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PERIODIC SOLUTIONS FOR A CLASS OF FUNCTIONAL
DIFFERENTIAL SYSTEM

Weibing Wang and Baishun Lai

Abstract. In this paper, we study the existence of periodic solutions to a
class of functional differential system. By using Schauder,s fixed point theorem,
we show that the system has aperiodic solution under given conditions. Finally,
four examples are given to demonstrate the validity of our main results.

1. Introduction

In this article, we study the existence of ω-periodic solutions to the following
functional differential system
(1.1)
x′i(t) = ai(t)gi(xi(t))− fi(t, x1(t− τ1(t)) , . . . , xn(t− τn(t))) , i = 1, 2, . . . , n,

where ai, τi : R → R are ω-periodic continuous functions and ai(t) > 0 for any
t ∈ [0, ω], fi(t, u1, . . . , un) : Rn+1 → R is ω-periodic in t and gi : R→ R.

When n = 1, the problem (1.1) reduces to the functional differential equation
(1.2) x′(t) = a(t)g

(
x(t)

)
− h
(
t, x(t− τ(t))

)
.

The existence of periodic solutions for the special cases of (1.2) have been considered
extensively by many authors, because (1.2) includes many important models in
mathematical biology, such as, Hematopoiesis models; Nicholson’s blowflies models;
models for blood cell production, see [2, 3, 4, 8, 9, 7] and the references therein.
Recently, Wang [5] investigated existence, multiplicity and nonexistence of positive
periodic solutions for the periodic differential equation
(1.3) x′(t) = a(t)p

(
x(t)

)
x(t)− λh(t)h

(
x(t− τ(t))

)
.

His approach depended on fixed point theorem in a cone. An essential condition
on the function p in [5] is that p is bounded above and below by positive constants
on [0,+∞). Hence, the method in [5] is not necessarily suitable for functional
differential equation with general nonlinear term p. For example, to our best
knowledge, results about periodic solutions for the following functional differential
equation
(1.4) x′(t) = a(t)xα(t)− λh(t)f

(
x(t− τ(t))

)
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are few, here α 6= 0 is a constant and λ > 0 is a positive real parameter.
In the paper, we obtain sufficient conditions for the existence of periodic solutions

for the system (1.1) by using Schauder,s fixed point theorem. Our results improve
and generalize the corresponding results of [1, 6, 10].

2. Main results

The following well-known Schauder,s fixed point theorem is crucial in our
arguments.

Lemma 2.1. Let X be a Banach space with D ⊂ X closed and convex. Assume
that T : D → D is a completely continuous map, then T has a fixed point in D.

Put Cω = {u ∈ C(R,R) : u(t + ω) = u(t), t ∈ R} with the norm defined by
‖u‖Cω = max0≤t≤ω |u(t)| and

E = {x = (x1(t), . . . , xn(t)) : xi ∈ Cω} , ‖x‖E =
n∑
i=1
‖xi‖Cω .

Then Cω and E are Banach spaces.
Let p, q ∈ Cω and consider the following two differential equations

x′(t) = −p(t)x(t) + q(t) ,(2.1)

x′(t) = p(t)x(t)− q(t) .(2.2)

Lemma 2.2. Assume that
∫ ω

0 p(t)dt 6= 0, then (2.1) has a unique ω-periodic
solution

x(t) =
∫ t+ω

t

exp
∫ s
t
p(r)dr

exp
∫ ω

0 p(r)dr − 1
q(s) ds

and (2.2) has a unique ω-periodic solution

x(t) =
∫ t+ω

t

exp
∫ t+ω
s

p(r) dr
exp

∫ ω
0 p(r)dr − 1

q(s) ds .

Let M ∈ R, m ∈ R : M > m and define

≺[m,M ] = {i : gi(m) ≤ gi(M), 1 ≤ i ≤ n} ,

�[m,M ] = {i : gi(m) > gi(M), 1 ≤ i ≤ n} .

By using Schauder,s fixed point theorem, we obtain the following existence result
on the periodic solution for (1.1).

Theorem 2.1. Assume that there exist constants Mi > mi, i = 1, 2, . . . , n such
that gi ∈ C1([mi,Mi], R), fi ∈ C(R× Λ, R), here Λ = [m1,M1]× · · · × [mn,Mn],
and for any ui ∈ [mi,Mi] and t ∈ [0, ω],

gi(Mi) ≤
fi(t, u1, . . . , un)

ai(t)
≤ gi(mi) if i ∈�[mi,Mi](2.3)
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and

gi(mi) ≤
fi(t, u1, . . . , un)

ai(t)
≤ gi(Mi) if i ∈≺[mi,Mi] .(2.4)

Then (1.1) has at least one periodic solution (x∗1(t), . . . , x∗n(t)) ∈ E with mi ≤ x∗i ≤
Mi(1 ≤ i ≤ n).

