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This paper presents a general concept of the weak convergence in Hoffmann-J0rgensen's sense. The 
goal is in removing technical assumptions of the standard weak convergence which are not necessary. 
Just the limit has to possess "nice" properties; i.e. to be a finite Radon measure. 

1 Introduction and Definitions 

The weak convergence of probability measures is a helpful tool for mathematical 
statistics. But from the statisticians' point of view, the handling restricted on 
measures is just a technical difficulty. The only one important thing seems to be 
the quality of the limit. The limit is the base of each statistical test and allows 
investigation of estimators properties. 

That is the reason for the concept due by Hoffmann-J0rgensen (1977). The 
proposed generalization was developed by Andersen & Dobric (1989) for the space 
of all bounded functions equipped with supremal norm. They considered the limit 
concentrated in the set of all ^-continuous functions, where Q is a totally bounded 
pseudometric General concept on Banach spaces is treated in Bickel, Klassen, 
Ritov and Wellner (1993). The present paper contributes with the definition of the 
weak convergence for general topological spaces. 

In the sequel, we will use the following notation. E denotes the topological 
space, <&(E) is the set of all open sets in E and 8$(E) is the set of all Borel sets in 
E. We will consider finite non-negative monotone supadditive set functions 
defined on <&(E) (FNNMSA) instead of finite Borel measures. 

Definition 1. A set function \i is called FNNMSA on E if it is defined on *&(E), 
0 < fi(G) < fi(Q) < fi(E) < -hoo if G a Q are open sets and fi(G) + fi(Q) < 
fi(G u Q)for each couple of disjoint open sets G, Q. 

*) Institute of Information Theory and Automation, Czech Academy of Sciences, Pod vodárenskou 
věží 4, 182 08 Prague, Czech Republic 

The research is supported by GA CR Grant No. 201/93/0232 



FNNMSA's are reasonable generalization of probability measures. If X is 
a random mapping into E then its distribution px, defined by px(A) = Prob^X e A), 
is a FNNMSA. Moreover, \ix is submodular and px(E) = 1, but we do not need 
that fact. 

We connect FNNMSA's and measures by the following two constructions. 

Definition 2. Let p. be a FNNMSA on E. We define two set functions on 8&[E) 
related to p: 

p(A) — inf {p(G): A a G open set} is called the regularization of p (1) 

and 

p(A) = sup < inf < £/*(G()
: K <-= (JG,; G,,..., Gn open >: A => K compacts (2) 

is called the Radonization of p. 

Proposition 1. Let E[^E) be Hausdorff space and p be a FNNMSA on E. Then 
its Radonization p is a finite Radon measure. 

Proof. Define the set function 

v(G) = inf \ip(G) : G cz QG,; Gh ..., G„ open} 

for each open set G. This set function is monotone, subadditive and additive on 
<#(E)\ i.e. 0 < v(G) < v(G u Q) < v(G) + v(Q) for each pair of open sets and 
v(GuQ) = v(G) -h v(Q) whenever G, Q are disjoint. Tops0e (1970) calls such 
function the content on &(E) and he has shown the existence of its inner Radon 
measure, see Tops0e (1970), theorem 6.2, p. 29. The inner Radon measure of 
v coincides with p. 

Q.E.D. 
Let us recall the definition of Radon measures. 

Definition 3. A measure p on a topological space E is called Radon if 
p(K) < -F oo for all compact and 

p(A) = sup {p(K): A 3 K compact in E} for each Borel set A . (3) 

2 The Weak convergence 

The standard weak convergence can be generalized in the intention proposed by 
Hoffmann-J0rgensen (1977). 

Definition 4. Let pr be a net of FNNMSA's on E, p be another FNNMSA on 
E and S be a Borel subset ofE. We will say that pr converges weakly to p in (5, E) 
in the Hoffmann-J0rgensenfs sense, notation is 



^^U^in(S,E), (4) 
if 

lim inf pa (G) > p(G) holds for each open set G (5) 
<x 

and 

lim pa (G) = p(G) = p(E) whenever the open set G contains the Borel set S. (6) 
or 

If p„ p are finite Radon measures, S = E is a Hausdorff space, then the 
introduced convergence coincides with the standard weak convergence, see Tops0e 
(1970) or Berg, Christensen & Ressel (1984). The convergence keeps properties 
familiar for the weak convergence. 

Corollary 1. Let f:E-+E'bea continuous mapping between two topological 
spaces, S be a Borel subset of E and S' be a Borel subset of E\ f(S) c S'. If 

p, - ^ p in (S, E) then paofl - J ^ U p o f ' 1 in (S\ E) (7) 

The assertion is evident, because of continuity. The introduced convergence also 
fulfills the projection property. 

'Corollary 2. Let S and E be Borel subsets of a topological space E,S a E a E, 
Px be a net of FNNMSA 's on E and p be another FNNMSA on E, fulfilling 
pjfi) = plQ\ p(G) = p(Q) whenever GnE = QnE. Then 

p,-^pin(S,E) (8) 
if and only if 

^\E-^*n\Ein(S,E'), (9) 

where .\E> denotes the restriction to the set E; i.e. v|F(G n E) = v(G). 

