## Acta Universitatis Carolinae. Mathematica et Physica

Aleš Drápal; Jaroslav Ježek; T. Kepka
Groupoids and the associative law IX. (Associative triples in some classes of groupoids)

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 38 (1997), No. 1, 39-52
Persistent URL: http://dml.cz/dmlcz/142683

## Terms of use:

## © Univerzita Karlova v Praze, 1997

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

# Groupoids and the Associative Law IX. (Associative Triples in Some Classes of Groupoids) 

A. DRÁPAL, J. JEŽEK and T. KEPKA

Praha*)
Received I6. September 1996

The maximal and minimal numbers of associative triples in groupoids from various classes are enumerated.

Maximální a minimální počty asociativních trojic $v$ groupoidech různých tříd jsou spočteny.
This part is a continuation of [6] and [7]. Here, we find the maximal and minimal numbers of associative triples in the following classes of groupoids: All groupoids; commutative groupoids, commutative distributive groupoids; quasitrivial groupoids.

## IX. 1 Introduction

1.1 Let $\mathscr{A}$ be a class of groupoids. Then, for every positive integer $n$, we define two numbers maxas $(\mathscr{A}, n)$ and minas $(\mathscr{A}, n)$ in the following way:

If there is no $n$-element groupoid in $\mathscr{A}$, then $\operatorname{maxas}(\mathscr{A}, n)=-2=\operatorname{minas}(\mathscr{A}, n)$.
If there are some $n$-element groupoids in $\mathscr{A}$, but all of them are associative, then $\operatorname{maxas}(\mathscr{A}, n)=-1=\operatorname{minas}(\mathscr{A}, n)$.

If the class $\mathscr{A}_{n}$ of non-associative $n$-element groupoids from $\mathscr{A}$ is non-empty, then $\operatorname{maxas}(\mathscr{A}, n)=\max \left(\operatorname{as}(G) ; G \in \mathscr{A}_{n}\right)$ and $\operatorname{minas}(\mathscr{A}, n)=\min \left(a s(G) ; G \in \mathscr{A}_{n}\right)$.
1.2 Proposition. Let $\mathscr{A}$ be a class of groupoids. Then:
(i) $-2 \leq \operatorname{maxas}(\mathscr{A}, 1)=\operatorname{minas}(\mathscr{A}, 1) \leq-1$.
(ii) $-2 \leq \operatorname{minas}(\mathscr{A}, n) \leq \operatorname{maxas}(\mathscr{A}, n) \leq n^{3}-1$ for every $n \geq 1$.

Proof. Obvious.

[^0]
## IX. 2 Groupoids

2.1 Let $\mathscr{G}$ denote the class of all groupoids.
2.2 Theorem. (i) $\operatorname{maxas}(\mathscr{G}, 1)=-1=\operatorname{minas}(\mathscr{G}, 1)$.
(ii) $\operatorname{maxas}(\mathscr{G}, 2)=6$ and $\operatorname{minas}(\mathscr{G}, 2)=0$.
(iii) $\operatorname{maxas}(\mathscr{G}, n)=n^{3}-1$ and $\operatorname{minas}(\mathscr{G}, n)=0$ for every $n \geq 3$.

Proof. See [6, 3.1, 7.2].

## IX. 3 Commutative groupoids

3.1 Let $\mathscr{C}$ denote the class of commutative groupoids.
3.2 Lemma. Let $G \in \mathscr{C}$. Then:
(i) $(a, b, a) \in A s(G)$ for all $a, b \in G$.
(ii) If $G$ is finite and $n=\operatorname{card}(G)$, then $a s(G) \geq n^{2}$.
(iii) If $G$ is not associative, then $n s(G) \geq 2$.
(iv) If $N s(G)$ contains at least one triple $(a, b, c)$ such that $a \neq b \neq c$, then $n s(G) \geq 4$.

Proof. (i) Obvious.
(ii) This follows immediately from (i).
(iii) If $(a, b, c) \in N s(G)$, then $(c, b, a) \in N s(G)$ as well. The equality $(a, b, c)=$ $(c, b, a)$ implies $a=c$ and $(a, b, c) \in A s(G)$, which is not true.
(iv) We have $(a, b, c),(c, b, a) \in N s(G)$. If $(a, c, b)$ and $(c, a, b)$ are in $A s(G)$, then $a \cdot b c=a \cdot c b=a c \cdot b=c a \cdot b=c \cdot a b=a b \cdot c$, a contradiction.
3.3 Lemma. Let $n \geq 3$. Then there exists a commutative groupoid $G$ such that $a s(G)=n^{3}-2$.

Proof. We shall proceed by induction on $n$. If $n=3$, then we can take the following groupoid.

| $C_{1}$ | 0 | 1 | 2 |
| :---: | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 2 |
| 2 | 0 | 2 | 0 |

It is easy to check that $N s\left(C_{1}\right)=\{(1,1,2),(2,1,1)\}$.
Now, let $n \geq 4$ and let $H$ be a commutative groupoid of order $n-1$ such that $n s(H)=2$. Put $G=H \cup\{0\}$, where $0 \notin H$ and 0 is an absorbing element of $G$. Clearly, $N s(G)=N s(H)$.
3.4 Lemma. Let $n \geq 1$. Then there exists a commutative groupoid of order $n$ such that as $(G)=n^{2}$.

Proof. (i) Let $n$ be odd. Define a new operation $*$ on the cyclic group $\mathbb{Z}_{n}(+)=$ $\{0,1, \ldots, n-1\}$ of integers modulo $n$ by $a * b=-a-b$. One checks readily that $A s\left(\mathbb{Z}_{n}(*)\right)=\left\{(a, b, a) ; a, b \in \mathbb{Z}_{n}\right\}$.
(ii) Suppose that 4 divides $n$, i.e., $n=2^{k} m$, where $k \geq 2$ and $n \geq 1$ is odd. Let $F$ be a finite field of order $2^{k}$, let $w \in F$ be such that $0 \neq w \neq 1$ and put $a * b=w a+w b$ for all $a, b \in F$. Then $F(*)$ is a commutative groupoid and $A s(F(*))=\{(a, b, a) ; a, b \in F\}$. Finally, put $G(*)=F(*) \times \mathbb{Z}_{m}(*)$ (see (i)). Then $A s(G(*))=\{(x, y, x) ; x, y \in G\}$.
(iii) Let $n=2 m$, where $m \geq 1$ is odd. Then we put $G(*)=C_{2}(*) \times \mathbb{Z}_{m}(*)$, where

