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Hom-Akivis algebras

A. Nourou Issa

Abstract. Hom-Akivis algebras are introduced. The commutator-Hom-associator
algebra of a non-Hom-associative algebra (i.e. a Hom-nonassociative algebra) is
a Hom-Akivis algebra. It is shown that Hom-Akivis algebras can be obtained
from Akivis algebras by twisting along algebra endomorphisms and that the class
of Hom-Akivis algebras is closed under self-morphisms. It is pointed out that
a Hom-Akivis algebra associated to a Hom-alternative algebra is a Hom-Malcev
algebra.

Keywords: Akivis algebra, Hom-associative algebra, Hom-Lie algebra, Hom-Aki-
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1. Introduction

The theory of Hom-algebras originated from Hom-Lie algebras introduced
by J.T. Hartwig, D. Larsson, and S.D. Silvestrov in [9] in the study of quasi-
deformations of Lie algebras of vector fields, including q-deformations of Witt al-
gebras and Virasoro algebras. The connection between the theory of Hom-algebras
and deformation theory and other trends in mathematics attracted attention of
researchers (see, e.g., [5], [6], [7], [8], [12], [13], [15], [20]). Generalizing the relation
between Lie algebras and associative algebras, the notion of a Hom-associative al-
gebra is introduced by A. Makhlouf and S.D. Silvestrov in [14], where it is shown
that the commutator algebra (with the twisting map) of a Hom-associative alge-
bra is a Hom-Lie algebra. By twisting defining identities, other Hom-type algebras
such as Hom-alternative algebras, Hom-Jordan algebras [12], Hom-Novikov alge-
bras [21], or Hom-Malcev algebras [22] are introduced and discussed.

As for Hom-alternative algebras or Hom-Novikov algebras, we consider in
this paper a twisted version of the Akivis identity which defines the so-called
Akivis algebras. We call “Hom-Akivis algebra” this twisted Akivis algebra. It
is known [3] that the commutator-associator algebra of a nonassociative algebra
is an Akivis algebra. This led us to consider “non-Hom-associative algebras”
i.e. Hom-nonassociative algebras or nonassociative Hom-algebras ([13], [14], [19])
and we point out that the commutator-Hom-associator algebra of a non-Hom-
associative algebra has a Hom-Akivis structure. In this setting, Akivis algebras
are special cases of Hom-Akivis algebras in which the twisting map is the identity
map. Also the class of Hom-Akivis algebras contains the one of Hom-Lie algebras
in the same way as the class of Akivis algebras contains the one of Lie algebras.
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Akivis algebras were introduced by M.A. Akivis ([1], [2], [3]) as a tool in the
study of some aspects of web geometry and its connection with loop theory.
These algebras were originally called “W -algebras” [3]. Later, K.H. Hofmann
and K. Strambach [10] introduced the term “Akivis algebras” for such algebraic
objects.

The rest of the present paper is organized as follows. In Section 2 we recall
basic definitions and useful results about Akivis algebras, Hom-Lie algebras and
Hom-associative algebras. In Section 3 we consider non-Hom-associative alge-
bras (one observes the counterpart of the generalization of associative algebras by
nonassociative ones). We construct examples of non-Hom-associative algebras. In
Section 4 Hom-Akivis algebras are considered. Two methods of producing Hom-
Akivis algebras are provided, starting with either non-Hom-associative algebras
(Theorem 4.2) or usual Akivis algebras along with twisting maps (Corollary 4.5).
Examples illustrating Corollary 4.5 are provided. Theorem 4.8 gives a construc-
tion method of a sequence of Hom-Akivis algebras from a given Akivis algebra.
Hom-Akivis algebras are shown to be closed under twisting by self-morphisms
(Theorem 4.4). In Section 5, Hom-Akivis algebras associated to Hom-alternative
algebras are shown to be Hom-Malcev algebras (these later algebraic objects are
recently introduced by D. Yau [22]). This could be seen as a generalization of the
Malcev construction of Moufang-Lie algebras (i.e. Malcev algebras) from alterna-
tive algebras [16].

Throughout this paper, all vector spaces and algebras are meant over a ground
field K of characteristic 0.

2. Preliminaries

We recall useful definitions and results that are for further use. We begin with
Akivis algebras.

An Akivis algebra (A, [−,−], 〈−,−,−〉) is a vector space A together with a
bilinear skew-symmetric binary operation (x, y) 7→ [x, y] and a trilinear ternary
operation (x, y, z) 7→ 〈x, y, z〉 that are linked by the identity

(2.1) 	(x,y,z)[[x, y], z] = 	(x,y,z)〈x, y, z〉 −	(x,y,z)〈y, x, z〉,

where here, and in the sequel, 	(x,y,z) denotes the sum over cyclic permutation
of x, y, z.

The relation (2.1) is called the Akivis identity.
In loop theory, roughly, Akivis algebras are for local smooth loops what are

Lie algebras for local Lie groups. However Akivis algebras originated from web
geometry ([1], [2]; see also [4] for a survey of the subject). The connection between
web geometry and loop theory is briefly sketched as follows.