Proof. The restrictions p^z, V\E' are well defined and FNNMSA on £, E 
respectively. We have 

lim inf p%(G) = lim inf p*\E,(G n E) > p(G) = p\E(G n E) 
a a 

for each open set G. Remember, that GnE represents all open sets in E. 
Q.E.D. 

The mass of the regularization of the limit FNNMSA is concentrated in the set S. 

Corollary 3. Let 

p%^Upin(S,E) (10) 

then p(S) = p(E) = p(E). 

Proof. Let S c G be open set. Then we get 

limAia(G) = ̂ (G) = /i(£). 



Therefore, p(S) = p(E) = p(E) because of the definition of the regularization. 
Q.E.D. 

Some limit FNNMSA exists almost always. But usually, it is not determined 
uniquely. We receive the whole interval of FNNMSA's. 

Corollary 4. Let p^ be a net of FNNMSA's on E and S be a Borel subset 
of E. Then a limit FNNMSA exists if and only if the following limits exist and are 
equal 

lim pJ(E) = lim p^(G)for each open set G 3 S . (11) 
a a 

Every limit FNNMSA p fulfills p<p<p, where 

~p(G) = lim inf pJ(G)for each open set G (12) 
a 

and 
J lima pa(E) for each open set G => S 

M(G) = { 0 otherwise 
(13) 

Proof, p and p are FNNMSA's on E. The condition (11) is then necessary and 
sufficient for them being the required limit. 

Q.E.D. 
There is at most one finite Radon measure being the limit. 

Proposition 2. Let p be a finite Radon measure on the topological space E, the 
factor space E\^E) be a Hausdorff space and v be a FNNMSA on E. Ifp(G) < v(G) 
for each open set G and p(E) = v(E) then p = v. 

Proof. Evidently, p < v and v(£) = p(E). v is a finite Radon measure, accor
ding to Proposition 1. Therefore, p = v. 

Q.E.D. 
For more detailed study on Radon measures, we recommend the book of Tops0e 

(1970) or Berg & Christensen & Ressel (1984). We will just need that the Radon 
limit is really determined uniquely. 

Theorem 1. Let E be a topological space, S be a Borel subset of E and 
the factor space £|^£) be a Hausdorff space. Let p„ f1 be FNNMSA's on E such 
that 

V* _ J^U p in (S, £) 

and p be a finite Radon measure. Then p is uniquelly determined and 

p = v , where v(G) = lim inf p*(G) for each open set G . (14) 

Moreover, p(S) = p(E). 
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Proof, v is a FNNMSA on £, v(£) = p(E) and p(G) < v(G) for all open sets. 
Thus, \x = v according to Proposition 2. \i is a finite Radon measure and then 
regular; i.e. ft = p. Hence, Corollary 3 given p(S) = v(£). 

Q.E.D. 
If the quotient space is not Hausdorff the uniqueness fails. 

Example 1. Consider the space E = {a,b,c} with topology <& = {0,{a,fe}, 
{a,c}, {a, ft, c}}and the net Xx = a. Then every random mapping X taking values 
just in {b,c} is the limit of this net, i.e. 

Vxx - ^ ^ Hx in ({fe,c},{a,b,c}). 

Whenever X is measurable then \ix is a Radon probability on {b,c}. Moreover, the 
subspace {b, c} is a Hausdorff space but the space {a, 6, c} is not Hausdorff. 

There is a connection between the HJ-weak convergence of FNNMSA's and the 
weak convergence of their Radonizations. 

Definition 5. Let /ia be a net of FNNMSA's on a topological space E and S be 
a Borel subset ofE. We will say that the net is eventually Radon compact in (S, £) 
if every subnet of pa has a futher subnet 

vp —-p-+ v in (S, £) where v is a finite Radon measure . (15) 

Definition 6. Let px be a net of finite Radon measures on E. We say: 
• the net is eventually compact if every subnet has a futher weakly convergent 

subnet; 
• the net is eventually tight if 

inf jsup jlim sup /ia(£ — G): G => K openl: K compact] = 0 . (16) 

Theorem 2. Let p^ be a net of FNNMSA's on the topological space E and S be 
a Borel subset of E. If the net of the Radonizations /2a is eventually compact and 
lima /ia(G) = lima /ia(£) for each open set G => S then the net pa is eventually 
Radon compact in (S, £). 

Proof. Let v̂  be a subnet of pa. The net v̂  is eventually compact and therefore 
has a futher subnet 

vPi • v in E. 

Then 

Vfti
 H^w» v in (S, £) since lim inf vPt(G) > lim inf vPt(G) > v(G) 

for each open set G and 



lim vA(G) = lim 0A(G) = v(G) = v(£) 
I I 

if G contains the set S. 
Q.E.D. 