| $C_{2}(*)$ | 0 | 1 |
| :---: | :---: | :---: |
| 0 | 1 | 0 |
| 1 | 0 | 0 |

Again, $A s(G(*))=\{(x, y, x) ; x, y \in G\}$.
3.5 Theorem. (i) $\operatorname{maxas}(\mathscr{C}, 1)=-1=\operatorname{minas}(\mathscr{C}, 1)$.
(ii) $\operatorname{maxas}(\mathscr{C}, 2)=4=\operatorname{minas}(\mathscr{C}, 2)$.
(iii) $\operatorname{maxas}(\mathscr{C}, n)=n^{3}-2$ and $\operatorname{minas}(\mathscr{C}, n)=n^{2}$ for every $n \geq 3$.

Proof. Combine the preceeding results (use also [6, 3.1] for $n=2$ ).

## IX. 4 Commutative distributive groupoids

4.1 A groupoid is said to be distributive if it satisfies the identities $x \cdot y z \hat{=}$ $x y . x z$ and $z y . x \hat{=} z x \cdot y x$. We denote by $\mathscr{C}_{d}$ the class of commutative distributive groupoids.
4.2 For a groupoid $G$, let $A s_{1}(G)=\{(a, b, c) \in A s(G), a \neq c\}$ and $a s_{1}(G)=$ $\operatorname{card}\left(A s_{1}(G)\right)$.
4.2 Lemma. Let $G$ be a commutative distributive groupoid containing a subquasigroup $Q$ and an element a such that $G=Q \cup\{a\}$ and $a Q \subseteq Q$. Then:
(i) There is an element $b \in Q$ such that $a x=b x$ for every $x \in Q$ and either $b=a a$ or $a=a a$.
(ii) If $G$ is finite of order $n$ and if $a \notin Q$, then $a s_{1}(G) \geq 2 n$.

Proof. (i) Let $q \in Q$. Then $a q=b q$ for some $b \in Q, q . a x=q a . q x=q b . q x=$ $q \cdot b x$ and $a x=b x$. Moreover, $b=b . b b=a \cdot b b=a \cdot a b=a a \cdot a b=a a \cdot b$. If $a a \in Q$, then $a a=b$. If $a a \notin Q$, then $a a=a$.
(ii) By (i), $(a, a, b),(b, a, a) \in A s_{1}(G)$ and $(a, x, b),(b, x, a) \in A s_{1}(G)$ for every $x \in Q$.
4.3 Lemma. Let $G$ be a finite commutative distributive groupoid such that $G$ is not a quasigroup. Then $a s_{1}(G) \geq 2 n, n=\operatorname{card}(G)$.

Proof. (i) Let $G$ be idempotent. Define a relation $r$ on $G$ by $(x, y) \in r$ iff the ideal generated by $x$ is the same as the ideal generated by $y$. Then $r$ is a congruence of $G, G / r$ is a semigroup and every block of $r$ is a quasigroup (see [3]). Consequently, $q=\operatorname{card}(G / r) \geq 2$ and we shall proceed by induction on $q$.

First, let $q=2$. Then $G / r=\{K, H\}$, where $K H \subseteq H$. Put $k=\operatorname{card}(K)$ and $m=\operatorname{card}(H)$. By 4.2, $a s_{1}(G) \geq 2 k m+2 k \geq 2 n$.

Now, let $q \geq 3$ and let $f: G \rightarrow G / r$ denote the natural projection. There is a block $K$ of $r$ such that $f(K)$ is a maximal element of the semilattice $G / r$ and we put $H=G \backslash K, k=\operatorname{card}(K)$ and $m=\operatorname{card}(H)$. Then $H$ is a subgroupoid of $G$ and $a s_{1}(G) \geq 2 m+4 k \geq 2 n$ (take into account that $K L \subseteq L$ for any block $L$ of $r$ ).
(ii) Let $G$ be not idempotent. Then $I=\operatorname{Id}(G)$ is a proper ideal of $G$ and $k \geq 1$, $m \geq 1$, where $k=\operatorname{card}(G \backslash I)$ and $m=\operatorname{card}(I)$. If $I$ is a quasigroup, then $a s_{1}(G) \geq$ $2 k m+2 k \geq 2 n$ by 4.2 (ii). If $I$ is not a quasigroup, then $a s_{1}(G) \geq 2 m+4 k \geq 2 n$ (take into account that $G H \subseteq H, H$ being the intersection of all ideals of $G$ ).
4.4 Lemma. (i) If $Q$ is a finite commutative distributive quasigroup of order $n$, then $n$ is odd, as $s_{1}(Q)=0$ and $a s(Q)=n^{2}$.
(ii) For every odd $n \geq 1$, the exists at least one commutative idempotent medial quasigroup of order $n$.

Proof. Easy.
4.5 Lemma. Let $n \geq 4$ be even. Then there exists a commutative idempotent medial groupoid of order $n$ such that as $s_{1}(G)=2 n$.

Proof. Let $Q$ be a c.i.m. quasigroup of order $n-1$ and let $b \in Q$ and $a \notin Q$. Put $G=Q \cup\{a\}$ and $a a=a, a x=x a=b x$ for every $x \in Q$.
4.6 Lemma. (i) Let $G$ be a non-associative commutative distributive groupoid. Then $n s(G) \geq 18$.
(ii) For every $n \geq 3$, there exists a commutative idempotent medial groupoid $G$ of order $n$ such that $n s(G)=18$.

Proof. (i) We can assume that $G$ is a quasigroup and the result then follows from 4.4.
(ii) Put $G=\{0,1, \ldots, n-1\}$ and define $0 * 0=1 * 2=2 * 1=0,1 * 1=$ $0 * 2=2 * 0=0 * 1=1 * 0=2, i * j=\max (i, j)$ for all $0 \leq i, j \leq n-1$ such that either $3 \leq i$ or $3 \leq j$.

