Acta Universitatis Carolinae. Mathematica et Physica

Milan Trch
Groupoids and the associative law. VII. Semigroup distance of SH-groupoids

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 47 (2006), No. 1, 57--63
Persistent URL: http://dml.cz/dmlcz/142753

Terms of use:

© Univerzita Karlova v Praze, 2006

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

Groupoids and the Associative Law VII. (Semigroup Distance of SH-Groupoids)

MILAN TRCH

Praha

Received 4. October 2005

Szász-Hájek groupoids (shortly SH-groupoids) are those groupoids that contain just one non-associative (ordered) triple of elements. These groupoids were studied by G. Szász (see [10] and [11]), P. Hájek (see [2] and [3]) and later in [6], [7], [8] and [9]. The present short note is concerned with semigroup distances of SH-groupoids of type (a, a, a).

1. Preliminaries

A groupoid G is called an SH-groupoid if the set $\left\{(a, b, c) \in G^{(3)} \mid a \cdot b c \neq a b \cdot c\right\}$ of non-associative triples contains just one element. Let G be an SH-groupoid and let (a, b, c) be the only non-associative triple. We shall say that G is of type:
$-(a, a, a)$ if $a=b=c$;

- (a, a, b) if $a=b \neq c$;
- (a, b, a) if $a=c \neq b$;
- (a, b, b) if $a \neq b=c$;
- (a, b, c) if $a \neq b \neq c \neq a ;$

Furthermore, G will be called minimal if G is generated by the set $\{a, b, c\}$. The following assertions are easy:
1.1 Proposition. Let G be an SH-groupoids and let $a, b, c \in G$ be such that $a \cdot b c \neq a b \cdot c$. Then:
(i) G is of exactly one of the types $(a, a, a),(a, a, b),(a, b, a),(a, b, b)$ and (a, b, c).

Department of Mathematics, ČZU, Kamýcká 129, 16521 Praha 6-Suchdol, Czech Republic
2000 Mathematics Subject Classification. 20N05.
Key words and phrases. Groupoid, non-associative triple, semigroup distance.
The author was supported the Grant Agency of Czech Republic, grant \# GAČR-201/05/0002.
(ii) If H is a subgroupoid of G, then either $\{a, b, c\} \subseteq H$ and H is an SH-groupoid (of the same type as G) or $\{a, b, c\} \nsubseteq H$ and H is a semigroup.
(iii) The subgroupoid $\langle a, b, c\rangle_{G}$ is a minimal SH -groupoid.
(iv) If $u, v \in G$ are such that $u v \in\{a, b, c\}$, then $u v \in\{u, v\}$.

Let $G(*)$ and $G(0)$ be two groupoids having the same underlying set. We put $\left.\operatorname{dist}(G(*), G(\circ))=\operatorname{card}\left\{(u, v) \in G^{(2)} \mid u * v \neq u \circ v\right\}\right)$.

Let G be an SH-groupoid. Then $\operatorname{sdist}(G)$ denotes the minimum of $\operatorname{dist}(G, G(*))$, $G(*)$ running through all semigroups with the same underlying set as G.

2. Semigroup distances of SH-groupoids of type ($a, a, a)$

2.1 Construction.

Let K denote the set of integers $k \geq 4, M$ be a four-element set $\{a, b, c, d\}$ such that $M \cap K=\emptyset$ and let $H=K \cup M$. Define an operation \circ on H in the following way: $a \circ a=b, a \circ b=c, b \circ a=d, a \circ c=c \circ a=a \circ d=$ $=d \circ a=b \circ b=4, \quad b \circ c=c \circ b=b \circ d=d \circ b=5, \quad c \circ c=c \circ d=$ $=d \circ c=d \circ d=6$ and $a \circ k=k \circ a=k+1, \quad b \circ k=k \circ b=k+2$, $c \circ k=k \circ c=d \circ k=k \circ d=k+3, \quad k \circ m=m \circ k=m+k \quad$ for \quad all $m, k \in K$. Furthermore, define a mapping σ of H onto the set of positive integers by $\sigma(a)=1, \sigma(b)=2, \sigma(c)=\sigma(d)=3$ and $\sigma(k)=k$ for every $k \in K$.
2.1.1 Lemma. $\sigma(x \circ y)=\sigma(x)+\sigma(x)+\sigma(y)$ for all $x, y \in H$.