First we recall that a quasigroup is a groupoid (Q, ·) in which the equation
x · y = z is uniquely solvable with respect to x and y for any x, y, z ∈ Q, and that
a loop is a quasigroup with an identity element.
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Let X and Y be r-dimensional differentiable manifolds and M = X × Y the
2r-dimensional manifold whose points are pairs (x, y) with x ∈ X and y ∈ Y .
Consider in M three families of r-dimensional surfaces given by equations x = a,
y = b and z = q(x, y), where q(x, y) = z defines a quasigroup. These families of
surfaces constitute on M a three-web W if they satisfy the following properties.

(a) Two surfaces of the same family are disjoint.
(b) Two surfaces of different families are incident to one point of M .
(c) Any point (x, y) ∈ M is incident to just one surface of each family.

The quasigroup defined by q(x, y) = z is then called the coordinate (local
differentiable) quasigroup of the web W (see, e.g., [2], [4]).

Conversely, if on a 2r-dimensional manifold M three families of r-dimensional
surfaces satisfying (a), (b) and (c) above are given, i.e. a three-web of r-dimen-
sional surfaces is defined on M , then this web generates six local differentiable
quasigroups that are parastrophic each to other ([2]). In fact, any two of the
three families of surfaces can be chosen as coordinates and their equations are
written as x = a and y = b; therefore the equation of the third family is written
as q(x, y) = c. Thus, by properties (a), (b), (c), the mapping z = q(x, y) satisfies
all the conditions in the definition of a quasigroup. Since there are six different
ways of choosing an ordered pair from three families of surfaces of a three-web,
one gets six coordinate quasigroups for a given three-web. Also recall that there
are six quasigroups parastrophic to each given quasigroup.

Thus there is a one-to-one correspondence between the class of quasigroups
and the class of three-webs.

In local coordinates, the quasigroup equation z = q(x, y) is written as

(2.2) zi = qi(xj , yk).

Using the Taylor formula, the equation (2.2) can be expanded in a neighbor-
hood of a fixed point of the local differentiable quasigroup [2]. Then M.A. Akivis
introduced the so-called fundamental tensors αi

jk, β
i
jkl of the quasigroup (they

are expressed through the coefficients in the Taylor expansion of (2.2)). These
tensors are related by the following formula

(2.3) βi
[jkl] = 2αs

[jkα
i
|s|l]

i.e.

1

2
βi
jkl −

1

2
βi
kjl +

1

2
βi
klj −

1

2
βi
lkj +

1

2
βi
ljk − 1

2
βi
jlk

= 2(αs
jkα

i
sl + αs

klα
i
sj + αs

ljα
i
sk).

We note that the relation (2.3) is first obtained in [1], where the exterior
differential forms and exterior derivations are used in the study of three-webs
(the three families of multidimensional surfaces of the considered three-web are
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given by three systems of Pfaffian forms). It is now easy to see that (2.3) is the
tensor form of the Akivis identity (2.1).

It is well known that the commutator algebra of an associative algebra is a Lie
algebra. M.A. Akivis [3] generalized this construction to nonassociative algebras.
Recall that an algebra (A, ·) is said to be nonassociative if there is at least a triple
x, y, z ∈ A such that (x · y) · z 6= x · (y · z). The following holds.

Theorem 2.1 ([3]). The commutator-associator algebra of a nonassociative al-
gebra is an Akivis algebra.

The Akivis algebra constructed by Theorem 2.1 is said to be associated (to a
given nonassociative algebra) [10].

In Section 4 (Theorem 4.2) we give the Hom-counterpart of Theorem 2.1. Be-
forehand we recall some facts about Hom-algebras.

A Hom-module [20] is a pair (A, αA), whereA is a vector space and αA : A 7→ A
a linear map.

A Hom-associative algebra [14] is a triple (A, µA, αA) in which (A, αA) is a
Hom-module and µA : A×A 7→ A is a bilinear operation on A such that

(2.4) µA(µA(x, y), αA(z)) = µA(αA(x), µA(y, z)),

for all x, y, z ∈ A.
The relation (2.4) is called the Hom-associativity for (A, µA, αA). If αA = idA,

then (2.4) is just the associativity.
Using the abbreviation xy for µA(x, y), the Hom-associativity (2.4) reads

(xy)αA(z) = αA(x)(yz).

The Hom-associative algebra (A, µA, αA) is said to be multiplicative if αA is
an endomorphism (i.e. a self-morphism) of (A, µA). Hom-associative algebras are
closely related to Hom-Lie algebras.

A Hom-Lie algebra is a triple (A, [−,−], αA) in which (A, αA) is a Hom-module
and [−,−] : A×A 7→ A is a bilinear skew-symmetric operation on A such that

(2.5) 	(x,y,z)[[x, y], αA(z)] = 0,

for x, y, z ∈ A.
The relation (2.5) is called the Hom-Jacobi identity. If, moreover, αA is an

endomorphism of (A, [−,−]), then (A, [−,−], αA) is said to be multiplicative.
Examples of Hom-Lie algebras could be found in [9], [14], [20].

