Aleš Drápal; Jaroslav Ježek; T. Kepka Groupoids and the associative law IX. (Associative triples in some classes of groupoids)

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 38 (1997), No. 1, 39-52

Persistent URL: http://dml.cz/dmlcz/142683

Terms of use:

© Univerzita Karlova v Praze, 1997

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ*: *The Czech Digital Mathematics Library* http://dml.cz

Groupoids and the Associative Law IX. (Associative Triples in Some Classes of Groupoids)

A. DRÁPAL, J. JEŽEK and T. KEPKA

Praha*)

Received 16. September 1996

The maximal and minimal numbers of associative triples in groupoids from various classes are enumerated.

Maximální a minimální počty asociativních trojic v groupoidech různých tříd jsou spočteny.

This part is a continuation of [6] and [7]. Here, we find the maximal and minimal numbers of associative triples in the following classes of groupoids: All groupoids; commutative groupoids, commutative distributive groupoids; quasitrivial groupoids.

IX.1 Introduction

1.1 Let \mathscr{A} be a class of groupoids. Then, for every positive integer *n*, we define two numbers maxas(\mathscr{A} , *n*) and minas(\mathscr{A} , *n*) in the following way:

If there is no *n*-element groupoid in \mathcal{A} , then maxas(\mathcal{A} , *n*) = $-2 = \text{minas}(\mathcal{A}, n)$.

If there are some *n*-element groupoids in \mathcal{A} , but all of them are associative, then $\max(\mathcal{A}, n) = -1 = \min(\mathcal{A}, n)$.

If the class \mathscr{A}_n of non-associative *n*-element groupoids from \mathscr{A} is non-empty, then $\max(\mathscr{A}, n) = \max(as(G); G \in \mathscr{A}_n)$ and $\min(as(\mathcal{A}, n)) = \min(as(G); G \in \mathscr{A}_n)$.

1.2 Proposition. Let \mathscr{A} be a class of groupoids. Then: (i) $-2 \leq \max(\mathscr{A}, 1) = \min(\mathscr{A}, 1) \leq -1$. (ii) $-2 \leq \min(\mathscr{A}, n) \leq \max(\mathscr{A}, n) \leq n^3 - 1$ for every $n \geq 1$.

Proof. Obvious.

^{*)} Department of Mathematics, Charles University, 186 00 Praha 8, Sokolovská 83, Czech Republic

IX.2 Groupoids

2.1 Let \mathscr{G} denote the class of all groupoids.

2.2 Theorem. (i) $\max(\mathscr{G}, 1) = -1 = \min(\mathscr{G}, 1)$. (ii) $\max(\mathscr{G}, 2) = 6$ and $\min(\mathscr{G}, 2) = 0$.

(iii) $\max(\mathscr{G}, n) = n^3 - 1$ and $\min(\mathscr{G}, n) = 0$ for every $n \ge 3$.

Proof. See [6, 3.1, 7.2].

IX.3 Commutative groupoids

3.1 Let \mathscr{C} denote the class of commutative groupoids.

3.2 Lemma. Let $G \in \mathcal{C}$. Then:

(i) $(a, b, a) \in As(G)$ for all $a, b \in G$.

(ii) If G is finite and $n = \operatorname{card}(G)$, then $\operatorname{as}(G) \ge n^2$.

(iii) If G is not associative, then $ns(G) \ge 2$.

(iv) If Ns(G) contains at least one triple (a, b, c) such that $a \neq b \neq c$, then $ns(G) \geq 4$.

Proof. (i) Obvious.

(ii) This follows immediately from (i).

(iii) If $(a, b, c) \in Ns(G)$, then $(c, b, a) \in Ns(G)$ as well. The equality (a, b, c) = (c, b, a) implies a = c and $(a, b, c) \in As(G)$, which is not true.

(iv) We have (a, b, c), $(c, b, a) \in Ns(G)$. If (a, c, b) and (c, a, b) are in As(G), then $a \cdot bc = a \cdot cb = ac \cdot b = ca \cdot b = c \cdot ab = ab \cdot c$, a contradiction.

3.3 Lemma. Let $n \ge 3$. Then there exists a commutative groupoid G such that $as(G) = n^3 - 2$.

Proof. We shall proceed by induction on n. If n = 3, then we can take the following groupoid.

It is easy to check that $Ns(C_1) = \{(1, 1, 2), (2, 1, 1)\}.$

Now, let $n \ge 4$ and let H be a commutative groupoid of order n - 1 such that ns(H) = 2. Put $G = H \cup \{0\}$, where $0 \notin H$ and 0 is an absorbing element of G. Clearly, Ns(G) = Ns(H).

3.4 Lemma. Let $n \ge 1$. Then there exists a commutative groupoid of order n such that $as(G) = n^2$.

Proof. (i) Let *n* be odd. Define a new operation * on the cyclic group $\mathbb{Z}_n(+) = \{0, 1, ..., n-1\}$ of integers modulo *n* by a * b = -a - b. One checks readily that $As(\mathbb{Z}_n(*)) = \{(a, b, a); a, b \in \mathbb{Z}_n\}.$

(ii) Suppose that 4 divides n, i.e., $n = 2^k m$, where $k \ge 2$ and $n \ge 1$ is odd. Let F be a finite field of order 2^k , let $w \in F$ be such that $0 \neq w \neq 1$ and put a * b = wa + wb for all $a, b \in F$. Then F(*) is a commutative groupoid and $As(F(*)) = \{(a, b, a); a, b \in F\}$. Finally, put $G(*) = F(*) \times \mathbb{Z}_m(*)$ (see (i)). Then $As(G(*)) = \{(x, y, x); x, y \in G\}$.

