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BATCH SCHEDULING PROBLEM WITH DUE-DATE
AND FUZZY PRECEDENCE RELATION

Xuesong Li, Hiroaki Ishii and Minghao Chen

A single-machine batch scheduling problem is investigated. Each job has a positive process-
ing time and due-date. Setup times are assumed to be identical for all batches. All batch sizes
cannot exceed a common upper bound. As in many practical situations, jobs have to be subject
to flexible precedence constraints. The aim of this paper is to find an optimal batch sequence.
The sequence is to minimize the maximal completion time and maximize the minimum value of
desirability of the fuzzy precedence. However, there usually exists no batch sequence optimizing
both objectives at a time. Therefore, we seek some non-dominated batch sequences after the
definition of non-dominated batch sequence. Based on an iterative Procedure HL proposed by
Cheng et al., an efficient algorithm is presented to find some non-dominated batch sequences.

Keywords: single-machine, batch scheduling, modified due-date, fuzzy precedence rela-
tion, non-dominated batch sequence

Classification: 90B35, 90C29, 90C70, 68Q25

1. INTRODUCTION

In batch scheduling problems, jobs are grouped (each group is called batch) and sched-
uled in batches, and a setup time is incurred when starting a new batch. Batch availabil-
ity is assumed here, i. e. the completion time of the batch is the completion time of the
final job in the batch. Depending on the calculation of the length of a batch, two types
of batching problems exist, denoted by p-batching problems and s-batching problems
[1]. For p-batching problems the length of a batch is equal to the largest processing
time among all jobs in the batch, while for s-batching problems the length is sum of the
processing times of all jobs in the batch.

Till now, there exist many researches on a batch problem [2, 3, 4, 5, 6, 7, 9, 10, 11,
12, 15, 16, 17]. There are also survey papers [13, 14]. This paper treats one model of
s-batch problem which considers a single machine batch scheduling problem with due-
date and fuzzy precedence constraints. Section 2 formulates the ordinary precedence
relation case. Modified due-date is used to make a sequence which is compatible with
the precedence constraints. Section 3 proposes an efficient solution procedure for the or-
dinary precedence relation problem, which is based on the Procedure HL [4] to partition
the job sequence into batches. Section 4 presents a numerical example to illustrate how
the solution procedure runs. Section 5 formulates the fuzzy version of a single machine
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batching scheduling problem, i. e. the fuzzy precedence relation, as the main problem
of this paper. An efficient algorithm is proposed to solve the bi-criteria problem, i. e.
minimize the maximal completion time and maximize the minimum value of desirability
of the fuzzy precedence. Since usually there exist no batch sequence optimizing both
objectives at a time, we seek some non-dominated batch sequences after the definition of
non-dominated batch sequence by the algorithm. Also a numerical example is presented
to illustrate how the algorithm runs. Section 6 summarizes results in this paper and
discusses further research problems.

2. ORDINARY PRECEDENCE RELATION CASE

There are n simultaneously available jobs {J1, J2, . . . , Jn} to be scheduled non-preemptively
for processing on a single machine in batches. The machine is continuously available
from t = 0, and can process only one job at a time. Each job Ji has a positive processing
time Pi and due-date di. A sequence- and batch- independent setup time, denoted by s,is
incurred whenever a batch is formed. Setup times are assumed to be non-anticipatory.
All batch sizes cannot exceed a common upper bound b. Jobs have to be subject to a set
of precedence constraints, PC. A precedence relation, Ji ≺ Jj in PC implies that job Ji

must be completed before job Jj starts to be processed. The problem is to find the opti-
mal solution consisting of a batch number and allocation of jobs to batches minimizing
the maximum completion time under a common limited batch size.