Proof. Without loss of the generality, we assume that there exists a k : 0 ≤ k ≤ n
such that

i ∈�[mi,Mi] for 1 ≤ i ≤ k , i ∈≺[mi,Mi] for k + 1 ≤ i ≤ n ,

here if i ≤ 0, �[mi,Mi]= φ, if i ≥ n+ 1, ≺[mi,Mi]= φ.
Since gi ∈ C1([mi,Mi], R), there exist li > 0 such that

1 + 1
li
g′i(u) > 0 , u ∈ [mi,Mi], i = 1, 2, . . . , k ,(2.5)

1− 1
li
g′i(u) > 0 , u ∈ [mi,Mi], i = 1 + k, . . . , n .(2.6)

Assume that (x1(t), . . . , xn(t)) ∈ E is a solution of (1.1), then

x′i(t) = −liai(t)xi(t)+ai(t)
[
gi(xi(t))+ lixi(t)−

fi(t,X(t−τ(t)))
ai(t)

]
, i = 1, 2, . . . , k ,

x′i(t) = liai(t)xi(t)−ai(t)
[
lixi(t)− gi(xi(t))+ fi(t,X(t−τ(t)))

ai(t)

]
, i = k + 1, . . . , n

and

xi(t) =
∫ t+ω

t

ai(s) exp
∫ s
t
liai(r) dr

exp
∫ ω

0 liai(r) dr − 1

[
gi
(
xi(s)

)
+lixi(s)−

fi(s,X(s−τ(s)))
ai(s)

]
ds ,

i = 1, 2, . . . , k ,

xi(t) =
∫ t+ω

t

ai(s) exp
∫ t+ω
s

liai(r) dr
exp

∫ ω
0 liai(r) dr − 1

[
lixi(s)− gi

(
xi(s)

)
+ fi(s,X(s−τ(s)))

ai(s)

]
ds ,

i = k + 1, . . . , n ,

where fi(t,X(t− τ(t)) = fi(t, x1(t− τ1(t)), . . . , xn(t− τn(t))).
Define a set Ω in E and an operator T : E → E by

Ω = {x ∈ E : mi ≤ xi ≤Mi, i = 1, 2 . . . , n} ,

(Tx)(t) =
(
(Tx1)(t), (Tx2)(t), . . . , (Txn)(t)

)
, x =

(
x1(t), . . . , xn(t)

)
∈ E ,



142 WEIBING WANG AND BAISHUN LAI

where

(Txi)(t) : =
∫ t+ω

t

ai(s) exp
∫ s
t
liai(r) dr

exp
∫ ω

0 liai(r) dr − 1

×
[
gi(xi(s)) + lixi(s)−

fi(s,X(s− τ(s)))
ai(s)

]
ds , 1 ≤ i ≤ k ,

(Txi)(t) : =
∫ t+ω

t

ai(s) exp
∫ t+ω
s

liai(r) dr
exp

∫ ω
0 liai(r) dr − 1

×
[
lixi(s)− gi(xi(s)) + fi(s,X(s− τ(s)))

ai(s)

]
ds , k + 1 ≤ i ≤ n .

First, we show that T (Ω) ⊂ Ω. Using (2.5) and (2.6), we obtain that for x ∈ Ω,

mi + 1
li
gi(mi) ≤ xi(t) + 1

li
gi(xi(t)) ≤Mi + 1

li
gi(Mi) , i = 1, 2, . . . , k ,

mi −
1
li
gi(mi) ≤ xi(t)−

1
li
gi(xi(t)) ≤Mi −

1
li
gi(Mi) , i = k + 1, . . . , n .

Using (2.3) and (2.4), we have

(Txi)(t) =
∫ t+ω

t

liai(s) exp
∫ s
t
liai(r) dr

exp
∫ ω

0 liai(r) dr − 1

[ 1
li
gi
(
xi(s)

)
+xi(s)−

fi(s,X(s−τ(s)))
liai(s)

]
ds

∈
[
mi

∫ t+ω

t

liai(s) exp
∫ s
t
liai(r) dr

exp
∫ ω

0 liai(r) dr − 1
ds,Mi

∫ t+ω

t

liai(s) exp
∫ s
t
liai(r) dr

exp
∫ ω

0 liai(r) dr − 1
ds
]

= [mi,Mi] , i = 1, 2, . . . , k ,

(Txi)(t) =
∫ t+ω

t

ai(s) exp
∫ t+ω
s

liai(r)dr
exp

∫ ω
0 liai(r) dr − 1

[
lixi(s)−gi(xi(s))+ fi(s,X(s− τ(s)))

ai(s)

]
ds

∈
[
mi

∫ t+ω

t

liai(s) exp
∫ t+ω
s

liai(r) dr
exp

∫ ω
0 liai(r) dr − 1

ds,Mi

∫ t+ω

t

liai(s) exp
∫ t+ω
s

liai(r) dr
exp

∫ ω
0 liai(r) dr − 1

]
= [mi,Mi] , i = k + 1, k + 2, . . . , n .
Next, we show that T : Ω→ Ω is completely continuous. Obviously, T (Ω) is a

uniformly bounded set and T is continuous on Ω, so it suffices to show T (Ω) is
equi-continuous by Ascoli-Arzela theorem. For any x ∈ Ω, we have