Proof. Easy to check.
2.1.2 Lemma. Let $(x, y, z) \in H^{(3)}$ be such that $\sigma(x)+\sigma(y)+\sigma(z) \geq 4$. Then $x \circ(y \circ z)=(x \circ y) \circ z$.

Proof. Easy to check.
2.1.3 Lema. Let $(x, y, z) \in H^{(3)}$ be such that $\sigma(x)+\sigma(y)+\sigma(z)=3$. Then $x=y=z=a$ and $x \circ(y \circ z) \neq(x \circ y) \circ z$.

Proof. Easy to check.
2.1.4 Lema. $H(\bigcirc)$ is a minimal $S H$-groupoid of type (a,a,a) (i.e., $H(\bigcirc)$ is generated by the one-element set $\{a\}$).

Proof. Easy to check (the structure of SH-groupoids of type (a, a, a) is described in [6]).
2.1.5 Lemma. $(a \circ a) \circ(a \circ a)=a \circ((a \circ a) \circ a)$.

Proof. Easy to check.
2.1.6 Lemma. $\operatorname{sdist}(H(O))=1$.

Proof. Put $b \nabla a=c$ and $x \nabla y=x \circ y$ whenever $(x, y) \neq(b, a)$. It is easy to check that $H(\nabla)$ is a groupoid satisfying the identity $\sigma(x \nabla y)=\sigma(x)+\sigma(y)$ for all $x, y \in H$ and all triples $(x, y, z) \in H^{(3)}$ are associative. Thus $H(\nabla)$ is a semigroup and $\operatorname{sdist}(H(O))=1$.

2.2 Construction.

Consider the groupoid $H(\circ)$ constructed in 2.1 and let a set $A=\{p, v, w, r, s, t\}$ be disjoint with the set H. Put $E=H \cup A$ and consider the mapping σ from 2.1. Further, put $\sigma(p)=1, \sigma(v)=\sigma(w)=2, \sigma(r)=\sigma(s)=\sigma(t)=3$. Now, define a binary operation on E in the following way:
$-x y=x \circ y$ for all $x, y \in H$;
$-a p=b, p a=v, p p=w ;$
$-a w=b p=c, a v=d, p b=v a=v p=r, p v=w a=s, p w=w p=t ;$
$-a r=a s=a t=p c=p d=p r=p s=p t=b v=b w=v b=v v=v w=$ $=w b=w v=w w=c p=d p=r a=r p=s a=s p=t a=t p=4 ;$
$-k p=p k=k+1$ for each $k \in K$;
$-v k=k v=w k=k w=k+2$ for each $k \in K$;
$-d k=k d=f k=k f=g k=k g=k+3$ for each $k \in K$.
Then E is a groupoid containing $H(\circ)$ as a proper subgroupoid. Moreover, every triple $(x, y, z) \in E^{(3)}$ such that $\sigma(x)+\sigma(y)+\sigma(z) \geq 4$ is associative. The triple (a, a, a) is non-associative and it is easy to check that the triples $(a, a, p),(a, p, a)$, $(p, a, a),(a, p, p),(p, a, p),(p, p, a)$ and (p, p, p) are associative. The groupid E is an SH-groupoid of the type (a, a, a) and it is generated by the two-element set $\{a, p\}$.
2.2.1 Lemma. $\operatorname{sdist}(E)>1$.

Proof. Suppose that the opposite case takes place. Then there exists at least one semigroup $(E, *)$ having the same underlying set E such that $\operatorname{dist}(E, E(*))=1$. Of course, the equality $a *(a * a)=(a * a) * a$ is true. Therefore either $a a \neq a * a$ or $b a \neq b * a$ or $a b \neq a * b$.