Under the above setting, the following single machine scheduling problem is consid-
ered:

P : Minimize Cmax =
n∑

j=1

pj + ks

Subject to
k∑

i=1

|Bi| = n,

|Bi| ≤ b, i = 1, . . . , k,
Cj ≤ dj , j ∈ Bi, i = 1, . . . , k,

where jobs are subject to PC, |Bi| denotes the number of jobs in batch Bi, Cj is the
completion time of job Jj , j ∈ Bi, i = 1, . . . , k and Cmax is the maximum completion
time. Let

Ti = {Jj |Ji ≺ Jj} (1)

be a job set consisting of jobs that Ji precedes.
Lawler and Moore [8] have shown that there exists a feasible schedule that completes

each job until its modified due-date under the precedence relation if and only if there
exists a feasible schedule using modified due-date d

′

i defined as below without precedence
relation.

d
′

i = min{di,min{dj |Jj ∈ Ti}}, i = 1, . . . , n. (2)

Note that if all processing times are positive, a sequence ordered as non-decreasing
modified due-dates is compatible with the precedence constraints. Without loss of gener-
ality, we assume that jobs are indexed in the non-decreasing order of modified due-dates
such that

d
′

1 ≤ d
′

2 ≤ · · · ≤ d
′

n (3)
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where pi ≤ pi+1 if d
′

i = d
′

i+1 (i = 1, . . . , n−1) and in this indexing if Ji ≺ Jj , then i < j.
Now the problem P is reduced to the problem P

′
which finds the optimal batch

number for the sequence arranged by the modified due-dates.

P
′
: Minimize Cmax =

k∑
i=1

∑
j∈Bi

pj + ks

Subject to
k∑

i=1

|Bi| = n,

|Bi| ≤ b, i = 1, . . . , k,
Cj ≤ d

′

j , j ∈ Bi, i = 1, . . . , k.

3. SOLUTION PROCEDURE FOR ORDINARY PRECEDENCE RELATION CASE

Assume that the setup time s and job processing times pi (i = 1, . . . , n) are fixed. In this
case, Cheng et al. [4] suggested the Procedure HL to partition the optimal job sequence
into batches. In this paper, Algorithm 1 is proposed based on the Procedure HL to
solve problem P

′
.

Outline of Algorithm 1. The first batch is initiated with the setup time only. At
the beginning of iteration j, j = 1, . . . , n, jobs 1, . . . , j − 1, are assumed to have been
assigned into batches. Job j is assigned as follows. If the constraints of problem P

′
can

be satisfied with the addition of j to the last batch, then do so. Otherwise, if job j can
be completed under the constraints of problem P

′
by starting a new batch, then do so.

If neither is possible, then no feasible schedule exists.

Algorithm 1.

Step 0. Set j = 1, k = 1, Bi = {J1}. Go to Step 1.

Step 1. If the current batch Bk does not include any predecessor of job j and all jobs
can be completed till their modified due-dates by adding job j to Bk, then go to Step 2.
Otherwise, go to Step 5.

Step 2. If the completion time of the current batch Bk does not exceed the modified
due-dates by adding job j to Bk, then go to Step 3. Otherwise, go to Step 5.

Step 3. If the number of jobs in the current batch Bk does not exceed the upper bound
b, then go to Step 4. Otherwise, go to Step 5.

Step 4. Set Bk ← Bk ∪ {j}. If j = n, terminate. Otherwise return to Step 1 after
setting j = j + 1.

Step 5. Set k = k + 1. If k = n + 1, terminate as no feasible batch sequence exists.
Otherwise return to Step 1 after setting j = j + 1.

Theorem 1. A schedule constructed by above Algorithm 1 is optimal for problem
P

′
. Time complexity of the algorithm is O(n2).

P r o o f . Let S be a schedule constructed by the algorithm and let S∗ be an optimal
schedule. Assume that both schedules coincide until J1, J2, . . . , Ji−1. Then we have two
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situations as shown in Figure 1 and Figure 2. We have d
′

i ≤ d
′

j which follows from the
fact that in S job j is scheduled according to (3).
Case 1. Jj and Ji are in the same batch. Let i1, . . . , ik be all jobs scheduled in S∗ between
Jj and Ji. Furthermore, assume that these jobs are ordered according to starting time.
If exchange i with j, there is a feasible schedule S

′
again. Furthermore, S

′
is also optimal

because d
′

i ≤ d
′

j . S and S
′

coincide till J1, J2, . . . , Ji. Now we seek next different job
in S

′
from S. If that job cannot be found, it means that S is also an optimal batch

sequence. Otherwise, check case 1 or case 2 as below and continue this process after a
finite number of steps, an optimal schedule which coincides with S is obtained.
Case 2. Jj and Ji are in different batches. According to the rule which constructs
schedule S, we can obtain that i < j and d