(iii) Let n = 2m, where $m \ge 1$ is odd. Then we put $G(*) = C_2(*) \times \mathbb{Z}_m(*)$, where

C ₂ (*)	0	1
0	1	0
1	0	0

Again, $As(G(*)) = \{(x, y, x); x, y \in G\}.$

3.5 Theorem. (i) $\max(\mathscr{C}, 1) = -1 = \min(\mathscr{C}, 1)$.

(ii) $\maxas(\mathscr{C}, 2) = 4 = \minas(\mathscr{C}, 2)$.

(iii) $\max(\mathscr{C}, n) = n^3 - 2$ and $\min(\mathscr{C}, n) = n^2$ for every $n \ge 3$.

Proof. Combine the preceeding results (use also [6, 3.1] for n = 2).

IX.4 Commutative distributive groupoids

4.1 A groupoid is said to be distributive if it satisfies the identities $x \cdot yz \triangleq xy \cdot xz$ and $zy \cdot x \triangleq zx \cdot yx$. We denote by \mathscr{C}_d the class of commutative distributive groupoids.

4.2 For a groupoid G, let $As_1(G) = \{(a, b, c) \in As(G), a \neq c\}$ and $as_1(G) = card(As_1(G))$.

4.2 Lemma. Let G be a commutative distributive groupoid containing a subquasigroup Q and an element a such that $G = Q \cup \{a\}$ and $aQ \subseteq Q$. Then:

(i) There is an element $b \in Q$ such that ax = bx for every $x \in Q$ and either b = aa or a = aa.

(ii) If G is finite of order n and if $a \notin Q$, then $as_1(G) \ge 2n$.

Proof. (i) Let $q \in Q$. Then aq = bq for some $b \in Q$, $q \cdot ax = qa \cdot qx = qb \cdot qx = q \cdot bx$ and ax = bx. Moreover, $b = b \cdot bb = a \cdot bb = a \cdot ab = aa \cdot ab = aa \cdot b$. If $aa \in Q$, then aa = b. If $aa \notin Q$, then aa = a.

(ii) By (i), $(a, a, b), (b, a, a) \in As_1(G)$ and $(a, x, b), (b, x, a) \in As_1(G)$ for every $x \in Q$.

4.3 Lemma. Let G be a finite commutative distributive groupoid such that G is not a quasigroup. Then $as_1(G) \ge 2n$, n = card(G).

Proof. (i) Let G be idempotent. Define a relation r on G by $(x, y) \in r$ iff the ideal generated by x is the same as the ideal generated by y. Then r is a congruence of G, G/r is a semigroup and every block of r is a quasigroup (see [3]). Consequently, $q = \operatorname{card}(G/r) \ge 2$ and we shall proceed by induction on q.

First, let q = 2. Then $G/r = \{K, H\}$, where $KH \subseteq H$. Put $k = \operatorname{card}(K)$ and $m = \operatorname{card}(H)$. By 4.2, $as_1(G) \ge 2km + 2k \ge 2n$.

Now, let $q \ge 3$ and let $f: G \to G/r$ denote the natural projection. There is a block K of r such that f(K) is a maximal element of the semilattice G/r and we put $H = G \setminus K$, $k = \operatorname{card}(K)$ and $m = \operatorname{card}(H)$. Then H is a subgroupoid of G and $as_1(G) \ge 2m + 4k \ge 2n$ (take into account that $KL \subseteq L$ for any block L of r).

(ii) Let G be not idempotent. Then I = Id(G) is a proper ideal of G and $k \ge 1$, $m \ge 1$, where $k = card(G \setminus I)$ and m = card(I). If I is a quasigroup, then $as_1(G) \ge 2km + 2k \ge 2n$ by 4.2(ii). If I is not a quasigroup, then $as_1(G) \ge 2m + 4k \ge 2n$ (take into account that $GH \subseteq H$, H being the intersection of all ideals of G).

4.4 Lemma. (i) If Q is a finite commutative distributive quasigroup of order n, then n is odd, $as_1(Q) = 0$ and $as(Q) = n^2$.

(ii) For every odd $n \ge 1$, the exists at least one commutative idempotent medial quasigroup of order n.

Proof. Easy.

4.5 Lemma. Let $n \ge 4$ be even. Then there exists a commutative idempotent medial groupoid of order n such that $as_1(G) = 2n$.

Proof. Let Q be a c. i. m. quasigroup of order n - 1 and let $b \in Q$ and $a \notin Q$. Put $G = Q \cup \{a\}$ and aa = a, ax = xa = bx for every $x \in Q$.

4.6 Lemma. (i) Let G be a non-associative commutative distributive groupoid. Then $ns(G) \ge 18$.

(ii) For every $n \ge 3$, there exists a commutative idempotent medial groupoid G of order n such that ns(G) = 18.

Proof. (i) We can assume that G is a quasigroup and the result then follows from 4.4.

(ii) Put $G = \{0, 1, ..., n - 1\}$ and define $0 * 0 = 1 * 2 = 2 * 1 = 0, 1 * 1 = 0 * 2 = 2 * 0 = 0 * 1 = 1 * 0 = 2, i * j = \max(i, j)$ for all $0 \le i, j \le n - 1$ such that either $3 \le i$ or $3 \le j$.

4.7 Theorem.

(i) $\max(\mathscr{C}_d, 1) = -1 = \min(\mathscr{C}_d, 1)$.

(ii) $\max(\mathscr{C}_d, 2) = -1 = \min(\mathscr{C}_d, 2)$.

(iii) $\max(\mathscr{C}_d, n) = n^3 - 18$ for every $n \ge 3$.