### 4.7 Theorem.

(i) $\operatorname{maxas}\left(\mathscr{C}_{d}, 1\right)=-1=\operatorname{minas}\left(\mathscr{C}_{d}, 1\right)$.
(ii) $\operatorname{maxas}\left(\mathscr{C}_{d}, 2\right)=-1=\operatorname{minas}\left(\mathscr{C}_{d}, 2\right)$.
(iii) $\operatorname{maxas}\left(\mathscr{C}_{d}, n\right)=n^{3}-18$ for every $n \geq 3$.
(iv) $\operatorname{minas}\left(\mathscr{C}_{d}, n\right)=n^{2}$ for every odd $n \geq 3$.
(v) $\operatorname{minas}\left(\mathscr{C}_{d}, n\right)=n^{2}+2 n$ for every even $n \geq 4$.

Proof. Combine the preceeding results (and take into account that every twoelement c. d. groupoid is a semigroup).
4.8 Remark. The same result (4.7) is true for the classes of commutative distributive idempotent groupoids and commutative idempotent medial groupoids.

## IX. 5 Groupoids with small semigroup distance

5.1 Let $\mathscr{S}_{1}$ denote the class of groupoids $G$ such that $\operatorname{sdist}(G)=1$ (see [7, 1.1]).
5.2 Theorem. (i) maxas $\left(\mathscr{S}_{1}, 1\right)=-2=\operatorname{minas}\left(\mathscr{S}_{1}, 1\right)$.
(ii) $\operatorname{maxas}\left(\mathscr{S}_{1}, 2\right)=6$ and $\operatorname{minas}\left(\mathscr{S}_{1}, 2\right)=4$.
(iii) $\operatorname{maxas}\left(\mathscr{S}_{1}, n\right)=n^{3}-1$ for every $n \geq 3$.
(iv) $\operatorname{minas}\left(\mathscr{S}_{1}, n\right)=n^{3}-2 n^{2}+2 n$ for every $n \geq 2$.

Proof. (i) Every one-element groupoid is associative.
(ii) See $[6,3.1]$.
(iii) The result follows from [8, 5.5(ii)] for $n \geq 4$, while the case $n=3$ is settled down by the groupoid $B_{26}$ from [6, 4.2].
(iv) See $[7,12.2]$.

## IX. 6 Quasitrivial groupoids - introduction

6.1 In this section, by a graph we mean a finite non-empty set together with an antireflexive binary relation (possibly empty).

Let $K$ be a graph. Then $V=V(K)$ will denote the set of vertices, $E=E(K)$ that of edges and $v(K)=\operatorname{card}(V)$. Further, for every $a \in V$, let $f(a)=f(K, a)=$ $\operatorname{card}(\{b \in V ;(a, b) \in E,(b, a) \notin E\}), g(a)=\operatorname{card}(\{b \in V ;(a, b) \notin E,(b, a) \in E\}), h(a)=$ $\operatorname{card}(\{b \in V ;(a, b) \in E,(b, a) \in E\})$ and $k(a)=\operatorname{card}(\{b \in V ;(a, b) \notin E,(b, a) \notin E\})$.

Now, we put $w(1)=w(K, 1)=\sum_{a \in V}\left(f(a)^{2}-f(a)\right) / 2, w(2)=\sum\left(g(a)^{2}-g(a)\right) / 2$, $w(3)=\sum\left(h(a)^{2}-h(a)\right) / 2, w(4)=\sum\left(k(a)^{2}-k(a)\right) / 2, w(5)=\sum f(a) g(a), w(6)=$ $\sum f(a) h(a), \quad w(7)=\sum f(a) k(a), \quad w(8)=\sum g(a) h(a), \quad w(9)=\sum g(a) k(a) \quad$ and $w(10)=\sum h(a) k(a)$.
6.2 We shall say that a graph $K$ is commutative (anticommutative) if $h(a)=k(a)=0(f(a)=g(a)=0)$ for every $a \in V$.
6.3 Consider the following three-element graphs $L(1), \ldots, L(16)$, where $V(L(i))=$ $\{1,2,3\}$ and $E(L(1))=\{(1,2),(1,3),(2,3)\}, E(L(2))=\{(1,2),(1,3),(2,3),(3,2)\}$,
$E(L(3))=\{(1,2),(1,3)\}, E(L(4))=\{(1,2),(2,1),(1,3),(2,3)\}, E(L(5))=\{(1,3),(2,3)\}$, $E(L(6))=\{(1,2),(2,1),(1,3),(3,1),(2,3),(3,2)\}, E(L(7))=\emptyset, E(L(8))=\{(1,2),(2,3),(3,1)\}$, $E(L(9))=\{(1,2),(2,3)\}, \quad E(L(10))=\{(1,2),(2,3),(1,3),(3,1)\}, \quad E(L(11))=$ $\{(1,2),(2,3),(3,2)\}, E(L(12))=\{(1,2),(1,3),(3,1)\}, E(L(13))=\{(1,2),(2,1),(2,3),(3,2)\}$, $E(L(14))=\{(1,3),(3,1)\}, E(L(15))=\{(1,2),(2,1),(2,3),(3,2),(3,1)\}, E(L(16))=$ $\{(1,3)\}$.

These sixteen graphs are pair-wise non-isomorphic and every three element graph is isomorphic to one of them.
6.4 Let $K$ be a graph and $1 \leq i \leq 16$. We denote by $q(i)=q(K, i)$ the number of induced subgraphs of $K$ isomorphic to $L(i)$.

Obviously, if $v(K) \geq 3$, then $K$ is commutative (anticommutative) iff $q(2)=$ $\ldots=q(7)=q(9)=\ldots=q(16)=0 \quad(q(1)=\ldots=q(5)=q(8)=\ldots=q(12)=$ $q(15)=q(16)=0)$.

Let $p=\left(p_{1}, \ldots, p_{16}\right) \in \mathbb{Z}^{(16)}, \mathbb{Z}$ being the ring of integers. We put $q(K, p)=$ $\sum_{i=1}^{16} p_{i} q(i)$.
6.5 A groupoid $G$ is said to be quasitrivial if $a b \in\{a, b\}$ for all $a, b \in G$.
6.6 Lemma. Let $G$ be a quasitrivial groupoid. Then:
(i) $\{(a, a, b),(a, b, a),(a, b, b)\} \subseteq A s(G)$ for all $a, b \in G$.
(ii) If $G$ is finite and of order $n$, then $a s(G) \geq 3 n^{2}-2 n$.