′

i ≤ d
′

j . Therefore, the only possibility should
be considered is the case pi ≤ pj . Let u be the finishing time of batch h. So if exchange
the place of Jj with Ji in S∗, there is a feasible schedule S

′
again. Furthermore, S

′
is

again optimal because u ≤ d
′

i ≤ d
′

j where u is the completion time of the batch including
Ji in S∗. Further S and S

′
coincide till J1, J2, . . . , Ji. Now search next different job in S

′

from S. If that job cannot be found, it means that S is also an optimal batch sequence.
Otherwise, check case 1 or case 2 and continue this process after a finite number of steps,
an optimal schedule which coincides with S is obtained.

Note that the calculation of modified due-dates is O(n) computational time and that
of constructing Ti = {Jj |Ji ≺ Jj} is O(n2) computational time. By recording the value
of the completion time of the last job and the value of earliest deadline in the current
batch, it requires O(n) time. In total, the above algorithm solves the problem in O(n2)
computational time. �

Fig. 1. Schedules for Jj and Ji in the same batch.

4. NUMERICAL EXAMPLE

Example 1 below demonstrates the use of Algorithm 1.

Example 1. Assume n = 5, s = 1, b = 2. Job set is {A,D, E, F,G}.

pA = 1, pE = 2, pD = 3, pG = 2, pF = 5.dA = 15, dE = 7, dD = 21, dG = 21, dF = 18.

The precedence relations among jobs are shown as Figure 3 where vertices are jobs
and arcs denote precedence relations, i. e. A ≺ E,E ≺ D,E ≺ G, G ≺ F,D ≺ F .
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Fig. 2. Schedules for Jj and Ji in the different batches.

Fig. 3. Precedence relations among jobs.

From (1) we obtain: TA = {E,D,G, F}, TE = {D,G, F}, TD = {F}, TG = {F}.
From (2) we obtain: d

′

A = 7, d
′

E = 7, d
′

D = 18, d
′

G = 18, d
′

F = 18.
Then from (3) we obtain: A ≺ E ≺ G ≺ F , A ≺ E ≺ D ≺ F and G, D are

independent.
Through Algorithm 1, the optimal schedule is achieved as Figure 4 shows.

Fig. 4. Optimal schedule.

The optimal Cmax is 17.

5. PROBLEM WITH FUZZY PRECEDENCE RELATION

In this section, the fuzzy version of a single machine batching scheduling problem is
considered. An efficient algorithm is proposed to solve the bi-criteria problem, i. e.
minimize the maximal completion time and maximize the minimum value of desirability
of the fuzzy precedence. Then a numerical example is presented to demonstrate how
the algorithm runs.
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5.1. Problem formulation

There exists one machine and n jobs, J1, J2, . . . , Jn to be processed on this machine.
Processing time Pj and due-date dj are associated with each job Jj and they are all
positive integers. Further a fuzzy precedence relation is given between every pair of two
jobs. This relation is denoted with the membership function µij for all pairs of two
jobs, Ji and Jj , which denotes the degree of desirability that Ji is processed before Jj .
Assume that if 0 < µij < 1 then µji = 1, and in this case we allow both jobs are in
the same batch. If µij = 1,µji = 0 it means that Ji must precedes Jj , that is, Ji must
be scheduled in a batch before that of Jj . Both µij and µji = 1 means Ji and Jj are
independent. Let Ci denote completion time of Ji, that is, the completion time of the
batch containing Ji. Further let π(i) denote the ith job index of schedule π. Then Cπ

max

is defined to be maximum completion time of schedule π and µπ
min = min{µπ(i)π(k)|i, k =

1, 2, . . . , n, i < k} as the minimum value of desirability of the fuzzy precedence in π.
Under the above setting, we consider the following bi-criteria scheduling problem FP:

FP: Minimize C π
max=

k∑
i=1

∑
j∈Bπ

i

pj + ks

Maximize µπ
min

Subject to
k∑

i=1

|Bπ
i | = n, |Bπ

i | ≤ b, i = 1, . . . , k, Cj ≤ d
′

j , j ∈ Bπ
i , i = 1, . . . , k,

where π is feasible batch sequence (feasible schedule), k is the batch number of schedule
π and if |Bπ

i | = ni, i = 1, . . . , k, then Bπ
1 = (π(1), . . . , π(n1)), . . . , Bπ

i = (π(ni−1) +
1, . . . , π(ni)), . . . , Bπ

k = (π(nk−1) + 1, . . . , π(n)).
Generally speaking, there may not be a schedule that optimizes both criteria, Cπ

max

and µπ
min at a time. Thus, we seek non-dominated schedules defined as below.

