial whenever the following square is a pullback: 

(iб) џ(A,B) 

A®B 
v(A,B) 

Proof. Consider (19) for Z : = A, f : = f.i(A, B); then X, Y, g, h, u, v are defined 
uniquely up to natural isomorphism by the requirement that both squares be 
pullbacks. By universality we have A = X (X) Y with injections u: X -> A, 
v: Y —> A. The pullback condition on the left-hand square yiedls a unique /: A -> X 
with ul = gl = 1^. Therefore the split-epic coproduct injection u is invertible by 
1.5, thus I = u~l and u = l~] = g, whence fi(A, B) is monic 

From 1.3 we get that v is supercoconstant, hence Y is pre-initial by 2.4. • 

7.3 Example. If L is a lattice with bottom element 0, then finite coproducts are 
universal if and only if L is distributive. Thus universality of coproducts does not 
imply that all oB are extremally monic (see also 3.4 above). Thus 7.2 cannot be 
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improved in general. This example is extremal in the sense that all object of L are 
pre-initial. On the other hand, universal coproducts behave much better under the 
mild hypothesis that all pre-initial objects are initial. In order to prove this, we use 
the following. 

7.4 Lemma. Assume that finite coproducts are universal and consider 
A, B, Ce |A|, s: B -> C. If 1A (X) s: A (g) B -> A (X) C is an isomorphism, then 
there exists a pre-initial object X such that C = B (X) X with s as first injection. 

Proof. Consider (19) for Z := C, f := (1^ (x) syiv(A, C) and X, Y, g, h, u, 
v defined by the requirement that the two squares be pullbacks. First observe that 
v(A, C)sh = (1,4 (x) s)v(A, B)h = (1^ (x) s)fv = v(A, C)v. Since v(A, C) is monic 
by 7.2, we get sh = v. But v: Y -• C is the second injection of the coproduct 
C = X (X) Y; hence v and therefore h is monic. 

The pullback property of the right-hand square in (18) yields a morphism t: B -> Y 
with ht = 1B and v£ = s. In particular, h is also split-epic and thus invertible. Since 
we have C ^ X (x) 7 with injections u and v = sh, we also get C =" 5 (x) X with 
injections s and u. Now the functor A (x) — is faithful by 7.2 and 2.2; hence it 
reflects epimorphisms. Since lA (x) s is epic (even invertible), we can conclude 
that s is epic. Thus u is supercoconstant by 1.3, hence X is pre-initial by 2.4, 
because coproduct injections are monic by 7.2. • 

7.5 Theorem. If coproducts are totally disjoint in A, then every pre-initial object 
in A is initial. Conversely, if every pre-initial object is initial and if finite coproducts 
are universal, then coproducts are totally disjoint. 

Proof. If coproducts are totally disjoint, then all coproduct injections are 
regular-monic by 5.4, hence every pre-initial object is initial by 3.4. For the converse 
consider A, B, Ce |A|, s: B -> C with \A (x) s invertible. By 7.4 we have 
C =" B (g) X with s as first injection for some pre-initial object X. 

Now our hypothesis gives 1 ^ 0 , hence C = B (x) 0 = B, and s is invertible. 
Thus — (g)_4 is conservative for any A, and from 3.2 we conclude that 
- ( X ) - : A x A - > A i s conservative. 

Now let (3) be given and form the pullbacks: 
U V 

X ~A®B Y *A®B 

/.(D.C) 

9®f 

-D®C 

0®f 

~D®C 
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The pullback property yields unique morphisms h: A -> X, k: B -* Y with 
uh = fi(A, B), ph = g, vk = v(A, B), qk = f On the other hand, by universality 
we get X (x) Y =" X (x) B with injections w, u, i.e. h (g) k: A (x) B -> X (£) Y is 
an isomorphism thus h and k are invertible by conservativity. Thus the two squares 
of (3) are pullbacks, proving total disjointness. • 

7.6 Remarks. Note that [3] contains a faulty counterexample to 7.4. By 3.7 and 
4.7 universality is essential. 

From 7.5 and 5.4 we see that all coproduct injections are regular-monic in any 
category with universal finite coproducts and with all pre-initial objects initial. On 
the other hand, we cannot expect them to be split-monic Indeed, if the initial object 
is universal and all oB are split-monic in A, we conclude B = 0 for all B e |B|. But 
note that in Set all coproduct injections with non-empty domain are split-monic, 
arbitrary colimits are universal, and thus totally disjoint by 7.5. 

Total disjointness is converse to universality in the following sense: Coproducts 
are totally disjoint if and only the two squares in (19) are pullbacks whenever 
Z =- X (g) Y with injections u: X -> Z, v: Y -> Z. 

Universality of finite coproducts does not follow from any of the conditions 
considered earlier. Indeed, in the category Rng, of unital rings products commute 
with all connected colimits, particularly with pushouts, and products are totally 
codisjoint in Rng! (i.e. coproducts are totally disjoint in RngH- On the other hand 
the binary product Z x Z is not couniversal along the homomorphism 

f.ZxZ^A, (x,y)~fo °) 

into the ring A of (2 x 2)-matrices over Q. 
The above argument heavily rests upon the non-commutativity of A; in the 

category of commutative rings finite products are couniversal. 
But still note that total disjointness enables us to test unviersality on a weakly 

terminal subcategory: 

7.7 Proposition. Assume that coproducts are totally disjoint in A and let C cz A 
be a weakly terminal full subcategory. Then finite coproducts are universal, if in 
diagram (19) we have Z =* X (X) Y with injections u: X -> Z,v: Y -> Z, whenever 
both squares are pullbacks and A, B e |C|. 

Proof. The "only if" part is trivial. For the "if" part, let diagram (19) be given 
with both squares pullbacks, but with arbitrary A, Be |A|. By weak terminality, we 
can choose A', B' e |A|, a: A -> A', b: B -> B' and consider the diagram: 
Then the upper part is diagram (19), hence the two upper squares are pullbacks by 
hypothesis. But the lower squares are pullbacks by total disjointness; thus the total 
left hand part and the total right-hand part are pullbacks by composition. Since A', 
B' e |C| we have Z = X (x) Y with injections u, v, proving our claim. • 
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u v 

X - Z - Y 

џ{A,B) * ҢA,B) 

A -A®B- B 

a®Ъ 

џ{A',B') * v{A',B') 

A »A ®B- B 
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