Proof. Easy.
6.7 Let $G$ be a finite quasitrivial groupoid. Define a graph $L=L(G)$ as follows: $V(L)=G$ and $(a, b) \in E(L)$ iff $a \neq b$ and $a b=a$.

Let $K$ be a graph. Define a quasitrivial groupoid $H=H(K)$ as follows: The underlying set of $H$ is $V(K)$ and, for all $a, b \in V(K)$, we have $a b=a$ if $(a, b) \in E(K)$ and $a b=b$ in the opposite case.

The maps $G \rightarrow L(G)$ and $K \rightarrow H(K)$ are bijective correspondences between finite quasitrivial groupoids and graphs.
6.8 For $1 \leq i \leq 16$, let $P_{i}=27-a s(H(L(i)))$ and $P=\left(P_{i}\right)$. It is easy to check that $P=(0, \ldots, 0,6,3,3,2,2,2,1,1)$.

For a graph $K$, let $q(K)=q(K, P)$.
6.9 Proposition. Let $G$ be a finite quasitrivial groupoid and $n=\operatorname{card}(G)$. Then $a s(G)=n^{3}-q(L(G))$.

Proof. Combine the preceding observations.

## IX. 7 Quasitrivial groupoids - equalities

7.1 Throughout this section, let $K$ be a graph, $n=v(K)$ and $p=\left(p_{i}\right) \in \mathbb{Z}^{(16)}$.
7.2 The following ten equalities are easy to check:

$$
\begin{aligned}
& w(1)=q(1)+q(2)+q(3), \\
& w(2)=q(1)+q(4)+q(5), \\
& w(3)=3 q(6)+q(13)+q(15), \\
& w(4)=3 q(7)+q(14)+q(16), \\
& w(5)=q(1)+3 q(8)+q(9)+q(10), \\
& w(6)=2 q(4)+q(10)+q(12)+q(15), \\
& w(7)=2 q(5)+q(9)+q(11)+q(16), \\
& w(8)=2 q(2)+q(10)+q(11)+q(15), \\
& w(9)=2 q(3)+q(9)+q(12)+q(16), \\
& w(10)=q(11)+q(12)+q(13)+q(14) .
\end{aligned}
$$

Now, after easy combination, we get:

$$
\begin{equation*}
2 w(1)-2 w(2)+w(6)+w(7)-w(8)-w(9)=0 . \tag{1}
\end{equation*}
$$

Moreover,

$$
\begin{aligned}
q(1) & =w(1)-w(8) / 2-w(9) / 2+q(9) / 2+q(10) / 2+q(11) / 2+q(12) / 2+ \\
q(15) / 2 & +q(16) / 2, \\
q(2) & =w(8) / 2-q(10) / 2-q(11) / 2-q(15) / 2, \\
q(3) & =w(9) / 2-q(9) / 2-q(12) / 2-q(16) / 2, \\
q(4) & =w(6) / 2-q(10) / 2+q(12) / 2-q(15) / 2, \\
q(5) & =w(7) / 2-q(9) / 2-q(11) / 2-q(16) / 2, \\
q(6) & =w(3) / 2-q(13) / 3-q(15) / 3, \\
q(7) & =w(4) / 3-w(10) / 6+q(11) / 6+q(12) / 6+q(13) / 3-q(16) / 3, \\
q(8) & =-w(1) / 3+w(5) / 3+w(8) / 6+w(9) / 6-q(9) / 2-q(10) / 2-q(11) / 6- \\
q(12) / 6 & -q(15) / 6-q(16) / 6, \\
q(14) & =w(10) / 2-q(11) / 2-q(12) / 2-q(13) .
\end{aligned}
$$

From these equalities, we derive easily:
(2) $\quad q(K, p)=w(1)\left(p_{1}-p_{8} / 3\right)$

$$
\begin{aligned}
& +w(3) p_{6} / 3+w(4) p_{7} / 3+w(5) p_{8} / 3+w(6) p_{4} / 2+w(7) p_{5} / 2 \\
& +w(8)\left(-p_{1} / 2+p_{2} / 2+p_{8} / 6\right) \\
& +w(9)\left(-p_{1} / 2+p_{3} / 2+p_{8} / 6\right) \\
& +w(10)\left(-p_{7} / 6+p_{14} / 2\right) \\
& +q(9)\left(p_{1} / 2-p_{3} / 2-p_{5} / 2-p_{8} / 2+p_{9}\right) \\
& +q(10)\left(p_{1} / 2-p_{2} / 2-p_{4} / 2-p_{8} / 2+p_{10}\right) \\
& +q(11)\left(p_{1} / 2-p_{2} / 2-p_{5} / 2+p_{7} / 6+p_{11}-p_{14} / 2\right) \\
& +q(12)\left(p_{1} / 2-p_{3} / 2-p_{4} / 2+p_{7} / 6+p_{12}-p_{14} / 2\right) \\
& +q(13)\left(-p_{6} / 3+p_{7} / 3-p_{8} / 6+p_{13}-p_{14}\right) \\
& +q(15)\left(p_{1} / 2-p_{2} / 2-p_{4} / 2-p_{6} / 3-p_{8} / 6+p_{15}\right) \\
& +q(16)\left(p_{1} / 2-p_{3} / 2-p_{5} / 2-p_{7} / 3-p_{8} / 6+p_{16}\right) .
\end{aligned}
$$

7.3 Proposition. (i) $q(K)=-2 w(1)+2 w(5)+w(8)+w(9)+w(10)$.
(ii) $q(K)=-w(1)-q(2)+2 w(5)+w(6) / 2+w(7) / 2+w(8) / 2+w(9) / 2+w(10)$.
(iii) $q(K)=-2 w(1)+2 w(5)$ if $K$ is commutative.
(iv) $q(K)=w(10)$ if $K$ is anticommutative.

Proof. Use (1) and (2).
7.4 Proposition. (i) $q(K) \leq\left(n^{3}-n\right) / 4$.
(ii) $q(K) \leq\left(n^{3}-4 n\right) / 4$ if $n$ is even.