- (iv) minas(\mathscr{C}_d, n) = n^2 for every odd $n \ge 3$. (v) minas(\mathscr{C}_d, n) = $n^2 + 2n$ for every even $n \ge 4$.

Proof. Combine the preceeding results (and take into account that every twoelement c. d. groupoid is a semigroup).

4.8 Remark. The same result (4.7) is true for the classes of commutative distributive idempotent groupoids and commutative idempotent medial groupoids.

IX.5 Groupoids with small semigroup distance

5.1 Let \mathscr{S}_1 denote the class of groupoids G such that sdist(G) = 1 (see [7, 1.1]).

5.2 Theorem. (i) $\max(\mathscr{S}_1, 1) = -2 = \min(\mathscr{S}_1, 1)$.

(ii) $\max(\mathscr{S}_1, 2) = 6$ and $\min(\mathscr{S}_1, 2) = 4$.

(iii) $\max(\mathscr{G}_1, n) = n^3 - 1$ for every $n \ge 3$. (iv) $\min(\mathscr{G}_1, n) = n^3 - 2n^2 + 2n$ for every $n \ge 2$.

Proof. (i) Every one-element groupoid is associative.

(ii) See [6, 3.1].

(iii) The result follows from [8, 5.5(ii)] for $n \ge 4$, while the case n = 3 is settled down by the groupoid B_{26} from [6, 4.2].

(iv) See [7, 12.2].

IX.6 Quasitrivial groupoids - introduction

6.1 In this section, by a graph we mean a finite non-empty set together with an antireflexive binary relation (possibly empty).

Let K be a graph. Then V = V(K) will denote the set of vertices, E = E(K)that of edges and $v(K) = \operatorname{card}(V)$. Further, for every $a \in V$, let f(a) = f(K, a) = f(K, a) $card(\{b \in V; (a, b) \in E, (b, a) \notin E\}), g(a) = card(\{b \in V; (a, b) \notin E, (b, a) \in E\}), h(a) =$

 $\operatorname{card}(\{b \in V; (a, b) \in L, (b, a) \in L\}), g(a) \to \operatorname{card}(\{b \in V; (a, b) \notin L, (b, a) \in L\}), h(a)$ $\operatorname{card}(\{b \in V; (a, b) \notin E, (b, a) \notin E\}) \text{ and } k(a) = \operatorname{card}(\{b \in V; (a, b) \notin E, (b, a) \notin E\}).$ Now, we put $w(1) = w(K, 1) = \sum (f(a)^2 - f(a))/2, w(2) = \sum (g(a)^2 - g(a))/2,$ $w(3) = \sum (h(a)^2 - h(a))/2, w(4) = \sum (k(a)^2 - k(a))/2, w(5) = \sum f(a) g(a), w(6) = \sum f(a) h(a), w(7) = \sum f(a) k(a), w(8) = \sum g(a) h(a), w(9) = \sum g(a) k(a) \text{ and } w(6) = \sum f(a) h(a), w(7) = \sum f(a) k(a), w(8) = \sum g(a) h(a), w(9) = \sum g(a) k(a) \text{ and } w(6) = \sum f(a) h(a), w(6) = \sum f(a) h(a), w(7) = \sum f(a) h(a), w(8) = \sum g(a) h(a), w(9) = \sum g(a) k(a) \text{ and } w(6) = \sum f(a) h(a), w(7) = \sum f(a) h(a), w(8) = \sum g(a) h(a), w(9) = \sum g(a) h(a) \text{ and } w(6) = \sum f(a) h(a), w(6) = \sum f(a) h(a), w(7) = \sum f(a) h(a), w(8) = \sum g(a) h(a), w(9) = \sum g(a) h(a) \text{ and } w(6) = \sum f(a) h(a), w(6) = \sum f(a) h(a), w(6) = \sum f(a) h(a), w(8) = \sum g(a) h(a), w(9) = \sum g(a) h(a) \text{ and } w(6) = \sum f(a) h(a) + \sum f(a) h(a), w(8) = \sum g(a) h(a), w(9) = \sum g(a) h(a) \text{ and } w(6) = \sum f(a) h(a) + \sum$ $w(10) = \sum h(a) k(a).$

6.2 We shall say that a graph K is commutative (anticommutative) if h(a) = k(a) = 0 (f(a) = g(a) = 0) for every $a \in V$.

6.3 Consider the following three-element graphs $L(1), \ldots, L(16)$, where V(L(i)) = $\{1, 2, 3\}$ and $E(L(1)) = \{(1, 2), (1, 3), (2, 3)\}, E(L(2)) = \{(1, 2), (1, 3), (2, 3), (3, 2)\}, \{1, 2, 3, (2, 3), (3, 2)\}, \{2, 3, (3, 2)\}, \{3, 2, 3, (3, 2)\}, \{4, 2, 3, (3, 2), (3,$ $E(L(3)) = \{(1,2),(1,3)\}, E(L(4)) = \{(1,2),(2,1),(1,3),(2,3)\}, E(L(5)) = \{(1,3),(2,3)\}, E(L(6)) = \{(1,2),(2,1),(1,3),(3,1),(2,3),(3,2)\}, E(L(7)) = \emptyset, E(L(8)) = \{(1,2),(2,3),(3,1)\}, E(L(9)) = \{(1,2),(2,3),(3,2)\}, E(L(10)) = \{(1,2),(2,3),(1,3),(3,1)\}, E(L(11)) = \{(1,2),(2,3),(3,2)\}, E(L(12)) = \{(1,2),(1,3),(3,1)\}, E(L(13)) = \{(1,2),(2,1),(2,3),(3,2)\}, E(L(14)) = \{(1,3),(3,1)\}, E(L(15)) = \{(1,2),(2,1),(2,3),(3,2),(3,1)\}, E(L(16)) = \{(1,3),(3,1)\}, E(L(15)) = \{(1,2),(2,1),(2,3),(3,2),(3,1)\}, E(L(16)) = \{(1,3)\}.$

These sixteen graphs are pair-wise non-isomorphic and every three element graph is isomorphic to one of them.