First define schedule vector νπ as a vector consisting two elements, i. e., Cπ
max and µπ

min

in some feasible schedule π, that is, νπ = (Cπ
max, µ

π
min) . For two vectors ν1 = (ν1

1 , ν1
2)

and ν2 = (ν2
1 , ν2

2), ν1 dominates ν2 and denote it by ν1 ≤ ν2 when ν1
1 ≤ ν2

1 , ν1
2 ≥ ν2

2 and
ν1 6= ν2. If νπ1 ≤ νπ2 for two schedules π1 and π2, π1 dominates π2. A feasible schedule
π is called to be non-dominated if and only if there exists no feasible schedule π

′
which

dominates π.

5.2. Solution procedure for FP

Sorting 0 < µij < 1, let the result be µ0 , 1 > µ1 > µ2 > · · · > µq > 0 where q is the
number of different µij . The precedence relation is usually described by the precedence
graph PG(V,A), where V is constructed from the job vertices, i. e. Ji, i = 1, 2, . . . , n,
and A is the set of arcs (Ji, Jj) which represents Ji ≺ Jj , i. e. Ji precedes Jj . When
Ji and Jj are independent, there does not exist any arc between them. In the solution
algorithm, precedence graph PG0(V,A0) consists of vertex set V and arc set
A0 , {(Ji, Jj)|µij = µ0 and µji 6= µ0}.

Further, A
l
, {(Ji, Jj)|µij = µ0 and µji = µl}, l = 1, 2, . . . , q, and define PGl(V,Al)

where Al = Al−1 − A
l
, l = 1, 2, . . . , q. Let DV be the current set of non-dominated

schedule vectors and DS the current set of schedules corresponding to each vector
of DV . Following is the description of the solution procedure to find non-dominated
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schedules of FP.

Algorithm 2 for Non-dominated Schedules of FP.

Step 0. Let l = 0, µ0 = 1 and construct PG0(V,A0). From PG0(V,A0), make a
corresponding sequence by [8] and execute Sub-algorithm. Let corresponding optimal
Cmax be C0

max and optimal schedule π0. Set DV ← {C0
max, 1}, DS ← {π0}, and l ← 1,

and go to Step 1.

Step 1. From PGl(V,Al), make a corresponding sequence by [8] and execute Sub-
algorithm. Let corresponding optimal Cmax be Cl

max and optimal schedule be πl. Con-
struct corresponding schedule vector νl = (Cl

max, µ
l
min) where µl

min = min{µπl(i)πl(j)|i, j =
1, 2, . . . , n, i < j}. If νl is dominated by some vector of DV or already included in DV ,
then go to Step 2. Otherwise, set DV ← DV ∪{νl} and DS ← DS∪{πl}. Go to Step 2.

Step 2. Set l← l + 1. If l = q + 1, terminate. Otherwise, return to Step 1.

Sub-algorithm.

Step 0. Set j = 1, Bπl

1 = {Jπl(1)}, and go to Step 1.

Step 1. If there exists i < j such that µπl(i)πl(j) = 1, µπl(j)πl(i) = 0, then go to Step 2.
Otherwise, go to Step 3.

Step 2. If the current batch Bπl

k does not include any predecessor of job πl(j) and all
jobs can be completed till their modified due-dates by adding job πl(j) to Bπl

k , then go
to Step 3. Otherwise, go to Step 6.

Step 3. If the completion time of the current batch Bπl

k does not exceed the modified
due-dates by adding job πl(j) to Bπl

k , then go to Step 4. Otherwise, go to Step 6.

Step 4. If the number of jobs in the current batch Bπl

k does not exceed the upper bound
b, then go to Step 5. Otherwise, go to Step 6.

Step 5. Set Bπl

k ← Bπl

k ∪ {πl(j)}. If j = n, terminate and go back to Main Algorithm.
Otherwise, return to Step 2 after setting j = j + 1.