If $a a \neq a * a=z$, then we have $x z=x * z=x *(a * a)=(x * a) * a=$ $=x a * a=(x a) a$ for every $a \neq x \in K$. From this it follows immediately that $\sigma(z)=2$ and therefore $z \in\{v, w\}$. But for $z=v$ we obtain $d=a v=a * v=$ $=a * a p=a *(a * p)=(a * a) * p=v * p=v p=r$, a contradiction. Similarly, for $z=w$ we have $c=a w=a * w=a * p a=a *(p * a)=(a * p) * a=$ $=a p * a=v p=r$, a contradiction again.

If $b a \neq b * a=z$, then we have $z=b * a=(a * a) * a=a *(a * a)=a * a a=$ $=a * a b=c$. But we have $d=a v=a * v=a * p a=a *(p * a)=(a * p) * a=$ $=a p * a=b * a=c$, a contradiction. The case $a b \neq a * b$ is similar. Thus $\operatorname{sdist}(E)>1$.
2.2.2 Lemma. $\operatorname{sdist}(E)=2$.

Proof. Define on E a new binary operation * such that $c=b * a \neq b a$, $c=p * w \neq p w$ and $x * y=x y$ whenever $(b, a) \neq(x, y) \neq(p, w)$. It is obvious
that $E(*)$ is a groupoid satisfying the identity $\sigma(x * y)=\sigma(x)+\sigma(y)$ for all $x, y \in E$. Therefore, it is easy to check that every triple $(x, y, z) \in E^{(3)}$ is associative. Thus $\operatorname{dist}(E, E(*))=2$ and $\operatorname{sdist}(E) \leq 2$. The rest follows from 2.2.1.
2.2.3 Corollary. There is at least one SH-groupid E of type (a,a,a) containing a proper $S H$-subgroupoid H such that $\operatorname{sdist}(H)<\operatorname{sdist}(E)$.

2.3 Construction.

Let K and M be the same sets as in 2.1 and consider the groupoid $H(0)$ constructed in 2.1. Put $B=\{r, s, t\}$ and let I be an arbitrary set of indexes. For every $i \in I$ consider a three-element set $A_{i}=\left\{p_{i}, v_{i}, w_{i}\right\}$ and denote $A=\bigcup_{i \in I} A_{i}$. Further, put $C=\{q\}$ and suppose that the sets K, M, A, B, C are pair-wise disjoint. Finally, put $G_{I}=A \cup B \cup C \cup K \cup M$ and denote $E_{i}=A_{i} \cup B \cup K \cup M$ for each $i \in I$. On each set E_{i}, let us define a binary operation in the way described in 2.2. Now, define a binary operation on G_{I} such that E_{i} is a subgroupoid of G_{I} for each $i \in I$. Further, for every $i, k \in I, i \neq k$, put:

- $p_{i} p_{k}=q ;$
$-a q=c, q a=s=p_{i} v_{k}, v_{i} p_{k}=r$ and $q p_{i}=p_{i} q=p_{i} w_{k}=w_{i} p_{k}=t ;$
$-b q=q b=q q=q v_{i}=q w_{i}=q w_{i}=v_{i} q=w_{i} q=v_{i} v_{k}=v_{i} w_{k}=w_{i} v_{k}=$
$=w_{i} w_{k}=4 ;$
$-q c=c q=q d=d q=q r=r q=q s=s q=t q=a t=5$.
Finally, put $m q=q m=m+2$ for every $m \in K$ and $\sigma(q)=2$. Then G_{I} becomes a groupoid containing each of SH-groupoids E_{i} as a proper subgroupoid and the equation $\sigma(x y)=\sigma(x)+\sigma(y)$ holds for all $x, y \in G_{I}$.
2.3.1 Lemma. G_{I} is an SH-groupoid of type (a, a, a) satisfying the condition $(a a)(a a)=a((a a) a)$.