6.4 Let K be a graph and $1 \le i \le 16$. We denote by q(i) = q(K, i) the number of induced subgraphs of K isomorphic to L(i).

Obviously, if $v(K) \ge 3$, then K is commutative (anticommutative) iff $q(2) = \dots = q(7) = q(9) = \dots = q(16) = 0$ ($q(1) = \dots = q(5) = q(8) = \dots = q(12) = q(15) = q(16) = 0$).

Let $p = (p_1, ..., p_{16}) \in \mathbb{Z}^{(16)}$, \mathbb{Z} being the ring of integers. We put $q(K, p) = \sum_{i=1}^{16} p_i q(i)$.

$$\sum_{i=1}^{p} p$$

6.5 A groupoid G is said to be quasitrivial if $ab \in \{a, b\}$ for all $a, b \in G$.

6.6 Lemma. Let G be a quasitrivial groupoid. Then: (i) $\{(a, a, b), (a, b, a), (a, b, b)\} \subseteq As(G)$ for all $a, b \in G$. (ii) If G is finite and of order n, then $as(G) \ge 3n^2 - 2n$.

Proof. Easy.

6.7 Let G be a finite quasitrivial groupoid. Define a graph L = L(G) as follows: V(L) = G and $(a, b) \in E(L)$ iff $a \neq b$ and ab = a.

Let K be a graph. Define a quasitrivial groupoid H = H(K) as follows: The underlying set of H is V(K) and, for all $a, b \in V(K)$, we have ab = a if $(a, b) \in E(K)$ and ab = b in the opposite case.

The maps $G \to L(G)$ and $K \to H(K)$ are bijective correspondences between finite quasitrivial groupoids and graphs.

6.8 For $1 \le i \le 16$, let $P_i = 27 - as(H(L(i)))$ and $P = (P_i)$. It is easy to check that P = (0, ..., 0, 6, 3, 3, 2, 2, 2, 1, 1). For a graph K, let q(K) = q(K, P).

6.9 Proposition. Let G be a finite quasitrivial groupoid and n = card(G). Then $as(G) = n^3 - q(L(G))$.

Proof. Combine the preceding observations.

IX.7 Quasitrivial groupoids - equalities

7.1 Throughout this section, let K be a graph, n = v(K) and $p = (p_i) \in \mathbb{Z}^{(16)}$.

7.2 The following ten equalities are easy to check:

$$\begin{split} w(1) &= q(1) + q(2) + q(3), \\ w(2) &= q(1) + q(4) + q(5), \\ w(3) &= 3q(6) + q(13) + q(15), \\ w(4) &= 3q(7) + q(14) + q(16), \\ w(5) &= q(1) + 3q(8) + q(9) + q(10), \\ w(6) &= 2q(4) + q(10) + q(12) + q(15), \\ w(7) &= 2q(5) + q(9) + q(11) + q(16), \\ w(8) &= 2q(2) + q(10) + q(11) + q(15), \\ w(9) &= 2q(3) + q(9) + q(12) + q(16), \\ w(10) &= q(11) + q(12) + q(13) + q(14). \end{split}$$

Now, after easy combination, we get:

(1)
$$2w(1) - 2w(2) + w(6) + w(7) - w(8) - w(9) = 0$$
.

Moreover,

$$\begin{split} q(1) &= w(1) - w(8)/2 - w(9)/2 + q(9)/2 + q(10)/2 + q(11)/2 + q(12)/2 + q(15)/2 + q(16)/2, \\ q(2) &= w(8)/2 - q(10)/2 - q(11)/2 - q(15)/2, \\ q(3) &= w(9)/2 - q(9)/2 - q(12)/2 - q(16)/2, \\ q(4) &= w(6)/2 - q(10)/2 + q(12)/2 - q(15)/2, \\ q(5) &= w(7)/2 - q(9)/2 - q(11)/2 - q(16)/2, \\ q(6) &= w(3)/2 - q(13)/3 - q(15)/3, \\ q(7) &= w(4)/3 - w(10)/6 + q(11)/6 + q(12)/6 + q(13)/3 - q(16)/3, \\ q(8) &= -w(1)/3 + w(5)/3 + w(8)/6 + w(9)/6 - q(9)/2 - q(10)/2 - q(11)/6 - q(12)/6 - q(15)/6 - q(16)/6, \\ q(14) &= w(10)/2 - q(11)/2 - q(12)/2 - q(13). \end{split}$$

From these equalities, we derive easily:

(2)
$$q(K, p) = w(1) (p_1 - p_8/3)$$

 $+ w(3) p_6/3 + w(4) p_7/3 + w(5) p_8/3 + w(6) p_4/2 + w(7) p_5/2$
 $+ w(8) (-p_1/2 + p_2/2 + p_8/6)$
 $+ w(9) (-p_1/2 + p_3/2 + p_8/6)$
 $+ w(10) (-p_7/6 + p_{14}/2)$
 $+ q(9) (p_1/2 - p_2/2 - p_5/2 - p_8/2 + p_9)$
 $+ q(10) (p_1/2 - p_2/2 - p_5/2 + p_7/6 + p_{11} - p_{14}/2)$
 $+ q(11) (p_1/2 - p_2/2 - p_5/2 + p_7/6 + p_{12} - p_{14}/2)$
 $+ q(12) (p_1/2 - p_3/2 - p_4/2 + p_7/6 + p_{12} - p_{14}/2)$
 $+ q(13) (-p_6/3 + p_7/3 - p_8/6 + p_{13} - p_{14})$
 $+ q(15) (p_1/2 - p_3/2 - p_5/2 - p_7/3 - p_8/6 + p_{16}).$

7.3 Proposition. (i) q(K) = -2w(1) + 2w(5) + w(8) + w(9) + w(10). (ii) q(K) = -w(1) - q(2) + 2w(5) + w(6)/2 + w(7)/2 + w(8)/2 + w(9)/2 + w(10).(iii) q(K) = -2w(1) + 2w(5) if K is commutative. (iv) q(K) = w(10) if K is anticommutative.