Proof. For $a \in V$, let $r(a)=\left((f(a)+g(a))^{2} / 2\right)-2 f(a) g(a), s(a)=((h(a)+$ $k(a))^{2} / 2-2 h(a) k(a) \quad$ and $\quad t(a)=f(a)+g(a)+\left((f(a)+g(a)+h(a))^{2} / 2\right)-$ $(f(a)-g(a))^{2}-r(a)-s(a)$. Then $t(a) / 2=2 f(a) g(a)+h(a) k(a)+(f(a) h(a) / 2+$ $(f(a) k(a) / 2)+(g(a) h(a) / 2)+(g(a) k(a)) / 2-\left(\left(f(a)^{2}-f(a)\right) / 2\right)-\left(\left(g(a)^{2}-g(a)\right) / 2\right)$, and hence by 7.3 (iii), $q(K)=\sum_{u \in V} t(a) / 2$. On the other hand, $f(a)+g(a) \leqq n-1$, $f(a)+g(a)+h(a)+k(a)=n-1,0 \leqq(f(a)-g(a))^{2}, 0 \leqq r(a), 0 \leqq s(a)$ and $t(a) \leqq\left(n^{2}-1\right) / 2$. Consequently, $q(K) \leqq\left(n^{3}-n\right) / 4$.

Now, suppose that $n$ is even. If $f(a)+g(a)$ is even, then $h(a)+k(a)$ is odd, $h(a) \neq k(a)$ and $1 / 2 \leqq s(a)$. Moreover, $f(a)+g(a) \leqq n-1, \quad$ and so $t(a) \leqq\left(n^{2}-4\right) / 2$. If $f(a)+g(a)$ is odd, hen $1 / 2 \leqq r(a), 1 \leqq(f(a)-g(a))^{2}$ and, again, $t(a) \leqq\left(n^{2}-4\right) / 2$.
7.5 Proposition. Let $K$ be anticommutative. Then:
(i) $q(K) \leqq\left(n^{3}-2 n^{2}+n\right) / 4$.
(ii) $q(K) \leqq\left(n^{3}-2 n^{2}+n-4\right) / 4$ if $n=4 m+3$ for some $m \leqq 0$.
(iii) $q(K) \leqq\left(n^{3}-2 n^{2}\right) / 4$ if $n$ is even.

Proof. By 7.3(iv), $q(K)=\sum h(a) k(a)$. Moreover, $q(K)$ is even and the rest is clear.
7.6 Proposition. Assume that $q(K) \neq 0$. Then:
(i) $1 \leqq q(K)$.
(ii) $6 \leqq q(K)$ if $K$ is communicative.
(iii) $2 n-4 \leqq q(K)$ if $K$ is anticommunicative.

Proof. Easy.

## IX. 8 Quasitrivial groupoids - examples

8.1 Example. Let $G=G(+)$ be a finite abelian group of order $n$ and let $M$ be a subset of $G$ such that $0 \notin M$. Put $m=\operatorname{card}(M)$ and $k=\operatorname{card}(\{a \in M ;-a \in M\})$. Now, we define a graph $\mathscr{J}=J(G, M)$ by $V(J)=G$ and $(a, b) \in E(J)$ iff $a-b \in M$. Then $q(J)=n^{2} m-n m^{2}-n k$ and we have the following particular cases:
(1) $n \leqq 3$ is odd, $G=\mathbb{Z}_{n}(+)=\{0,1, \ldots, n-1\}$ and $M=\{1,2, \ldots,(n-1) / 2\}$. Then $J$ is commutative and $q(J)=\left(n^{3}-n\right) / 4$.
(2) $n \geqq 4$ is even, $G=\mathbb{Z}_{n}(+)$ and $M=\{1,2, \ldots,(n-2) / 2\}$. Then $J$ is not commutative and $q(J)=\left(n^{3}-4 n\right) / 4$.
(3) $n \geqq 5$ is odd, $n=4 r+1, G=\mathbb{Z}_{n}(+)$ and $M=\{1,2, \ldots, r, n-r$, $n-r+1, \ldots, n-2, n-1\}$. Then $J$ is anticommutative and $q(J)=$ $\left(n^{3}-2 n^{2}+n\right) / 4$.
(4) $n \geqq 6$ is even, $n=4 r+2, G=\mathbb{Z}_{n}(+)$ and $M=\{1,2, \ldots, r, n-r$, $n-r+1, \ldots, n-2, n-1\}$. Then $J$ is commutative and $q(J)=$ $\left(n^{3}-2 n^{2}\right) / 4$
(5) $n \leqq 4$ is even, $n=4 r, G=\mathbb{Z}_{n}(+)$ and $M=\{1,2, \ldots, r, n-r, n-r+1$, $\ldots, n-2, n-1\}$. Then $J$ is anticommutative and $q(J)=\left(n^{3}-2 n^{2}\right) / 4$.
8.2 Example. Let $n \geqq 4$ be even and $M=\{1,2, \ldots,(n-2) / 2\}$. Define a graph $I=I(n)$ by $V(I)=\mathbb{Z}_{n}$ and $(a, b) \in E(I)$, iff either $a-b \in M$ or $a \in M \cup\{0\}$ and $a-b=n / 2$. Then $I$ is commutative and $g(I)=\left(n^{3}-4 n\right) / 4$.
8.3 Example. Let $n \geqq 7$ be odd, $n=4 r+3, M=\{1,2, \ldots, r, n-r$, $n-r+1, \ldots, n-2, n-1\}$. Define a graph $R=R(n)$ by $V(R)=\mathbb{Z}_{n}$ and $(a, b) \in E(R)$ iff either $a-b \in M$ or $2 r+2 \leqq a \leqq n-1$ and $a-b=2 r+1$ or $1 \leqq a \leqq 2 r+1$ and $a-b=2 r+2$. Then $R$ is anticommutative and $q(R)=\left(n^{3}-2 n^{2}+n-4\right) / 2$.
8.4 Example. Let $n \geqq 3$. Define a graph $S=S(n)$ by $V(S)=\mathbb{Z}_{n}$ and $(a$, $b) \in E(S)$ iff either $3 \leqq a$ and $b \leqq 2$ or $a=0$ and $b=1$. Then $q(S)=1$.
8.5 Example. Let $n \geqq 3$. Define a graph $T=T(n)$ by $V(T)=\mathbb{Z}_{n}$ and $(a$, $b) \in E(T)$ iff either $b<a$ and $3 \leqq a$ or $a=0, b=1$ or $a=1, b=2$ or $a=2$, $b=0$. Then $T$ is commutative and $q(T)=6$.
8.6 Example. Let $n \geqq 3$. Define a graph $Q=Q(n)$ by $V(Q)=\mathbb{Z}_{n}$ and $(a$, $b) \in E(Q)$ iff either $a=0, b=1$ or $a=1, b=0$. Then $Q$ is anticommutative and $q(Q)=2 n-4$.