In the Hom-Lie setting, the Hom-associative algebras play the role of asso-
ciative algebras in the Lie setting in this sense that the commutator algebra of
a Hom-associative algebra is a Hom-Lie algebra [14]. In [20] it is shown how
arbitrary associative (resp. Lie) algebras give rise to Hom-associative (resp. Hom-
Lie) algebras via endomorphisms. These constructions are considered here in the
Hom-Akivis setting.
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3. Non-Hom-associative algebras. Examples

In [14], [19] the notion of a Hom-associative algebra is extended to the one
of a Hom-nonassociative algebra (or nonassociative Hom-algebra, or just Hom-
algebra), i.e. a Hom-type algebra in which the Hom-associativity (as defined by
(2.4)) does not necessarily hold. In this section and in the rest of the paper,
such a Hom-type algebra will be called “non-Hom-associative” (although this
terminology seems to be somewhat cumbersome) in order to stress the Hom-
counterpart of the generalization of associative algebras by the nonassociative
ones. We provide some examples.

Definition 3.1 ([13], [14], [19]). A multiplicative non-Hom-associative (i.e. not
necessarily Hom-associative) algebra is a triple (A, µ, α) such that

(i) (A, α) is a Hom-module;
(ii) µ : A×A 7→ A is a bilinear operation on A;
(iii) α is an endomorphism of (A, µ) (multiplicativity).

Thus, by the non-Hom-associativity of (A, µ, α) with a given endomorphism α,
we mean that there is at least a triple x, y, z ∈ A such that µ(µ(x, y), α(z)) 6=
µ(α(x), µ(y, z)).

If α is the identity map in Definition 3.1, then (A, µ, α) reduces to a nonasso-
ciative algebra (A, µ).

For a non-Hom-associative algebra, it makes sense to consider the so-called
Hom-associators [12] (see also [14]), just as associators are considered in a nonas-
sociative algebra.

Let (A, µ, α) be a non-Hom-associative algebra, where A is a K-linear space,
µ a bilinear operation on A and α a twisting map. For any x, y, z ∈ A, the
Hom-associator is defined by

(3.1) as(x, y, z) = µ(µ(x, y), α(z))− µ(α(x), µ(y, z)).

Then (A, µ, α) is said to be:

Hom-flexible, if as(x, y, x) = 0;
Hom-alternative, if as(x, y, z) is skew-symmetric in x, y, z.

The following example of a non-Hom-associative algebra is derived from an
example in [12].

Example 3.2. Let {u, v, w} be a basis of a three-dimensional vector space A.
Define on A the operation µ and the linear map α as follows:

µ(u, u) = au, µ(v, v) = av

µ(u, v) = µ(v, u) = av, µ(v, w) = bw

µ(u,w) = µ(w, u) = bw, µ(w, v) = µ(w,w) = 0,
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where a, b ∈ K, a 6= 0, b 6= 0 and a 6= b. Then (A, µ) is nonassociative since
µ(µ(v, v), w) 6= µ(v, µ(v, w)). Let

α(u) = av, α(v) = aw, α(w) = bu.

Now we have

µ(µ(u, v), α(w)) = µ(av, bu) = a2bv

and

µ(α(u), µ(v, w)) = µ(av, bw) = ab2w

so µ(µ(u, v), α(w)) 6= µ(α(u), µ(v, w)), i.e. the Hom-associativity fails for the triple
(A, µ, α), and thus (A, µ, α) is non-Hom-associative.

Other examples follow.

Example 3.3. The Lie algebra sl(2,C) has a basis {u, v, w} with multiplication:

[u, v] = −2u, [u,w] = v, [v, w] = −2w.

Define α : sl(2,C) → sl(2,C) by setting:

α(u) = w, α(v) = −v, α(w) = u.

Then α is a self-morphism of (sl(2,C), [−,−]). Next [α(u), [w,w]] = 0 while
[[u,w], α(w)] = 2u so that (sl(2,C), [−,−], α) is non-Hom-associative.

Example 3.4. There is a five-dimensional nonassociative (flexible) algebra (A, ·)
with basis {e1, . . . , e5} and multiplication:

e1 · e2 = e5 +
1

2
e4, e1 · e4 =

1

2
e1 = −e4 · e1,

e2 · e1 = e5 −
1

2
e4, e2 · e4 = −1

2
e2 = −e4 · e2,

e3 · e4 =
1

2
e3 = −e4 · e3, e4 · e4 = −e5,

and all other products are 0 (see [17, p. 29, Example 1.5]). Define α : A → A by:

α(e1) = e2, α(e2) = e1, α(e3) = 0, α(e4) = −e4, α(e5) = e5.

Then α is a self-morphism of (A, ·). Moreover (A, ·, α) is non-Hom-associative
since α(e3) · (e4 · e4) = 0 while (e3 · e4) ·α(e4) = − 1

4e3. However, by Theorem 4.4
in [22], (A, ·, α) is Hom-flexible.