Proof. Use (1) and (2).

7.4 Proposition. (i) $q(K) \le (n^3 - n)/4$. (ii) $q(K) \le (n^3 - 4n)/4$ if n is even.

Proof. For $a \in V$, let $r(a) = ((f(a) + g(a))^2/2) - 2f(a)g(a), s(a) = ((h(a) + g(a))^2/2) - 2f(a)g(a), s(a) = (h(a) + g(a))^2/2$ $k(a)^{2}/2 - 2h(a)k(a)$ and $t(a) = f(a) + g(a) + ((f(a) + g(a) + h(a))^{2}/2) - (f(a) + h(a))^{2}/2$ $(f(a) - g(a))^2 - r(a) - s(a)$. Then t(a)/2 = 2f(a)g(a) + h(a)k(a) + (f(a)h(a)/2 + a)k(a) + h(a)k(a) + h(a) $(f(a)k(a)/2) + (g(a)h(a)/2) + (g(a)k(a))/2 - ((f(a)^2 - f(a))/2) - ((g(a)^2 - g(a))/2),$ and hence by 7.3(iii), $q(K) = \sum_{a \in V} t(a)/2$. On the other hand, $f(a) + g(a) \leq n - 1$, $f(a) + g(a) + h(a) + k(a) = n - 1, 0 \leq (f(a) - g(a))^2, 0 \leq r(a), 0 \leq s(a)$ and

 $t(a) \leq (n^2 - 1)/2$. Consequently, $q(K) \leq (n^3 - n)/4$.

Now, suppose that n is even. If f(a) + g(a) is even, then h(a) + k(a) is odd, $h(a) \neq k(a)$ and $1/2 \leq s(a)$. Moreover, $f(a) + g(a) \leq n - 1$, and so $t(a) \leq (n^2 - 4)/2$. If f(a) + g(a) is odd, hen $1/2 \leq r(a), 1 \leq (f(a) - g(a))^2$ and, again, $t(a) \leq (n^2 - 4)/2$.

7.5 Proposition. Let K be anticommutative. Then:

- (i) $q(K) \leq (n^3 2n^2 + n)/4$.
- (ii) $q(K) \leq (n^3 2n^2 + n' 4)/4$ if n = 4m + 3 for some $m \leq 0$.
- (iii) $q(K) \leq (n^3 2n^2)/4$ if n is even.

Proof. By 7.3(iv), $q(K) = \sum h(a)k(a)$. Moreover, q(K) is even and the rest is clear.

7.6 Proposition. Assume that $q(K) \neq 0$. Then:

- (i) $1 \leq q(K)$.
- (ii) $6 \leq q(K)$ if K is communicative.
- (iii) $2n 4 \leq q(K)$ if K is anticommunicative.

Proof. Easy.

IX.8 Quasitrivial groupoids - examples

8.1 Example. Let G = G(+) be a finite abelian group of order n and let M be a subset of G such that $0 \notin M$. Put $m = \operatorname{card}(M)$ and $k = \operatorname{card}(\{a \in M; -a \in M\})$. Now, we define a graph $\mathcal{J} = J(G, M)$ by V(J) = G and $(a, b) \in E(J)$ iff $a - b \in M$. Then $q(J) = n^2m - nm^2 - nk$ and we have the following particular cases:

- (1) $n \leq 3$ is odd, $G = \mathbb{Z}_n(+) = \{0, 1, ..., n-1\}$ and $M = \{1, 2, ..., (n-1)/2\}$. Then J is commutative and $q(J) = (n^3 - n)/4$.
- (2) $n \ge 4$ is even, $G = \mathbb{Z}_n(+)$ and $M = \{1, 2, ..., (n-2)/2\}$. Then J is not commutative and $q(J) = (n^3 4n)/4$.
- (3) $n \ge 5$ is odd, n = 4r + 1, $G = \mathbb{Z}_n(+)$ and $M = \{1, 2, ..., r, n r, n r, n r + 1, ..., n 2, n 1\}$. Then J is anticommutative and $q(J) = (n^3 2n^2 + n)/4$.
- (4) $n \ge 6$ is even, n = 4r + 2, $G = \mathbb{Z}_n(+)$ and $M = \{1, 2, ..., r, n r, n r, n r + 1, ..., n 2, n 1\}$. Then J is commutative and $q(J) = (n^3 2n^2)/4$.
- (5) $n \leq 4$ is even, n = 4r, $G = \mathbb{Z}_n(+)$ and $M = \{1, 2, ..., r, n r, n r + 1, ..., n 2, n 1\}$. Then J is anticommutative and $q(J) = (n^3 2n^2)/4$.

8.2 Example. Let $n \ge 4$ be even and $M = \{1, 2, ..., (n-2)/2\}$. Define a graph I = I(n) by $V(I) = \mathbb{Z}_n$ and $(a, b) \in E(I)$, iff either $a - b \in M$ or $a \in M \cup \{0\}$ and a - b = n/2. Then I is commutative and $g(I) = (n^3 - 4n)/4$.