## IX. 9 Quasitrivial groupoids - summary

9.1 Let $\mathscr{Q}\left(\mathscr{Q}_{c}, \mathscr{Q}_{a}\right)$ denote the class of (commutative, anticommutative) quasitrivial groupoids).
9.2 Theorem. (i) maxas $(\mathscr{Q}, 1)=\operatorname{maxas}\left(\mathscr{Q}_{c}, 1\right)=\operatorname{maxas}\left(\mathscr{Q}_{u}, 1\right)=\operatorname{minas}(\mathscr{Q}, 1)=$ $\operatorname{minas}\left(\mathscr{Q}_{c}, 1\right)=\operatorname{minas}\left(\mathscr{Q}_{u}, 1\right)=-1$.
(ii) $\operatorname{maxas}(\mathcal{Q}, 2)=\operatorname{maxas}\left(\mathcal{Q}_{c}, 2\right)=\operatorname{maxas}\left(\mathcal{Q}_{\iota}, 2\right)=\operatorname{minas}(\mathcal{Q}, 1)=$ $\operatorname{minas}\left(\mathscr{Q}_{c}, 2\right)=\operatorname{minas}\left(\mathscr{Q}_{u}, 2\right)=-1$.
(iii) $\operatorname{maxas}(\mathscr{2}, n)=n^{3}-1$ for every $n \geqq 3$.
(iv) $\operatorname{maxas}\left(\mathscr{L}_{c}, n\right)=n^{3}-6$ for every $n \geqq 3$.
(v) $\operatorname{maxas}\left(\mathscr{2}_{a}, n\right)=n^{3}-2 n+4$ for every $n \geqq 3$.
(vi) $\operatorname{minas}(\mathscr{2}, n)=\operatorname{minas}\left(\mathscr{D}_{c}, n\right)=\left(3 n^{3}+n\right) / 4$ for every odd $n \geqq 3$.
(vii) $\operatorname{minas}(\mathscr{Q}, n)=\operatorname{minas}\left(\mathscr{Q}_{c}, n\right)=\left(3 n^{3}+4 n\right) / 4$ for every even $n \geqq 4$.
(viii) minas $\left(\mathscr{Q}_{a}, n\right)=\left(3 n^{3}+2 n^{2}-n\right) / 4$ for every odd $n=4 m+1, m \geqq 1$.
(ix) $\operatorname{minas}\left(\mathscr{Q}_{a}, n\right)=\left(3 n^{3}+2 n^{2}-n+4\right) / 4$ for every odd $n=4 m+3, m \geqq 0$.
( $x$ ) minas $\left(\mathscr{2}_{u}, n\right)=\left(3 n^{3}+2 n^{2}\right) / 4$ for every even $n \geqq 4$.
Proof. Combine 6.9, 7.3, 7.4, 7.5, 7.6, 8.1, 8.2, 8.3, 8.4, 8.5 and 8.6.

## IX. 10 One special class of commutative groupoids

10.1 For a set $S$, let $R(S)$ denote the set of ordered triples $(a, b, c)$ of elements from $S$ such that either $a=b \neq c$ or $a \neq b=c$. Now, let $\mathscr{C}_{1}$ denote the class of commutative groupoids $G$ such that $N s(G)=R(G)$. Further, let $\mathscr{C}_{2}$ be the class of commutative groupoids $G$ such that $N s(G) \subseteq R(G)$.
10.2 Example. Let $G(+)$ be a abelian group and $0 \neq w \in G$. We shall define a groupoid $G(*)=G[+, w]$ as follows: $0 * 0=w, 0 * a=0=a * 0$ and $a * b=a+b$ for all $a, b \in G \backslash\{0\}$. Then $G(*)$ is commutative and a tedious but easy checking shows that $N s(G(*))=\{(a,-a, b) ; a, b \in G, a \neq b) \cup\{(a,-b, b)$; $a, b \in G, a \neq b\}$. In particular, $G(*) \in \mathscr{C}_{1}$ if and only if the group $G(+)$ is 2-elementary.
10.3 Proposition. Let $G(+)$ be a (non-trivial) 2-elementary abelian group and $0 \neq w \in G$. Then:
(i) $G[+, w] \in \mathscr{C}_{1}$.
(ii) If $H(+)$ is a 2-elementary abelian group and $0 \neq v \in H$, then the groupoids $G[+, w]$ and $H[+, w]$ are isomorphic iff $\operatorname{card}(G)=\operatorname{card}(H)$.
Proof. (i) See 10.2.
(ii) If $\operatorname{card}(G)=\operatorname{card}(H)$, the there is an isomorphism $f: G(+) \rightarrow H(+)$ such that $f(w)=v$.
10.4 For every cardinal $\mathfrak{a} \geqq 1$ denote by $R_{\mathfrak{a}}$ the groupoid $\mathbb{Z}_{2}^{\mathfrak{a}}[+,(1,0,0, \ldots)]$ (see 10.2). Then $R_{\mathrm{a}} \in \mathscr{C}_{1}$ and $\operatorname{card}\left(R_{m}\right)=2^{m}$, provided that $\mathfrak{a}=m$ is finite.
10.5 Let $G \in \mathscr{C}_{1}$ be a non-trivial groupoid.
10.5.1 Lemma. If $a, b, c \in G$ are such that $a \neq b \neq c, a \neq c$ and $a=b c$, then $b=a c$ and $c=a b$.

Proof. If $c \neq a b$, then $a a . b=(b c . a) b=(b . c a) b=b(c a . b)=b(c . a b)=$ $b c . a b=a . a b$, a contradiction. Thus $c=a b$ and, similarly, $b=a c$.
10.5.2 Lemma. If $a, b, c \in G$ are such that $a \neq b \neq c, 0 \neq c$ and $a=b c$, then $a^{2}=b^{2}=c^{2}$ and $a^{2} \notin\{a, b, c\}$.