Proof. It is tedious but not difficult to check that G_{I} contains just one non-associative triple, namely (a, a, a).
2.3.2 Lemma. $\operatorname{sdist}\left(G_{I}\right) \leq 1+\operatorname{card}(I)$.

Proof. Define on G_{I} a new binary operation * such that $c=b * a \neq b a$, $c=a * v_{i} \neq a v_{i}=d$ for each $i \in I$ and $x * y=x y$ whenever $(b, a) \neq(x, y) \neq$ $\neq\left(p, w_{i}\right)$ for every $i \in I$. Then $G_{I}(*)$ becomes a groupoid satisfying the identity $\sigma(x * y)=\sigma(x)+\sigma(y)$ for all $x, y \in G_{I}$. It is obvious that every triple (x, y, z) having $\sigma(x)+\sigma(y)+\sigma(z) \geq 4$ is associative. There is a finite number of triples (x, y, z) having $\sigma(x)+\sigma(y)+\sigma(z) \leq 3$. It is tedious but possible to check that all of them are associative. Thus $G_{I}(*)$ is a semigroup and the rest is clear.

2.4 Semigroup distance of the groupoid G_{I}.

In this section, let G_{I} be the groupoid from 2.3 , let card $(I)=\kappa$ and let $G_{I}(*)$ be a semigroup having the same underlying set G_{I} such that $\operatorname{dist}\left(G_{I}, G_{I}(*)\right)=\operatorname{sdist}\left(G_{I}\right)$. Further, for every $i \in I$ consider the following sets: $L\left(p_{i}\right)=\left\{x \in G_{I} \mid x * p_{i} \neq x p_{i}\right\}$,
$L\left(v_{i}\right)=\left\{x \in G_{I} \mid x * v_{i} \neq x v_{i}\right\}, L\left(w_{i}\right)=\left\{x \in G_{I} \mid x * w_{i} \neq x w_{i}\right\}, R\left(p_{i}\right)=\left\{x \in G_{I} \mid p_{i} * x \neq\right.$ $\left.\neq p_{i} x\right\}, R\left(v_{i}\right)=\left\{x \in G_{I} \mid v_{i} * x \neq v_{i} x\right\}, R\left(w_{i}\right)=\left\{x \in G_{I} \mid w_{i} * x \neq w_{i} x\right\}$.
2.4.1 Lemma. If $b a=b * a, a a=a * a$ and $a * b \neq a b$, then $\operatorname{dist}\left(G_{I}, G_{I}(*)\right) \geq$ $\geq 1+\kappa$.
Proof. Suppose that $L\left(p_{i}\right)=\emptyset$ for some $i \in I$. Then $c=b p_{i}=b * p_{i}=$ $=a a * p_{i}=(a * a) * p_{i}=a *\left(a * p_{i}\right)=a * a p_{i}=a * b \neq c, \quad$ a contradiction. Therefore, $L\left(p_{i}\right) \neq \emptyset$ for every $i \in I$.
2.4.2 Lemma. If $b a=b * a, b=a a \neq a * a$ and $a * b=a b$, then $\operatorname{dist}\left(G_{I}\right.$, $\left.G_{I}(*)\right) \geq 1+\kappa$.

Proof. Suppose that $L\left(p_{i}\right)=\emptyset$ for some $i \in I$. If $y=a * a$ then $y p_{i}=y * p_{i}=$ $=(a * a) * p_{i}=a *\left(a * p_{i}\right)=a * a p_{i}=a * b=a b=c$. However, the equation $y p_{i}=c$ is solvable in G_{I} if and only if $y=b$, a contradiction. Therefore $L\left(p_{i}\right) \neq \emptyset$ for every $i \in I$.
2.4.3 Lemma. If $b a \neq b * a$, then $\operatorname{dist}\left(G_{I}, G_{I}(*)\right) \geq 1+\kappa$.