8.3 Example. Let $n \ge 7$ be odd, n = 4r + 3, $M = \{1, 2, ..., r, n - r, n - r, n - r + 1, ..., n - 2, n - 1\}$. Define a graph R = R(n) by $V(R) = \mathbb{Z}_n$ and $(a, b) \in E(R)$ iff either $a - b \in M$ or $2r + 2 \le a \le n - 1$ and a - b = 2r + 1 or $1 \le a \le 2r + 1$ and a - b = 2r + 2. Then R is anticommutative and $q(R) = (n^3 - 2n^2 + n - 4)/2$.

8.4 Example. Let $n \ge 3$. Define a graph S = S(n) by $V(S) = \mathbb{Z}_n$ and $(a, b) \in E(S)$ iff either $3 \le a$ and $b \le 2$ or a = 0 and b = 1. Then q(S) = 1.

8.5 Example. Let $n \ge 3$. Define a graph T = T(n) by $V(T) = \mathbb{Z}_n$ and $(a, b) \in E(T)$ iff either b < a and $3 \le a$ or a = 0, b = 1 or a = 1, b = 2 or a = 2, b = 0. Then T is commutative and q(T) = 6.

8.6 Example. Let $n \ge 3$. Define a graph Q = Q(n) by $V(Q) = \mathbb{Z}_n$ and $(a, b) \in E(Q)$ iff either a = 0, b = 1 or a = 1, b = 0. Then Q is anticommutative and q(Q) = 2n - 4.

IX.9 Quasitrivial groupoids - summary

9.1 Let $\mathcal{Q}(\mathcal{Q}_c, \mathcal{Q}_a)$ denote the class of (commutative, anticommutative) quasitrivial groupoids).

9.2 Theorem. (i) $maxas(\mathcal{Q}, 1) = maxas(\mathcal{Q}_c, 1) = maxas(\mathcal{Q}_a, 1) = minas(\mathcal{Q}, 1) = minas(\mathcal{Q}, 1) = minas(\mathcal{Q}_a, 1) = -1.$

(ii) $\max(2, 2) = \max(2, 2) = \max(2, 2) = \max(2, 2) = \min(2, 1) = \min(2, 2) = \min(2, 2) = \min(2, 2) = -1.$

(iii) $maxas(2, n) = n^3 - 1$ for every $n \ge 3$.

47

(iv) $maxas(\mathcal{Q}_{c}, n) = n^{3} - 6$ for every $n \ge 3$.

(v) $maxas(\mathcal{Q}_a, n) = n^3 - 2n + 4$ for every $n \ge 3$.

(vi) minas($(2, n) = minas((2, n)) = (3n^3 + n)/4$ for every odd $n \ge 3$.

(vii) minas($(2, n) = minas((2, n)) = (3n^3 + 4n)/4$ for every even $n \ge 4$.

(viii) $minas(\mathcal{Q}_a, n) = (3n^3 + 2n^2 - n)/4$ for every odd $n = 4m + 1, m \ge 1$. (ix) $minas(\mathcal{Q}_a, n) = (3n^3 + 2n^2 - n + 4)/4$ for every odd $n = 4m + 3, m \ge 0$.

(x) minas $(\mathcal{Q}_a, n) = (3n^3 + 2n^2)/4$ for every even $n \ge 4$.

Proof. Combine 6.9, 7.3, 7.4, 7.5, 7.6, 8.1, 8.2, 8.3, 8.4, 8.5 and 8.6.

IX.10 One special class of commutative groupoids

10.1 For a set S, let R(S) denote the set of ordered triples (a, b, c) of elements from S such that either $a = b \neq c$ or $a \neq b = c$. Now, let \mathscr{C}_1 denote the class of commutative groupoids G such that Ns(G) = R(G). Further, let \mathscr{C}_2 be the class of commutative groupoids G such that $Ns(G) \subseteq R(G)$.

10.2 Example. Let G(+) be a abelian group and $0 \neq w \in G$. We shall define a groupoid G(*) = G[+, w] as follows: 0 * 0 = w, 0 * a = 0 = a * 0 and a * b = a + b for all $a, b \in G \setminus \{0\}$. Then G(*) is commutative and a tedious but easy checking shows that $Ns(G(*)) = \{(a, -a, b); a, b \in G, a \neq b\} \cup \{(a, -b, b); a, b \in G, a$ a, $b \in G$, $a \neq b$. In particular, $G(*) \in \mathcal{C}_1$ if and only if the group G(+) is 2-elementary.

10.3 Proposition. Let G(+) be a (non-trivial) 2-elementary abelian group and $0 \neq w \in G$. Then:

- (i) $G[+, w] \in \mathscr{C}_1$.
- (ii) If H(+) is a 2-elementary abelian group and $0 \neq v \in H$, then the groupoids G[+, w] and H[+, w] are isomorphic iff card(G) = card(H).

Proof. (i) See 10.2.

(ii) If card(G) = card(H), the there is an isomorphism $f:G(+) \to H(+)$ such that f(w) = v.

10.4 For every cardinal $\mathfrak{a} \geq 1$ denote by $R_{\mathfrak{a}}$ the groupoid $\mathbb{Z}_{2}^{\mathfrak{a}}[+, (1, 0, 0, ...)]$ (see 10.2). Then $R_a \in \mathscr{C}_1$ and card $(R_m) = 2^m$, provided that a = m is finite.

10.5 Let $G \in \mathscr{C}_1$ be a non-trivial groupoid.

10.5.1 Lemma. If $a, b, c \in G$ are such that $a \neq b \neq c$, $a \neq c$ and a = bc, then b = ac and c = ab.

Proof. If $c \neq ab$, then $aa \cdot b = (bc \cdot a)b = (b \cdot ca)b = b(ca \cdot b) = b(c \cdot ab) = b(c$ $bc \cdot ab = a \cdot ab$, a contradiction. Thus c = ab and, similarly, b = ac.