Example 3.5. The commutator algebra A− of the algebra A of Example 3.4 is
defined by:

e1 ⋆ e2 = e4 = −e2 ⋆ e1, e1 ⋆ e4 = e1 = −e4 ⋆ e1,

e2 ⋆ e4 = −e2 = −e4 ⋆ e2, e3 ⋆ e4 = e3 = −e4 ⋆ e3,



Hom-Akivis algebras 491

and all other products are 0. Then (A−, ⋆) is a Malcev algebra ([17, p. 29, Ex-
ample 1.5]) and, as observed in [17], (A−, ⋆) is isomorphic to the unique five-
dimensional non-Lie solvable Malcev algebra found by E. N. Kuzmin [11]. Next,
define the map α : A− → A− as in Example 3.4 above. Then α is a self-morphism
of (A−, ⋆) and (A−, ⋆, α) is non-Hom-associative since α(e3) ⋆ (e4 ⋆ e4) = 0 and
(e3 ⋆ e4) ⋆ α(e4) = −e3.

One observes that the nonassociativity of (A, µ) may not be enough for the
failure of Hom-associativity in (A, µ, α) and thus the choice of the twisting map
is of prime significance in the definition of Hom-type algebras. In other words,
there is a freedom on how to twist. This is observed and investigated in [6]. In
the present paper, we consider only twisting maps which ensures the failure of the
Hom-associativity as defined by (2.4).

A construction of Hom-associative algebras from associative algebras is given
by D. Yau in [20]. This result could be reported to the case of nonassociative
algebras, but here an additional condition on the twisting map is needed (in fact,
the twisting map must be an automorphism).

Example 3.6. Let R be a unital nonassociative algebra over K and let Rn denote
the algebra of n×n matrices with entries in R and matrix multiplication denoted
by µ(x, y) = xy. Then A := (Rn, µ) is also a unital nonassociative algebra.
Denote by N(A) the nucleus of A and suppose that there is an invertible element
u ∈ N(A) and u−1 ∈ N(A). Then the map α(u) : A → A defined by α(u)(x) =
uxu−1 for x ∈ Rn, is an automorphism of A.

Define µα(u)(x, y) = u(xy)u−1, for all x, y ∈ Rn. Then one checks that Au =
(Rn, µα(u), α(u)) is a multiplicative non-Hom-associative algebra and α(u) is an
automorphism of (Rn, µα(u)). In this way we get a family {Au : u ∈ Rn invertible

and u, u−1 ∈ N(A)} of multiplicative non-Hom-associative algebras.

An example, similar to Example 3.7 above, is given in [20] describing Hom-
associative deformations by inner automorphisms.

4. Hom-Akivis algebras. Construction

In this section we give the notion of a (multiplicative) Hom-Akivis algebra that
could be seen as a generalization of an Akivis algebra and we point out that such
a notion does fit with the one of a non-Hom-associative algebra given in Section 3.
In fact we prove the analogue of the Akivis construction (see Theorem 2.1) that
the commutator-Hom-associator algebra of a given non-Hom-associative algebra
is a Hom-Akivis algebra (Theorem 4.2). Theorem 4.4 shows that the class of
Hom-Akivis algebras is closed under self-morphisms of such algebras. Moreover,
following [20] for Hom-associative algebras and Hom-Lie algebras, we give a pro-
cedure for the construction of Hom-Akivis algebras from Akivis algebras and their
algebra endomorphisms (Corollary 4.5, with a generalization by Theorem 4.8).

Definition 4.1. A Hom-Akivis algebra is a quadruple (A, [−,−], [−,−,−], α),
where A is a vector space, [−,−] : A × A → A a skew-symmetric bilinear map,
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[−,−,−] : A×A×A → A a trilinear map and α : A → A a linear map such that

(4.1) 	(x,y,z)[[x, y], α(z)] = 	(x,y,z)[x, y, z]−	(x,y,z)[y, x, z],

for all x, y, z in A.
A Hom-Akivis algebra (A, [−,−], [−,−,−], α) is said to be multiplicative if α

is an endomorphism with respect to [−,−] and [−,−,−].

In analogy with Lie and Akivis cases, let us call (4.1) the Hom-Akivis identity.

Remark. (1) If α = idA, the Hom-Akivis identity (4.1) is the usual Akivis
identity (2.1).

(2) The Hom-Akivis identity (4.1) reduces to the Hom-Jacobi identity (2.5),
when [x, y, z] = 0, for all x, y, z in A.

The following result shows how one can get Hom-Akivis algebras from non-
Hom-associative algebras.

Theorem 4.2. The commutator-Hom-associator algebra of a multiplicative non-
Hom-associative algebra is a multiplicative Hom-Akivis algebra.

Proof: Let (A, µ, α) be a multiplicative non-Hom-associative algebra. For any
x, y, z in A, define the operations

[x, y] := µ(x, y)− µ(y, x) (commutator)

[x, y, z]α := as(x, y, z) (Hom-associator; see (3.1)).

For simplicity, set xy for µ(x, y). Then

[[x, y], α(z)] = (xy)α(z)− (yx)α(z) − α(z)(xy) + α(z)(yx)

and

[x, y, z]α − [y, x, z]α = (xy)α(z)− α(x)(yz) − (yx)α(z) + α(y)(xz).

Expanding σ[[x, y], α(z)] and σ([x, y, z]α − [y, x, z]α) respectively, one gets (4.1)
and so (A, [−,−], [−,−,−]α, α) is a Hom-Akivis algebra. The multiplicativity of
(A, [−,−], [−,−,−]α, α) follows from the one of (A, µ, α). �

The remarks above and Theorem 4.2 show that Definition 4.1 fits with the
non-Hom-associativity. The Hom-Akivis algebra constructed by Theorem 4.2 is
said to be associated (to a given non-Hom-associative algebra). Starting from
other considerations and using other notations, D. Yau has come to Theorem 4.2
above (see [22, Lemma 3.16]).