Proof. Suppose that $L\left(p_{i}\right)=R\left(p_{i}\right)=R\left(v_{i}\right)=\emptyset$ for some $i \in I$. Then $d=a v_{i}=$ $=a * v_{i}=a *\left(p_{i} a\right)=a *\left(p_{i} * a\right)=\left(a * p_{i}\right) * a=a p_{i} * a=b * a \neq d$, a contradiction. Therefore at least one of the sets $L\left(p_{i}\right), R\left(p_{i}\right), R\left(v_{i}\right)$ is non-empty for every $i \in I$.
2.4.4 Lemma. If $a a \neq a * a=y$ and $\sigma(y) \geq 3$ then $\operatorname{dist}\left(G_{I}, G_{I}(*)\right) \geq 1+\kappa$.

Proof. Suppose that $R\left(p_{i}\right)=\emptyset=R\left(v_{i}\right)$ for some $i \in I$. Then we have $\sigma\left(p_{i} y\right)=$ $=\sigma\left(p_{i}\right)+\sigma(y) \geq 4$. But $p_{i} y=p_{i} * y=p_{i} *(a * a)=\left(p_{i} * a\right) * a=p_{i} a * a=$ $=v_{i} * a=v_{i} a$. Thus $\sigma\left(p_{i} y\right)=3$, a contradiction. Therefore at least one of the sets $R\left(p_{i}\right), R\left(v_{i}\right)$ is non-empty for every $i \in I$.
2.4.5 Lemma. If $a=a * a$ then $\operatorname{dist}\left(G_{I}, G_{I}(*)\right) \geq 1+\kappa$.

Proof. Suppose that $R\left(p_{i}\right)=\emptyset=R\left(v_{i}\right)$ for some $i \in \mathrm{I}$. Then $v_{i}=p_{i} a=$ $=p_{i} * a=p_{i} *(a * a)=\left(p_{i} * a\right) * a=p_{i} a * a=v_{i} * a=v_{i} a=r$, a contradiction. Therefore at least one of the sets $R\left(p_{i}\right), R\left(v_{i}\right)$ is non-empty for every $i \in I$.
2.4.6 Lemma. If $p_{k}=a * a$ for some $k \in I$ and $b * a=b a$, then $\operatorname{dist}\left(G_{I}, G_{I}(*)\right) \geq$ $\geq 1+\kappa$.
Proof. Suppose that $p_{k} p_{k}=p_{k} * p_{k}$ and $a p_{k}=a * p_{k}$. Then $w_{k}=p_{k} p_{k}=$ $=p_{k} * p_{k}=(a * a) *(a * a)=((a * a) * a) * a=(a *(a * a)) * a=\left(a * p_{k}\right) * a=$ $=a p_{k} * a=b * a=b a=d$, a contradiction. Therefore either $p_{k} p_{k} \neq p_{k} * p_{k}$ or $a * p_{k} \neq a p_{k}$. Further, suppose that $k \neq i \in I$ and $R\left(p_{i}\right)=R\left(v_{i}\right)=\emptyset$. Then $q=$ $=p_{i} p_{k}=p_{i} * p_{k}=p_{i} *(a * a)=\left(p_{i} * a\right) * a=p_{i} a * a=v_{i} * a=v_{i} a=r$, a contradiction. Therefore, at least one of the sets $R\left(p_{i}\right), R\left(v_{i}\right)$ is non-empty for every $k \# i \in I$.
2.4.7 Lemma. If $a * a=v_{k}$ for some $k \in I$ and $b * a=b a$ then $\operatorname{dist}\left(G_{I}, G_{I}(*)\right) \geq 1+\kappa$.