Step 6. Set k = k + 1, Bπl

k = φ, and return to Step 1.

Theorem 2. A schedule constructed by above Algorithm 2 is non-dominated sched-
ule for problem FP . The complexity of the algorithm is at most O{n4} computational
time.

P r o o f . Validity is clear since each optimal schedule for a fixed precedence relation
corresponding graph PGl(V,Al) is a candidate of non-dominated batch schedules. First
note that q = O(n2) and so time complexity of Algorithm 2 is O(n2)× complexity
of sub-algorithm. Further, the sub-algorithm treats a fixed precedence relation case.
Therefore the proof is similar to the proof of Theorem 1. Only difference is that the
job pair (Ji, Jj) of originally fuzzy precedence relation (either 0 < µij < 1 or 0 <
µji < 1) can be scheduled in a same batch if it is better. So total time complexity is
O(n2)×O(n2) = O(n4). �



Batch scheduling problem 353

5.3. Numerical example

Example 2 below demonstrates the use of Algorithm 2.

Example 2. Assume n = 6, s = 1, b = 4, p1 = 20, p2 = 15, p3 = 12, p4 = 10, p5 =
8, p6 = 9, d1 = 78, d2 = 95, d3 = 78, d4 = 78, d5 = 55, d6 = 48.

Fuzzy precedence constraints:
{J1, J2}, µ12 = 1.00, µ21 = 0, {J1, J3}, µ13 = 1.00, µ31 = 0.58,
{J1, J4}, µ14 = 1.00, µ41 = 0.63, {J2, J3}, µ23 = 1.00, µ32 = 0.50,
{J2, J4}, µ24 = 1.00, µ42 = 0.80, {J3, J4}, µ34 = 1.00, µ43 = 0.70.

The algorithm goes as follows:
First obtain q = 5 and µ0 , 1 > µ1 > µ2 > µ3 > µ4 > µ5 > 0 where µ1 = µ42 = 0.80,

µ2 = µ43 = 0.70, µ3 = µ41 = 0.63, µ4 = µ31 = 0.58, µ5 = µ32 = 0.50. Also a precedence
graph PG0(V,A0) is constructed (see Figure 5(a)).

Fig. 5. Solution procedure.

From (1) we obtain: T1 = {J2, J3, J4}, T2 = {J3, J4}, T3 = {J4}.
From (2) we obtain: d

′

1 = 78, d
′

2 = 78, d
′

3 = 78, d
′

4 = 78, d
′

5 = 55, d
′

6 = 48.
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Fig. 6. Feasible schedules.

Then from (3) we obtain: J6 ≺ J5 ≺ J1 ≺ J2 ≺ J3 ≺ J4 with µ0
min = 1.00, C0

max = 78
and π0 (see Figure 6(a)).

At each iteration of the algorithm, the corresponding solutions are:
If µ0 = 1.00, then π0 (see Figure 6(a)) with µ0

min = 1.00, C0
max = 78;

If µ1 = 0.80, then π1 (see Figure 6(b)) with µ1
min = 0.80, C1

max = 78;
If µ2 = 0.70, then π2 (see Figure 6(c)) with µ2

min = 0.70, C2
max = 77;

If µ3 = 0.63, then π3 (see Figure 6(d)) with µ3
min = 0.63, C3

max = 77;
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If µ4 = 0.58, then π4 (see Figure 6(e)) with µ4
min = 0.58, C4

max = 77;
If µ5 = 0.50, then π5 (see Figure 6(f)) with µ5

min = 0.50, C5
max = 77.

Note that schedule π1 is deleted because it is dominated by schedule π0, and schedules
π3, π4, π5 are deleted because they are dominated by schedule π2. The two remaining
schedules constitute the set of non-dominated solutions in this example.

6. CONCLUSION

This paper has proposed an algorithm for a single machine batch scheduling problem
with due-date and fuzzy precedence constraints. Modified due-date is introduced to
break the precedence relations among jobs. Algorithm 2 is based on the modified
Procedure HL to solve problem. However, since sub-algorithm should not be solved
from the scratch, its complexity may be improved. This problem should be extended
more to the case of fuzzy due-date and fuzzy precedence. We are now attacking the
extended problem.

(Received June 16, 2011)
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