For the next results we need the following

Definition 4.3. Let (A, [−,−], [−,−,−], α) and (Ã, {−,−}, {−,−,−}, α̃) be

Hom-Akivis algebras. A morphism φ : A → Ã of Hom-Akivis algebras is a linear
map of K-vector spaces A and Ã such that

φ([x, y]) = {φ(x), φ(y)},
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φ([x, y, z]) = {φ(x), φ(y), φ(z)}.

For example, if we take (A, [−,−], [−,−,−], α) as a multiplicative Hom-Akivis
algebra, then the twisting self-map α is itself an endomorphism of
(A, [−,−], [−,−,−]).

The following result holds.

Theorem 4.4. Let Aα := (A, [−,−], [−,−,−], α) be a Hom-Akivis algebra and
β : A → A a self-morphism of Aα. Let β0 = idA, βn = β ◦ βn−1 for any integer
n ≥ 1 and define on A a bilinear operation [−,−]βn and a trilinear operation
[−,−,−]βn by

[x, y]βn := βn([x, y]),

[x, y, z]βn := β2n([x, y, z]),

for all x, y, z ∈ A. Then Aβn := (A, [−,−]βn , [−,−,−]βn, βn ◦α) is a Hom-Akivis
algebra.

Moreover, if Aα is multiplicative and β commutes with α, then Aβn is multi-
plicative.

Proof: Clearly [−,−]βn (resp. [−,−,−]βn) is a bilinear (resp. trilinear) map and
the skew-symmetry of [−,−] in Aα implies the skew-symmetry of [−,−]βn in Aβn .

Next, we have (by the Hom-Akivis identity (4.1)),

	(x,y,z)[[x, y]βn , (βn ◦ α)(z)]βn = β2n(	(x,y,z)[[x, y], α(z)])

= β2n(	(x,y,z)[x, y, z]−	(x,y,z)[y, x, z])

= 	(x,y,z)(β
2n([x, y, z])− β2n([y, x, z]))

= 	(x,y,z)([x, y, z]βn − [y, x, z]βn),

which means that Aβn is a Hom-Akivis algebra.
The second assertion is proved as follows:

[(βn ◦ α)(x), (βn ◦ α)(y)]βn = βn([(βn ◦ α)(x), (βn ◦ α)(y)])
= βn([(α ◦ βn)(x), (α ◦ βn)(y)])

= (βn ◦ α)([βn(x), βn(y)])

= (βn ◦ α)(βn([x, y])) = (βn ◦ α)([x, y]βn)

and

[(βn ◦ α)(x), (βn ◦ α)(y), (βn ◦ α)(z)]βn

= β2n([(βn ◦ α)(x), (βn ◦ α)(y), (βn ◦ α)(z)])
= β2n([(α ◦ βn)(x), (α ◦ βn)(y), (α ◦ βn)(z)]) = (β2n ◦ α)([βn(x), βn(y), βn(z)])

= ((β2n ◦ α) ◦ βn)([x, y, z]) = ((α ◦ β2n) ◦ βn)([x, y, z])
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= ((α ◦ βn) ◦ β2n)([x, y, z]) = (α ◦ βn)(β2n([x, y, z]))

= (βn ◦ α)([x, y, z]βn).

This completes the proof. �

Corollary 4.5. Let (A, [−,−], [−,−,−]) be an Akivis algebra and β an endo-
morphism of (A, [−,−], [−,−,−]). Define on A a bilinear operation [−,−]β and
a trilinear operation [−,−,−]β by

[x, y]β := [β(x), β(y)] (= β([x, y])),

[x, y, z]β := [β2(x), β2(y), β2(z)] (= β2([x, y, z])),

for all x, y, z ∈ A, where β2 = β ◦ β. Then (A, [−,−]β, [−,−,−]β, β) is a multi-
plicative Hom-Akivis algebra.

Moreover, suppose that Ã is another Akivis algebra and that β̃ is an endomor-
phism of Ã. If f : A → Ã is an Akivis algebra morphism satisfying f ◦β = β̃ ◦ f ,
then f : (A, [−,−]β, [−,−,−]β, β) → (Ã, [−,−]β̃, [−,−,−]β̃, β̃) is a morphism of
multiplicative Hom-Akivis algebras.

Proof: The first part of this theorem is a special case of Theorem 4.4 above when
α = id and n = 1. The second part is proved in the same way as in Theorem 4.4
when n = 1. For completeness, we repeat it as follows.

[f(x), f(y)]β̃ = β̃([f(x), f(y)]) = (β̃ ◦ f)([x, y])
= (f ◦ β)([x, y]) = f([β(x), β(y)]) = f([x, y]β)

and

[f(x), f(y), f(z)]β̃ = β̃2([f(x), f(y), f(z)]) = (β̃2 ◦ f)([x, y, z])
= (β̃ ◦ (β̃ ◦ f))([x, y, z]) = (β̃ ◦ (f ◦ β))([x, y, z]) = ((β̃ ◦ f) ◦ β)([x, y, z])
= ((f ◦ β) ◦ β)([x, y, z]) = (f ◦ β2)([x, y, z]) = f(β2([x, y, z])) = f([x, y, z]β).