Proof. It is obvious if $L\left(P_{i}\right) \neq \emptyset$ for each $i \in I$. Suppose first that $a * p_{k}=a p_{k}$ and $a * p_{i} \neq a p_{i}$ for every $k \neq i \in I$. If $a * b=a b$ nd $v_{k} * p_{k}=v_{k} p_{k}$ then $c=$ $=a b=a * b=a *\left(a p_{k}\right)=a *\left(a * p_{k}\right)=(a * a) * p_{k}=v_{k} p_{k}=r$, a contradiction. Thus we have $a * a \neq a a$ and either $a * b \neq a b$ or $v_{k} * p_{k} \neq v_{k} p_{k}$ in this case. Further, suppose that $L\left(P_{j}\right)=\emptyset$ for some $k \neq j \in I$. Then $a * b=a *\left(a p_{j}\right)=$ $=a *\left(a * p_{j}\right)=(a * a) * p_{j}=v_{k} * p_{j}=v_{k} p_{j}=r \neq c=a b$. If $R\left(p_{i}\right)=\emptyset=R\left(v_{i}\right)$ for some $k \neq i \in I$, then $s=p_{i} v_{k}=p_{i} * v_{k}=p_{i} *(a * a)=\left(p_{i} * a\right) * a=p_{i} a * a=$ $=v_{i} * a=v_{i} * a=v_{i} a=r$, a contradiction. Thus at least one of the sets $R\left(p_{i}\right)$, $R\left(v_{i}\right)$ is non-empty for every $k \neq i \in I$. Moreover, $a * b \neq a b$ and $a * a \neq a a$ in this case.
2.4.8 Lemma. If $a * a=w_{k}$ for some $k \in I$ and $b * a=b a$, then $\operatorname{dist}\left(G_{I}, G_{I}(*)\right) \geq 1+\kappa$.

Proof. It is obvious if $L\left(p_{i}\right) \neq \emptyset$ for all $i \in I$. Suppose first that $a * p_{k}=a p_{k}$ and $a * p_{i} \neq a p_{i}$ for every $k \neq i \in I$. If $a * b=a b$ and $v_{k} * p_{k}=v_{k} p_{k}$ then $c=a b=$ $=a * b=a *\left(a * p_{k}\right)=(a * a) * p_{k}=v_{k} * p_{k}=v_{k} p_{k}=r$, a contradiction. Thus we have $a * a \neq a a$ and either $a * b \neq a b$ or $v_{k} * p_{k} \neq v_{k} p_{k}$. Further, suppose that there is $k \neq j \in I$ such that $L\left(p_{j}\right)=\emptyset$. Then $a * b=a *\left(a p_{j}\right)=a *\left(a * p_{j}\right)=$ $=(a * a) * p_{j}=v_{k} * p_{j}=v_{k} p_{j}=t$. Thus we have $a * a \neq a a$ and $a * b \neq a b$. If $R\left(p_{i}\right)=\emptyset=R\left(v_{i}\right)$ for some $k \neq i \in I$ then $t=p_{i} w_{k}=p_{i} * w_{k}=p_{i} *(a * a)=$ $=\left(p_{i} * a\right) * a=p_{i} a * a=v_{i} * a=v_{i} a=r$, a contradiction. Therefore at least one of the sets $R\left(p_{i}\right), r\left(v_{i}\right)$ is non-empty for every $k \neq i \in I$.
2.4.9 Lemma. If $a * a=q$ and $b * a=b a$ then $\operatorname{dist}\left(G_{I}, G_{I}(*)\right) \geq 1+\kappa$.

Proof. Of course, $a * a \neq a a$ and the assertion is obvious if $a * p_{i} \neq a p_{i}$ for every $i \in I$. Now, let $k \in I$ be such that $a * p_{k}=a p_{k}$. If $q * p_{k}=q p_{k}$ and $a * b=a b$, then $c=a b=a * b=a * a p_{k}=a *\left(a * p_{k}\right)=(a * a) * p_{k}=q * p_{k}=$ $=q p_{k}=t$, a contradiction. Hence we have either $q * p_{k} \neq q p_{k}$ or $a * b \neq a b$. Finally, let $k \neq i \in I$. Then either $a * p_{i} \neq a p_{i}$ (and then $\left.L\left(p_{i}\right) \neq \emptyset\right)$, or $a * p_{i}=a p_{i}$. In the second case, suppose that $R\left(p_{i}\right)=\emptyset=R\left(v_{i}\right)$. Then $t=p_{i} q=p_{i} * q=$ $=p_{i} *(a * a)=\left(p_{i} * a\right) * a=p_{i} a * a=v_{i} a=r$, a contradiction. Therefore, at least one of the sets $R\left(p_{i}\right), R\left(v_{i}\right)$ is non-empty.
2.4.10 Proposition. $\operatorname{sdist}\left(G_{I}\right)=1+\operatorname{card}(I)$.