Proof. We have $c^{2}=a b . c=a . b c=a^{2}$ by 10.5.1. Similarly, $b^{2}=a^{2}$. Finally, if $a^{2}=a$, then $a \cdot b b=a \cdot a a=a=c b=a b \cdot b$, a contradiction. The rest is clear.
10.5.3 Lemma. If $a \in G$, then either $a=a^{2}$ or $a=a^{3}$ or $a^{2}=a^{3}$.

Proof. We have $a^{3}=a . a^{2}$ and, if the elements $a, a^{2}, a^{3}$ are pair-wise different, then $a^{2} \notin\left\{a, a^{2}, a^{3}\right\}$ by 10.5.2, a contradiction.
10.5.4 Lemma. If $a, b, c \in G$ are such that $a \neq b \neq c, a \neq c$ and $a=b c$, then $a \cdot a^{2}=b a^{2}=c a^{2}=a^{2}=b^{2}=c^{2}$.

Proof. We have $a \neq a^{2}$ by 10.5.2. Further, if $a=a^{3}$, then $a . b b=a$. $a a=$ $a^{3}=a=c b=a b . b$, a contradiction. Thus $a^{2}=a^{3}$ by 10.5.3. Similarly, $b a^{2}=b^{3}=b^{2}$ and $c a^{2}=c^{2}$.

Now, define a relation $<$ on $G$ by $a<b$ iff $a \neq b$ and $a b=b$.
If $a<b$ and $b<a$, then $b=a b=b a=a$, a contradiction.
If $a<b<c$, then $a \neq c$ and $a c=a . b c=b c=c$. Hence $a<c$.
10.5.5 Lemma. Let $a, b, c, d \in G$ be such that $a \neq b \neq c, a \neq c$ and $a=b c$.
(i) If $d<a$, then $d<b$ and $d<c$.
(ii) If $a<d$, then $b<d$ and $c<d$.

Proof. (i) We have $d b=d$. $a c=d a . c=a c=b$. If $d=b$, then $a=d a=$ $b a=c$, a contradiction. Thus $d \neq b$ and $d<b$. Similarly, $d<c$.
(ii) First, $d \neq\{a, b, c\}$ (by 10.5.1), $d b=d a . b=d . a b=d c$ and $d b . c=$ $d$. $b c=d$. If $d b=c$, then $d c=c, d<c$, and hence $a<d<c$ implies $a<c$ and $a c=c$. But $a c=b \neq c$ by 10.5 .1. Consequently, $d b=d c \neq c$. If $d b \neq d$, then the elements $d, c, d c$ are pair-wise different and now $a<d$ implies $a<c$ (by(i) for the triple $d, c, d c$ ), a contradiction. Thus $d b=d$ and $b<d$. Quite similarly, $c<d$.

Now, define a relation $r$ on $G$ by $(a, b) \in r$ iff $a \neq b$ and $a \neq a b \neq b$, and denote by $s$ the smallest equivalence (on $G$ ) containing $r$. Let $E=G / s$ be the corresponding factorset and let $p: G \rightarrow E$ denote the natural projection.
10.5.6 Lemma. Let $a, b, d \in G$ be such that $(a, b) \in s$. Then:
(i) $a<d$ iff $b<d$.
(ii) $d<a$ iff $d<b$.

Proof. We can assume that $a \neq b$. Then there are $a_{1}, \ldots, a_{n} \in G, n \geqq 2$, such that $a_{1}=a, a_{n}=b$ and $\left(a_{1}, a_{2}\right) \in r,\left(a_{2}, a_{3}\right) \in r, \ldots,\left(a_{n-1}, a_{n}\right) \in r$. Now, itt is clear that we can restrict ourselves to the case $n=2$ (i.e., $(a, b) \in r$ ) and the result then follows from 10.5.5.

Taking into account 10.5.6, we can define a relation $\leqq$ on $E$ by $x \leqq y$ iff either $x=y$ or $x=p(a), y=p(b)$ for some, $a, b \in G$ such that $a<b$.
10.5.7 Lemma. The relation $\leq$ is a linear ordering of the set $E$.

Proof. Clearly, $\leq$ is an ordering. On the other hand, if $a, b \in G$, then exactly one of the following cases takes place: $a<b ; b<a ;(a, b) \in r$.
10.5.8 Lemma. (i) The linearly ordered set $(E, \leqq)$ possesses a greatest element.
(ii) If $Q \in E$ is the greatest element, then $Q=\{q\}$ is a one-element set.

Proof. (i) Let $a, b \in G$ be such that $a<b$ and $a^{2}<b$. Then $b$. $a^{2}=b=b a=$ $b a . a$, a contradiction.
(ii) Suppose, on the contrary, that $\operatorname{card}(Q) \geqq 2$. Then there are $a, b \in Q$ such that $(a, b) \in r$. Now, $a, b, a b$ are pair-wise different elements and, by 10.5.1 and 10.5.4, we have $a \neq a^{2}$ and $a^{2}=a . a^{2}$. Consequently, $a<a^{2}$ and, since $Q$ is maximal in $\left(E, \leqq\right.$ ), we have $a^{2} \in Q$. However, then $a<a^{2}$ implies $a^{2}<a^{2}$ (by 10.5.6.(i)), a contradiction.
10.5.9 Lemma. $a q=q=q a$ for every $a \in G \backslash\{q\}$.
(ii) $a^{2}=q$ for every $\left.a \in G \backslash q\right\}$.
(iii) $q^{2} \neq q$.

Proof. (i) This follows easily from 10.5.8.
(ii) By (i), $q=q a=q a \cdot a \neq q \cdot a^{2}$, and hence $a^{2}=q$ (again by (i)).
(iii) If $a \in G \backslash\{q\}$, then, by (i) and (ii) $q^{2}=a^{2} \cdot q \neq a \cdot a q=q$.
10.5.10 Lemma. (i) The equivalence s possesses just two blocks.
(ii) If $a, b \in G$ are such that $a \neq q \neq b$ and $a \neq b$, then $a b \notin\{a, b, q\}$.

Proof. (i) Let, on the contrary, $a, b \in G$ be such that $a<b<q$. Then (by 10.5.9), $a . b b=a q=q=b b=a b . b$, a contradiction.
(ii) If $a<b$, then $b \in Q$, and so $b=q$. Thus $a b \neq b$ and, similarly, $a b \neq a$. Finally, if $a b=q$, then $a=b q=b$ (10.5.1, 10.5.9(i)), a contradiction.