This completes the proof. �

Remark. (1) The gist of Theorem 4.4 is that the category of Hom-Akivis algebras
is closed under twisting by self-morphisms.

(2) Corollary 4.5 is the Akivis algebra analogue of a result in the Hom-Lie
setting [20]. It shows how Hom-Akivis algebras can be constructed from Akivis
algebras. This procedure was first given by Yau [20] in the construction of Hom-
associative (resp. Hom-Lie) algebras starting from associative (resp. Lie) algebras.
Such a procedure has been further extended to coalgebras [15] and to other sys-
tems (see, e.g., [5], [12]).

As an illustration, we use Corollary 4.5 to construct examples of Hom-Akivis
algebras starting from given Akivis algebras.
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Example 4.6. Let (A, ·) be the four-dimensional anticommutative algebra with
basis {e1, e2, e3, e4} and multiplication table

e1 · e2 = e2 = −e2 · e1, e1 · e3 = e3 = −e3 · e1, e1 · e4 = −e4 = −e4 · e1,
e2 · e3 = −2e4 = −e3 · e2

and all other products are 0. Then (A, ·) is a non-Lie Malcev algebra ([18, Exam-
ple 3.1]). Then, by Theorem 2.1, the Akivis algebra (A, [−,−], [−,−,−]) associ-
ated to (A, ·) is given by:

[e1, e2] = 2e2, [e1, e3] = 2e3, [e1, e4] = −2e4,

[e2, e3] = −4e4,

[e1, e1, e2] = −e2, [e1, e1, e3] = −e3, [e1, e1, e2] = e4,

[e1, e2, e3] = −2e4,

[e1, e3, e2] = 4e4,

[e1, e4, e4] = −2e4,

[e2, e1, e1] = e2, [e2, e1, e3] = 4e4,

[e2, e3, e1] = −4e4,

[e3, e1, e1] = e3, [e3, e1, e2] = −4e4,

[e3, e2, e1] = 4e4,

[e4, e1, e1] = e4.

Now define a linear map β : A 7→ A by

β(e1) = e1 + e4, β(e2) = e3, β(e3) = e3, β(e4) = 0.

Then β is an endomorphism of (A, ·) and, subsequently, by linearity, also an
endomorphism of the associated Akivis algebra (A, [−,−], [−,−,−]). Next, define
on A the operations [−,−]β and [−,−,−]β by

[e1, e2]β = 2e3, [e1, e3]β = 2e3,

[e1, e1, e2]β = −e3, [e1, e1, e3]β = −e3,

[e2, e1, e1]β = e3,

[e3, e1, e1]β = e3

and all missing products are 0. Then Corollary 4.5 implies that
(A, [−,−]β , [−,−,−]β, β) is a Hom-Akivis algebra.

Example 4.7. Let (A, ·) be the two-dimensional algebra with basis {e1, e2} and
multiplication given by

e1 · e2 = e1, e2 · e2 = e1
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and all missing products are 0. Then (A, ·) is nonassociative since, e.g.,
(e1 · e2) · e2 = e1 6= 0 = e1 · (e2 · e2). Theorem 2.1 implies that the Akivis
algebra (A, [−,−], [−,−,−]) associated to (A, ·) has the following multiplication
table:

[e1, e2] = e1,

[e1, e2, e2] = e1,

[e2, e2, e2] = e1.

Next, if we define a linear map β : A 7→ A by

β(e1) = 2e1, β(e2) = e1 + e2,

then β is an endomorphism of (A, [−,−], [−,−,−]) and, defining on A the oper-
ations [−,−]β and [−,−,−]β by

[e1, e2]β = 2e1,

[e1, e2, e2]β = 4e1,

[e2, e2, e2]β = 4e1,

we get, by Corollary 4.5, that (A, [−,−]β, [−,−,−]β, β) is a Hom-Akivis algebra.

Exploiting the idea behind Theorem 4.4, we conclude this section by con-
structing recursively in the following theorem a sequence of Hom-Akivis algebras
starting from a given Akivis algebra (which is seen as a Hom-Akivis algebra with
the identity map as the twisting map).

Theorem 4.8. Let (A, [−,−], [−,−,−]) be an Akivis algebra and β an endo-
morphism of (A, [−,−], [−,−,−]). Let β0 = idA and, for any integer n ≥ 1,
βn = β ◦ βn−1. Define on A a bilinear operation [−,−]βn and a trilinear opera-
tion [−,−,−]βn by

[x, y]βn := β([x, y]βn−1),

[x, y, z]βn := β2([x, y, z]βn−1),

for all x, y, z ∈ A. Then Aβn := (A, [−,−]βn , [−,−,−]βn, βn) is a multiplicative
Hom-Akivis algebra.

Proof: If n = 1 then Aβ := (A, [−,−]β , [−,−,−]β, β) is a multiplicative Hom-
Akivis algebra by Corollary 4.5.