10.5.2 Lemma. If $a, b, c \in G$ are such that $a \neq b \neq c, 0 \neq c$ and a = bc, then $a^{2} = b^{2} = c^{2}$ and $a^{2} \notin \{a, b, c\}$.

Proof. We have $c^2 = ab \cdot c = a \cdot bc = a^2$ by 10.5.1. Similarly, $b^2 = a^2$. Finally, if $a^2 = a$, then $a \cdot bb = a \cdot aa = a = cb = ab \cdot b$, a contradiction. The rest is clear.

10.5.3 Lemma. If $a \in G$, then either $a = a^2$ or $a = a^3$ or $a^2 = a^3$.

Proof. We have $a^3 = a \cdot a^2$ and, if the elements a, a^2, a^3 are pair-wise different, then $a^2 \notin \{a, a^2, a^3\}$ by 10.5.2, a contradiction.

10.5.4 Lemma. If a, b, $c \in G$ are such that $a \neq b \neq c$, $a \neq c$ and a = bc, then $a \cdot a^2 = ba^2 = ca^2 = a^2 = b^2 = c^2$.

Proof. We have $a \neq a^2$ by 10.5.2. Further, if $a = a^3$, then $a \cdot bb = a \cdot aa = a^3 = a = cb = ab \cdot b$, a contradiction. Thus $a^2 = a^3$ by 10.5.3. Similarly, $ba^2 = b^3 = b^2$ and $ca^2 = c^2$.

Now, define a relation < on G by a < b iff $a \neq b$ and ab = b. If a < b and b < a, then b = ab = ba = a, a contradiction. If a < b < c, then $a \neq c$ and $ac = a \cdot bc = bc = c$. Hence a < c.

10.5.5 Lemma. Let $a, b, c, d \in G$ be such that $a \neq b \neq c, a \neq c$ and a = bc. (i) If d < a, then d < b and d < c. (ii) If a < d, then b < d and c < d.

Proof. (i) We have db = d. ac = da. c = ac = b. If d = b, then a = da = ba = c, a contradiction. Thus $d \neq b$ and d < b. Similarly, d < c.

(ii) First, $d \neq \{a, b, c\}$ (by 10.5.1), $db = da \cdot b = d \cdot ab = dc$ and $db \cdot c = d \cdot bc = d$. If db = c, then dc = c, d < c, and hence a < d < c implies a < c and ac = c. But $ac = b \neq c$ by 10.5.1. Consequently, $db = dc \neq c$. If $db \neq d$, then the elements d, c, dc are pair-wise different and now a < d implies a < c (by(i) for the triple d, c, dc), a contradiction. Thus db = d and b < d. Quite similarly, c < d.

Now, define a relation r on G by $(a, b) \in r$ iff $a \neq b$ and $a \neq ab \neq b$, and denote by s the smallest equivalence (on G) containing r. Let E = G/s be the corresponding factorset and let $p: G \rightarrow E$ denote the natural projection.

10.5.6 Lemma. Let $a, b, d \in G$ be such that $(a, b) \in s$. Then: (i) a < d iff b < d. (ii) d < a iff d < b.

Proof. We can assume that $a \neq b$. Then there are $a_1, ..., a_n \in G$, $n \ge 2$, such that $a_1 = a$, $a_n = b$ and $(a_1, a_2) \in r$, $(a_2, a_3) \in r$, ..., $(a_{n-1}, a_n) \in r$. Now, itt is clear that we can restrict ourselves to the case n = 2 (i.e., $(a, b) \in r$) and the result then follows from 10.5.5.

Taking into account 10.5.6, we can define a relation \leq on E by $x \leq y$ iff either x = y or x = p(a), y = p(b) for some, $a, b \in G$ such that a < b.

10.5.7 Lemma. The relation \leq is a linear ordering of the set E.

Proof. Clearly, \leq is an ordering. On the other hand, if $a, b \in G$, then exactly one of the following cases takes place: a < b; b < a; $(a, b) \in r$.

10.5.8 Lemma. (i) The linearly ordered set (E, \leq) possesses a greatest element.

(ii) If $Q \in E$ is the greatest element, then $Q = \{q\}$ is a one-element set.

Proof. (i) Let $a, b \in G$ be such that a < b and $a^2 < b$. Then $b \cdot a^2 = b = ba = ba = a$, a contradiction.

(ii) Suppose, on the contrary, that $\operatorname{card}(Q) \ge 2$. Then there are $a, b \in Q$ such that $(a, b) \in r$. Now, a, b, ab are pair-wise different elements and, by 10.5.1 and 10.5.4, we have $a \neq a^2$ and $a^2 = a \cdot a^2$. Consequently, $a < a^2$ and, since Q is maximal in (E, \leq) , we have $a^2 \in Q$. However, then $a < a^2$ implies $a^2 < a^2$ (by 10.5.6.(i)), a contradiction.

10.5.9 Lemma. aq = q = qa for every $a \in G \setminus \{q\}$. (*ii*) $a^2 = q$ for every $a \in G \setminus \{q\}$. (*iii*) $q^2 \neq q$.

Proof. (i) This follows easily from 10.5.8.

(ii) By (i), $q = qa = qa \cdot a \neq q \cdot a^2$, and hence $a^2 = q$ (again by (i)). (iii) If $a \in G \setminus \{q\}$, then, by (i) and (ii) $q^2 = a^2 \cdot q \neq a \cdot aq = q$.