Now, put $0=q$ and define a binary operation + on $G$ by $a+0=a=0+a$ for every $a \in G$ and $b+c=b c$ for all $b, c \in G \backslash\{0\}$.
10.5.11 Lemma. $G(+)$ is a 2-elementary abelian group.

Proof. Clearly, $G(+)$ is a commutative groupoid with a neutral element 0. Moreover, by 10.5 .9(ii), we have $a+a=0$ for every $a \in G$. It remains to show that $G(+)$ is associative.

Let $a, b, c \in G, d=a+(b+c)$ and $e=(a+b)+c$. We are going to show that $d=e$ and, to that purpose, we can certainly assume tat $a \neq 0 \neq b$ and $c \neq 0$.

If $a=b \neq c$, then the elements $a, c, a c$ are pair-wise different and we have $e=c=a . a c=d$ (by 10.5.1).

Similarly, $d=e$ if $a \neq b=c$ and, trivially, $d=e$ if $a=c$.
Assume, finally, that the elements $a, b, c$ are pair-wise different.

If $\quad c=a b, \quad$ then $\quad b+c=b+a b=b . a b=a, \quad d=a+a=0 \quad$ and $e=a b+a b=0$.

If $c \neq a b$, then $d=a . b c=a b . c=e$.
10.5.12 Lemma. $G=G\left[+, q^{2}\right]$.

Proof. Easy (use the preceding lemmas).
10.6 Theorem. (i) For every cardinal number $\mathfrak{a} \geqq 1$, the groupoid $R_{\mathfrak{a}}$ belongs to $\mathscr{C}_{1}$. Moreover, card $\left(R_{\mathfrak{a}}\right)=\mathfrak{a}$ for $\mathfrak{a} \geqq \aleph_{0}$ and $\operatorname{card}\left(R_{\mathfrak{a}}\right)=2^{m}$ for $\mathfrak{a}=m$ finite.
(ii) If $G \in \mathscr{C}$, is finite and non-trivial, then $\operatorname{card}(G)=2^{m}$ for some $m \geqq 1$ and $G$ is isomorphic to $R_{m}$.
(iii) If $G \in \mathscr{C}_{1}$ is infinite, then $G$ is isomorphic to $R_{a}$, where $\mathfrak{a}=\operatorname{card}(G)$.

Proof. See 10.3, 10.4 and 10.5.

### 10.7 Example.

| $R_{2}$ | 0 | 1 | 2 | 3 |
| :---: | :--- | :--- | :--- | :--- |
| 0 | 1 | 0 | 0 | 0 |
| 1 | 0 | 0 | 3 | 2 |
| 2 | 0 | 3 | 0 | 1 |
| 3 | 0 | 2 | 1 | 0 |

10.8 Remark. (i) It is very easy to check that maxas $\left(\mathscr{C}_{2}, 1\right)=-1=\operatorname{minas}\left(\mathscr{C}_{2}, 1\right)$ and $\operatorname{maxas}\left(\mathscr{C}_{2}, 2\right)=4=\operatorname{minas}\left(\mathscr{C}_{2}, 2\right)$.
(ii) $\operatorname{maxas}\left(\mathscr{C}_{2}, n\right)=n^{3}-2$ for every $n \geqq 3$ (see 3.3 and its proof).
(iii) It follows easily from 10.6 that minas $\left(\mathscr{C}_{2}, n\right)=n^{3}-2 n^{2}+2 n$ for every $n=2^{m}, m \geqq 1$ (cf. 5.2).
(iv) Let $n=2^{m}+k$, where $m \geqq 1$ and $1 \leqq k<2^{m}$. Then $n^{3}-2 n^{2}+2 n+$ $2 \leqq \operatorname{minas}\left(\mathscr{C}_{2}, n\right) \leqq n^{3}-2 n^{2}+2 n+4 n k-2 k^{2}-2 k$. In particular, if $k=1$, then $n^{3}-2 n^{2}+2 n+2 \leqq \operatorname{minas}\left(\mathscr{C}_{2}, n\right) \leqq n^{3}-2 n^{2}+6 n-4$.

## IX. 11 Comments and open problems

11.1 In this part, we are summarizing the results from [1], [4] and [5].
11.2 Find the numbers $\operatorname{maxas}(\mathscr{A}, n)$ and $\operatorname{minas}(\mathscr{A}, n)$ for the following classes $\mathscr{A}$ of groupoids:
(i) Idempotent groupoids;
(ii) Commutative idempotent groupoids;
(iii) Groupoids with a neutral element;
(iv) Diagonally non-associative groupoids (see [2]).
11.3 Find the numbers $\operatorname{minas}\left(\mathscr{C}_{2}, n\right)$ (see 10.8(iii), (iv)).

## References

[1] Drápal A., On a class of commutative groupoids determined by their associativity triples, Comment. Math. Univ. Carolinae 34 (1993), 199-201.
[2] Drápal A. and Kepka T., Groupoids and the associative law VIII. (Diagonally non-associative groupoids), Acta Univ. Carol. Math. Phys. 38/1 (1997), 23-37.
[3] Kepka T., Commutative distributive groupoids, Acta Univ. Carol. Math. Phys. 19/2 (1978), 45-58.
[4] Kepka T., Notes on associative triples of elements in commutative groupoids, Acta Univ. Carol. Math. Phys. 22/2 (1981), 39-47.
[5] Kepka T. and Kratochvíl J., Graphs and associative triples in quasitrivial groupoids, Comment. Math. Univ. Carolinae 25 (1984), 679-687.
[6] Kepka T. and Trch M., Groupoids and the associative law I. (Associative triples), Acta Univ. Carol. math. Phys. 33/1 (1992), 69-86.
[7] Kepka T. and Trch M., Groupoids and the associative law II. (Groupoids with small semigroup distance), Acta Univ. Carol. Math. Phys. 34/1 (1993), 67-83.
[8] Kepka T. and Trch M., Groupoids and the associative law III. (Szász-Hájek groupoids), Acta Univ. Carol. Math. Phys. 36/1 (1995), 17-30.


[^0]:    *) Department of Mathematics, Charles University, 18600 Praha 8, Sokolovská 83, Czech Republic