Suppose now that, up to n− 1, Aβn−1 are multiplicative Hom-Akivis algebras.
Then

	(x,y,z)[[x, y]βn , βn(z)]βn = 	(x,y,z)β
2([[x, y]βn−1 , βn−1(z)]βn−1)

= β2(	(x,y,z)[[x, y]βn−1 , βn−1(z)]βn−1)

= β2(	(x,y,z)[x, y, z]βn−1 −	(x,y,z)[y, x, z]βn−1)
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= 	(x,y,z)β
2([x, y, z]βn−1)−	(x,y,z)β

2([y, x, z]βn−1)

= 	(x,y,z)[x, y, z]βn −	(x,y,z)[y, x, z]βn

(observe that we used the Hom-Akivis identity in Aβn−1) so that Aβn is a Hom-
Akivis algebra. The multiplicativity of Aβn follows from the fact that β is an
endomorphism of (A, [−,−], [−,−,−]). �

5. Hom-Malcev algebras from Hom-Akivis algebras

As for Akivis algebras, the notion of a Hom-Akivis algebra seems to be too
wide in order to develop interesting specific results. For this purpose, it would
be natural to consider some additional conditions and properties on Hom-Akivis
algebras.

In this section, we consider Hom-alternativity and Hom-flexibility in Hom-
Akivis algebras. The main result here (see Theorem 5.5) is that the Hom-Akivis
algebra associated with a Hom-alternative algebra has a Hom-Malcev structure
(this could be seen as another version of Theorem 3.8 in [22]).

Since only the ternary operation of an Akivis algebra is involved in its alter-
nativity or flexibility [3], we report these notions to Hom-Akivis algebras in the
following

Definition 5.1. A Hom-Akivis algebra Aα := (A, [−,−], [−,−,−], α) is said to
be:

(i) Hom-flexible, if [x, y, x] = 0, for all x, y ∈ A;
(ii) Hom-alternative, if [−,−,−] is alternating (i.e. [−,−,−] vanishes when-

ever any pair of variables are equal).

Remark. By linearization, as for associators in nonassociative algebras, one
checks that

(1) the Hom-flexible law [x, y, x] = 0 in Aα is equivalent to
[x, y, z] = −[z, y, x];

(2) the Hom-alternativity of Aα is equivalent to its left Hom-alternativity
([x, x, y] = 0) and right Hom-alternativity ([y, x, x] = 0) for all x, y ∈ A.

The following result is an immediate consequence of Theorem 4.2 and Defini-
tion 5.1.

Theorem 5.2. Let (A, µ, α) be a non-Hom-associative algebra and
(A, [−,−], as(−,−,−), α) its associate Hom-Akivis algebra.

(i) If (A, µ, α) is Hom-flexible, then (A, [−,−], as(−,−,−), α) is
Hom-flexible.

(ii) If (A, µ, α) is Hom-alternative, then so is (A, [−,−], as(−,−,−), α).
�

We have the following characterization of Hom-Lie algebras in terms of Hom-
Akivis algebras.
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Proposition 5.3. Let Aα := (A, [−,−], [−,−,−], α) be a Hom-flexible Hom-
Akivis algebra. Then Aα is a Hom-Lie algebra if and only if 	(x,y,z)[x, y, z] = 0,
for all x, y ∈ A.

Proof: The Hom-Akivis identity (4.1) and the Hom-flexibility in Aα imply

	(x,y,z)[[x, y], α(z)] = 2 	(x,y,z)[x, y, z]

so that 	(x,y,z)[[x, y], α(z)] = 0 if and only if 	(x,y,z)[x, y, z] = 0 (recall that the
ground field K is of characteristic 0). �

The following result is a slight generalization of Proposition 3.17 in [22], which
in turn generalizes a similar well-known result in alternative rings:

Proposition 5.4. Let Aα := (A, [−,−], [−,−,−], α) be a Hom-alternative Hom-
Akivis algebra. Then

(5.1) 	(x,y,z)[[x, y], α(z)] = 6 	(x,y,z)[x, y, z]

for all x, y, z ∈ A.

Proof: The application to (4.1) of the Hom-alternativity in Aα gives the proof.
�

We now come to the main result of this section, which is Theorem 3.8 in [22]
but from a point of view of Hom-Akivis algebras.

In [22] D. Yau introduced the notion of a Hom-Malcev algebra: a Hom-Malcev
algebra is a Hom-algebra (A, [−,−], α) such that the binary operation [−,−] is
skew-symmetric and that the identity

(5.2) 	(α(x),α(y),zx)[[α(x), α(y)], α(zx)] = [	(x,y,z)[[x, y], α(z)], α
2(x)]

holds for all x, y, z ∈ A, where zx := [x, z] and 	(α(x),α(y),zx) denotes the sum
over cyclic permutation of α(x), α(y), and zx. The identity (5.2) is called the
Hom-Malcev identity.

Observe that when α = id then, by the skew-symmetry of [−,−], the Hom-
Malcev identity reduces to the Malcev identity ([16], [18]).

The alternativity in Akivis algebras leads to Malcev algebras [3]. The Hom-
version of this result is the following

Theorem 5.5. Let (A, ·, α) be a Hom-alternative Hom-algebra and
(A, [−,−], as(−,−,−), α) its associate Hom-Akivis algebra, where [x, y] = x · y−
y · x for all x, y ∈ A. Then (A, [−,−], as(−,−,−), α) reduces to a Hom-Malcev
algebra.