Proof. With respect to 2.3.2, $\operatorname{dist}\left(G_{I}, G_{I}(*)\right) \leq 1+\kappa$. Of course, at least one of the conditions $a * a \neq a a, a * b \neq b a, b * a \neq b a$ has to be valid (otherwise $c=a b=a * b=a * a a=a *(a * a)=(a * a) * a=a a * a=b * a=b a=d$, a contradiction). For $b * a \neq b a$ see 2.4.3, for $b * a=b a, a * b=a b$ and $a * a \neq a a$ see 2.4.2, for $b * a=b a, a * b \neq a b$ and $a * a=a a$ see 2.4.1. The
remaining case depends on the value of $y=a * a \neq a a$ and the result follows from one of 2.4.4, 2.4.5, 2.4.6, 2.4.7, 2.4.8 and 2.4.9.

3. Conclusion

It was proved above that there exist SH-groupoids of type (a, a, a) satisfying the equation $a a \cdot a a=a(a a \cdot a)$ and having an arbitrary large semigroup distance. Is the same true also for SH-groupoids G of type (a, a, a) satisfying the condition $a a \cdot a a \neq a(a a \cdot a)$ for at least one $a \in G$? Is it true for S-groupoids of other types?

References

[1] Drápal, A. and Kepka, T., Sets of associative triples, Europ. J. Combinatorics 6 (1985), 227-261.
[2] HÁJEK, P., Die Szászschen Gruppoiden, Matem.-fyz. Časopis SAV 15/1 (1965), 15-42.
[3] HÁJEK, P., Berichtigung zu meine Arbeit „Die Szászschen Gruppoide", Matem.-fyz. časopis SAV 15/4 (1965), 331.
[4] Kepka, T. and Trch, M., Groupoids and the associative law I. (Associative triples), Acta Univ. Carolinae Math. Phys. 33/1 (1991), 69-86.
[5] Kepka, T. and Trch, M., Groupoids and the associative law II. (Groupoids with small semigroup distance), Acta Univ. Carolinae Math. Phys. 34/1 (1993), 67-83.
[6] Kepka, T. and Trch, M., Groupoids and the associative law III. (Szász-Hájek groupoids), Acta Univ. Carolinae Math. Phys. 36/1 (1995), 69-86.
[7] Kepka, T. and Trch, M., Groupoids and the associative law IV. (Szász-Hájek groupoids of type (a, b, a)), Acta Univ. Carolinae Math. Phys. 35/1 (1994), 31 - 42.
[8] Kepka, T. and Trch, M., Groupoids and the associative law V. (Szász-Hájek groupoids of type ($a, a, b)$), Acta Univ. Carolinae Math. Phys. 36/1 (1995), 31 - 44.
[9] Kepka, T. and Trch, M., Groupoids and the associative law VI. (Szász-Hajek groupoids of type (a, b, c)), Acta Univ. Carolinae Math. Phys. 38/1 (1997), 13-21.
[10] Szász, G., Unabhängigkeit der Assoziativitätsbedingungen, Acta Sci. Math. Szeged 15 (1953/4), 20-28.
[11] SzÁSz, G., Über Unbhängigkeit der Assoziativitätsbedingungen kommutativer multiplikativer Strukturen, Acta Sci. Math. Szeged 15 (1953/4), 130-142.