Corollary 5. Let pa be a net of FNNMSA's on the topological space Efulfilling 
the following two conditions: 

lim pa(E) = lim ^ia(G) for each open set G ID S . (17) 

and 

inf < sup < lim sup sup < inf < X ^ ( G ' ) : Gj u . . . u G* 3 L 0/̂ /2 sett >: 

L c £ - G compact}: G 3 K o/?e.n}: K compact} = 0 . (18) 

77ien f/te nef /xa w eventually Radon compact in (S, £). 

Proof. Under the assumptions, the net of finite Radon measures fia is eventually 
tight and therefore eventually compact, see Tops0e (1970), theorem 9.1, p. 43. The 
net of \xa is eventually Radon compact in (S, E) according to Theorem 2. 

Q.E.D. 
Unfortunately, the reverse assertion fails. 

Example 2. Let E = [0, 1] with usual topology. Consider the sequence of 
FNNMSA's given by 

^ G ) - J 0 ifX(G)<n 

for each open set G, where X denotes Lebesgue measure on the interval [0,1]. 
Evidently, 

H„J^UXin{E,E) 
but (in = 0. 

Definition 7. Let pa be a net of FNNMSA 's on a topological space £. We denote 
the set of all its cluster points, being finite Radon measure, by lima p.a. 

The set of all Radon cluster points is always closed. 

Lemma 1. Let pa be a net of FNNMSA's on a topological space E, then the set 
of all Radon cluster points lima \xa is a closed subset of all finite Radon measures. 

Proof. The set of all cluster points of /ia is a closed subset of the space of all 
FNNMSA's, see any monograph on topology; e.g. Kelly (1955). 

The set lima \xa is intersection of all cluster points with the set of all finite Radon 
measures, therefore itself is closed as the subset of all finite Radon measures. 

Q.E.D. 

8 



Assume finite Radon measures instead of FNNMSA's, we receive that any 
eventually Radon compact net possesses compact set of all Radon cluster points. 
But the space E must be regular spaces for that. 

Proposition 3. Let S be a Borel subset of a regular topological space E. If JJ.^ is 
a net of finite Radon measures on E which is eventually Radon compact in (S9 E) 
then the set lima pa is a compact set. 

Proof. Let v̂  be a net of limits of the given net /*a. 
Define new indices (a, G)e I if and only if G is an open set of finite Radon 
measures on £, paeG and there is jS such that vpe G for any /? > jS. 
Set Q^ G = I** whenever (a, G) e I. 
The introduced net is actually a subnet of the net /ia. Thus there exists a convergent 
subnet 

Q*„G, W~™ » Q in (S, E) and Q is a finite Radon measure. 

The space of all finite Radon measures on E is regular, since the space E is regular. 
Therefore, we may conclude that there is a subnet vPy weakly converging to Q. 
Consequently, the set of all finite Radon limits is a compact set. 

Q.E.D. 

3 Example 

This section presents a simple example on the empirical distribution functions. 
We denote D_(I) the set of all function defined on the interval / which are left 
continuous and has right limit at each point of /. These functions are called cadlag, 
too. C(I) denotes the set of all continuous functions defined on the interval / and 
C(I, Q) denotes the set of all ^-continuous functions defined on the interval /, where 
Q is a pseudometric on J. If F: I -* 32 + is monotone we define the pseudometric 
Qf(t,s) = \F(t)-F(s)\. 

Let £u £2,... be i.i.d. random variables with the distribution function F. Let us 
denote the empirical distribution function by Fn(x) = ££?-,!/[£,• < x]. Then we 
have the following observation. 

Lemma 2. 

J~n{Fn - F) -"£!+ BoF in (C(0,QF),{D.{St\ ||.||)), (19) 

where B is the standard Brownian bridge on [0, l ] , i.e. Gaussian process with 
continuous sample paths, zero mean and the covariance function R(t9 s) = 
t A s(l — t v s). 

Proof. There is a classical result on uniformly distributed random variables, see 
Billingsley (1968). Let */,, rj29... are i.i.d. random variables with uniform distribu-



tion on the interval [0,1]. Setting Gn(x) = i^JUi/ffy< x~\ we receive the 
convergence 

y/n(Gn - /d[0,i]) -^ B in (D_([0,1]), Skorohod topology). 

Since the limit process possesses continuous sample paths, we have in the same 
time the convergence 

yfn(Gn - /d [ ( U ]) -J£=l> B in (C([0,1]),(D_([0,1]), ||.| |)), 

see Andersen & Dobric (1987) or the book of Bickel, Klassen, Ritov & Wellner 
(1993). Let us consider the transformation $F(f) = foF. That transformation 
maps (/>_([0,1]), ||.||) into (D_(^2), ||.||) and is trivially continuous. Thus the weak 
convergence is preserved by $F and we have 

yfn(Gn oF-F) -JH_U B o F i n (C(«, QF), (D_(m\ | |. | |)). 

The processes y/n(Gn o F — F) and y/n(Fn — F) represents the same distribution 
on (D_(3t), | |.| |). Therefore the lemma is proved. 

Q.E.D. 
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