10.5.10 Lemma. (i) The equivalence s possesses just two blocks. (ii) If $a, b \in G$ are such that $a \neq q \neq b$ and $a \neq b$, then $ab \notin \{a, b, q\}$.

Proof. (i) Let, on the contrary, $a, b \in G$ be such that a < b < q. Then (by 10.5.9), $a \cdot bb = aq = q = bb = ab \cdot b$, a contradiction.

(ii) If a < b, then $b \in Q$, and so b = q. Thus $ab \neq b$ and, similarly, $ab \neq a$. Finally, if ab = q, then a = bq = b (10.5.1, 10.5.9(i)), a contradiction.

Now, put 0 = q and define a binary operation + on G by a + 0 = a = 0 + a for every $a \in G$ and b + c = bc for all $b, c \in G \setminus \{0\}$.

10.5.11 Lemma. G(+) is a 2-elementary abelian group.

Proof. Clearly, G(+) is a commutative groupoid with a neutral element 0. Moreover, by 10.5.9(ii), we have a + a = 0 for every $a \in G$. It remains to show that G(+) is associative.

Let $a, b, c \in G$, d = a + (b + c) and e = (a + b) + c. We are going to show that d = e and, to that purpose, we can certainly assume tat $a \neq 0 \neq b$ and $c \neq 0$.

If $a = b \neq c$, then the elements a, c, ac are pair-wise different and we have $e = c = a \cdot ac = d$ (by 10.5.1).

Similarly, d = e if $a \neq b = c$ and, trivially, d = e if a = c.

Assume, finally, that the elements a, b, c are pair-wise different.

If c = ab, then $b + c = b + ab = b \cdot ab = a$, d = a + a = 0 and e = ab + ab = 0.

If c = ab, then $d = a \cdot bc = ab \cdot c = e$.

10.5.12 Lemma. $G = G[+, q^2]$.

Proof. Easy (use the preceding lemmas).

10.6 Theorem. (i) For every cardinal number $a \ge 1$, the groupoid R_a belongs to \mathscr{C}_1 . Moreover, card $(R_a) = a$ for $a \ge \aleph_0$ and card $(R_a) = 2^m$ for a = m finite.

(ii) If $G \in \mathcal{C}_1$ is finite and non-trivial, then $\operatorname{card}(G) = 2^m$ for some $m \ge 1$ and G is isomorphic to R_m .

(iii) If $G \in \mathscr{C}_1$ is infinite, then G is isomorphic to $R_{\mathfrak{a}}$, where $\mathfrak{a} = \operatorname{card}(G)$.

Proof. See 10.3, 10.4 and 10.5.

10.7 Example.

R_2	0	1	2	3
0 1 2 3	1 0 0	0 0 3 2	0 3 0 1	0 2 1 0

10.8 Remark. (i) It is very easy to check that $\max(\mathscr{C}_2, 1) = -1 = \min(\mathscr{C}_2, 1)$ and $\max(\mathscr{C}_2, 2) = 4 = \min(\mathscr{C}_2, 2)$.

(ii) $\max(\mathscr{C}_2, n) = n^3 - 2$ for every $n \ge 3$ (see 3.3 and its proof).

(iii) It follows easily from 10.6 that minas $(\mathscr{C}_2, n) = n^3 - 2n^2 + 2n$ for every $n = 2^m, m \ge 1$ (cf. 5.2).

(iv) Let $n = 2^m + k$, where $m \ge 1$ and $1 \le k < 2^m$. Then $n^3 - 2n^2 + 2n + 2 \le \min(\mathscr{C}_2, n) \le n^3 - 2n^2 + 2n + 4nk - 2k^2 - 2k$. In particular, if k = 1, then $n^3 - 2n^2 + 2n + 2 \le \min(\mathscr{C}_2, n) \le n^3 - 2n^2 + 6n - 4$.

IX.11 Comments and open problems

11.1 In this part, we are summarizing the results from [1], [4] and [5].

11.2 Find the numbers maxas(\mathcal{A} , n) and minas(\mathcal{A} , n) for the following classes \mathcal{A} of groupoids:

- (i) Idempotent groupoids;
- (ii) Commutative idempotent groupoids;
- (iii) Groupoids with a neutral element;
- (iv) Diagonally non-associative groupoids (see [2]).

11.3 Find the numbers minas (\mathscr{C}_2, n) (see 10.8(iii), (iv)).

References

- [1] DRÁPAL A., On a class of commutative groupoids determined by their associativity triples, Comment. Math. Univ. Carolinae 34 (1993), 199-201.
- [2] DRÁPAL A. and KEPKA T., Groupoids and the associative law VIII. (Diagonally non-associative groupoids), Acta Univ. Carol. Math. Phys. 38/1 (1997), 23-37.
- [3] KEPKA T., Commutative distributive groupoids, Acta Univ. Carol. Math. Phys. 19/2 (1978), 45-58.
- [4] KEPKA T., Notes on associative triples of elements in commutative groupoids, Acta Univ. Carol. Math. Phys. 22/2 (1981), 39-47.
- [5] KEPKA T. and KRATOCHVIL J., Graphs and associative triples in quasitrivial groupoids, Comment. Math. Univ. Carolinae 25 (1984), 679-687.
- [6] KEPKA T. and TRCH M., Groupoids and the associative law I. (Associative triples), Acta Univ. Carol. math. Phys. 33/1 (1992), 69-86.
- [7] KEPKA T. and TRCH M., Groupoids and the associative law II. (Groupoids with small semigroup distance), Acta Univ. Carol. Math. Phys. 34/1 (1993), 67-83.
- [8] KEPKA T. and TRCH M., Groupoids and the associative law III. (Szász-Hájek groupoids), Acta Univ. Carol. Math. Phys. 36/1 (1995), 17-30.