Proof: From Theorem 4.2 we get that (A, [−,−], as(−,−,−), α) is Hom-alter-
native so that (5.1) implies

(5.3) 	(α(x),α(y),z)[[α(x), α(y)], α(z)] = 6 as(α(x), α(y), z)
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for all x, y, z ∈ A. Now, in (5.3) replace z with zx := [x, z] to get

(5.4) 	(α(x),α(y),zx)[[α(x), α(y)], α(zx)] = 6 as(α(x), α(y), zx).

But as(α(x), α(y), zx) = [as(x, y, z), α2(x)] in (A, ·, α) (see [21, Corollary 3.15])
so that (5.4) reads

	(α(x),α(y),zx)[[α(x), α(y)], α(zx)] = 6 [as(x, y, z), α2(x)]

i.e., by (5.1) (viewing [x, y, z] as as(x, y, z)),

	(α(x),α(y),zx)[[α(x), α(y)], α(zx)] = [(	(x,y,z)[[x, y], α(z)]), α
2(x)]

and one recognizes the Hom-Malcev identity (5.2). Therefore, we get that
(A, [−,−], as(−,−,−), α) has a Hom-Malcev algebra structure. �
Remark. The procedure described in the proof of Theorem 5.5 somewhat repeats
the one given by A.I. Maltsev in [16] when constructing Moufang-Lie algebras
(now called Malcev algebras) from alternative algebras.

Example 5.6. By Theorem 4.2, the associated Hom-Akivis algebra of the Hom-
flexible Hom-algebra of Example 3.4 is Hom-flexible (see Theorem 5.2). Moreover,
Example 3.5 and Theorem 5.2 (see also Theorem 3.8 in [22]) imply that such a
Hom-Akivis algebra is also a Hom-Malcev algebra.

Acknowledgment. I thank A. Makhlouf and D. Yau for their relevant comments
and suggestions after reading the first draft of this paper, and for communicating
with me about its specific topics. I also thank the referee for valuable suggestions
which helped to improve some parts of this paper.

References

[1] Akivis M.A., Three-webs of multidimensional surfaces, Trudy Geom. Sem. 2 (1969), 7–31
(Russian).

[2] Akivis M.A., Local differentiable quasigroups and three-webs of multidimensional surfaces,
in Studies in the Theory of Quasigroups and Loops, Izdat. “Shtiintsa”, Kishinev, 1973
(Russian), pp. 3–12.

[3] Akivis M.A., Local algebras of a multidimensional three-web, Siberian Math. J. 17 (1976),
no. 1, 3–8.

[4] Akivis M.A., Goldberg V.V. Algebraic aspects of web geometry , Comment. Math. Univ.
Carolin. 41 (2000), no. 2, 205–236.

[5] Ataguema H., Makhlouf A., Silvestrov S.D., Generalization of n-ary Nambu algebra and
beyond , J. Math. Phys. 50 (2009), no. 8, 083501.

[6] Fregier Y., Gohr A., On Hom-type algebras, arXiv:0903.3393v2 [math.RA] (2009).
[7] Fregier Y., Gohr A., On unitality conditions for Hom-associative algebras,

arXiv:0904.4874v2 [math.RA] (2009).
[8] Gohr A., On Hom-algebras with surjective twisting, arXiv:0906.3270v3 [math.RA] (2009).

[9] Hartwig J.T., Larsson D., Silvestrov S.D., Deformation of Lie algebras using σ-derivations,
J. Algebra 295 (2006), 314–361.

[10] Hofmann K.H., Strambach K., Lie’s fundamental theorems for local analytical loops, Pacific
J. Math. 123 (1986), no. 2, 301–327.



500 A.N. Issa

[11] Kuzmin E.N., Malcev algebras of dimension five over a field of zero characteristic, Algebra
i Logika 9 (1970), 691–700.

[12] Makhlouf A., Hom-alternative algebras and Hom-Jordan algebras, International Elect. J.
Alg. 8 (2010), 177–190 (arXiv: 0909.0326v1 [math.RA] (2009)).

[13] Makhlouf A., Paradigm of nonassociative Hom-algebras and Hom-superalgebras, Pro-
ceedings of Jordan Structures in Algebra and Analysis Meeting, eds. J. Carmona Tapia,
A. Morales Campoy, A.M. Peralta Pereira, M.I. Ramirez Ivarez, Publishing House: Circulo
RoJo (2010), pp. 145–177.

[14] Makhlouf A., Silvestrov S.D., Hom-algebra structures, J. Gen. Lie Theory Appl. 2 (2008),
51–64.

[15] Makhlouf A., Silvestrov S.D., Hom-algebras and Hom-coalgebras, J. Algebra Appl. 9 (2010),
no. 4, 553–589 (arXiv: 0811.0400v2 [math.RA] (2008)).

[16] Maltsev A.I., Analytic loops, Mat. Sb. 36 (1955), 569–576.
[17] Myung H.C., Malcev-Admissible Algebras, Progress in Mathematics, 64, Birkhäuser,
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