(Txi)′(t) = −liai(t)(Txi)(t) + ai(t)
[
gi(xi(t)) + lixi(t)−

fi(t,X(t− τ(t)))
ai(t)

]
,

i = 1, 2, . . . , k ,

(Txi)′(t) = liai(t)(Txi)(t)− ai(t)
[
lixi(t)− gi(xi(t)) + fi(t,X(t− τ(t)))

ai(t)

]
,

i = k + 1, . . . , n .
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Since T (Ω) is bounded and fi, gi, ai are continuous, there exists ρ > 0 such that

|(Txi)′(t)| ≤ ρ , x ∈ Ω , i = 1, 2, . . . , n ,

which implies that T (Ω) is equi-continuous. So T is a completely continuous operator
on Ω. Clearly, Ω is a close and convex set in E. Therefore, T has a fixed point x∗ ∈ Ω
by Lemma 2.1. Furthermore, mi ≤ x∗i (t) ≤Mi, which means (x∗1(t), . . . , x∗n(t)) ∈ E
is a ω-periodic solution of (1.1). The proof is complete. �

Remark 2.1. Assume that all conditions of Theorem 2.1 are satisfies. Further
suppose that there exist 1 ≤ i0 ≤ n and t0 ∈ [0, ω] such that any ui ∈ [mi,Mi],

fi0(t0, u1, . . . , un)
ai0(t0) < gi0(mi0) if i0 ∈�[mi0 ,Mi0 ](2.7)

and
fi0(t0, u1, . . . , un)

ai0(t0) > gi0(mi0) if i0 ∈≺[mi0 ,Mi0 ] .(2.8)

Then x∗i0 > mi0 for any t ∈ [0, ω].

Proof. Assume that there is a t∗ ∈ [0, ω] such that x∗i0(t∗) = mi0 . Then

mi0 =
∫ t∗+ω

t∗

ai0(s) exp
∫ s
t∗
li0ai0(r) dr

exp
∫ ω

0 li0ai0(r) dr − 1

×
[
gi0(x∗i0(s)) + li0x

∗
i0(s)− fi0(s,X∗(s− τ(s)))

ai0(s)

]
ds, i0 ≤ k ,

or

mi0 =
∫ t∗+ω

t∗

ai0(s) exp
∫ t∗+ω
s

li0ai0(r) dr
exp

∫ ω
0 li0ai0(r) dr − 1

×
[
li0x
∗
i0(s)− gi0(x∗i0(s)) + fi0(s,X∗(s− τ(s)))

ai0(s)

]
ds, i0 > k ,

where fi(t,X∗(t− τ(t)) = fi(t, x∗1(t− τ1(t)), . . . , x∗n(t− τn(t))).
On the other hand, since for s ∈ [0, ω],

gi0(x∗i0(s))
li0

+ x∗i0(s)− fi0(s,X∗(s− τ(s)))
li0ai0(s) −mi0 ≥ 0 for i0 ≤ k ,

x∗i0(s)−
gi0(x∗i0(s))

li0
+ fi0(s,X∗(s− τ(s)))

li0ai0(s) −mi0 ≥ 0 for i0 > k ,

one can obtain that for any s ∈ [0, ω],
gi0(x∗i0(s))

li0
+ x∗i0(s)− fi0(s,X∗(s− τ(s)))

li0ai0(s) −mi0 ≡ 0 for i0 ≤ k

x∗i0(s)−
gi0(x∗i0(s))

li0
+ fi0(s,X∗(s− τ(s)))

li0ai0(s) −mi0 ≡ 0 for i0 > k ,
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which is a contradiction since

0 ≥ gi0(mi0)
li0

− fi0(t0, X∗(t0 − τ(t0)))
li0ai0(t0) > 0 for i0 ≤ k ,

0 ≥ −gi0(mi0)
li0

+ fi0(t0, X∗(t0 − τ(t0)))
li0ai0(t0) > 0 for i0 > k .

�

Remark 2.2. Assume that all conditions of Theorem 2.1 are satisfies. Further
suppose that there exist 1 ≤ r0 ≤ n and t1 ∈ [0, ω] such that any ui ∈ [mi,Mi],

fr0(t1, u1, . . . , un)
ar0(t1) > gr0(Mr0) if r0 ∈�[mr0 ,Mr0 ](2.9)

and
fr0(t1, u1, . . . , un)

ar0(t1) < gr0(Mr0) if r0 ∈≺[mr0 ,Mr0 ] .(2.10)

Then x∗r0
< Mr0 for any t ∈ [0, ω].

Consider the equations
x′(t) = −a(t)x(t) + f

(
t, x(t− τ(t))

)
;(2.11)

x′(t) = a(t)x(t)− f
(
t, x(t− τ(t))

)
(2.12)

where f is ω-periodic in t, a, τ are ω-periodic continuous functions and a(t) > 0
for all t ∈ R.

Corollary 2.1. Assume that there exist constants M > m such that f ∈ C(R ×
[m,M ], R) and for any u ∈ [m,M ] and t ∈ [0, ω]

ma(t) ≤ f(t, u) ≤Ma(t) .
Then (2.11) (or (2.12)) has at least one periodic solution m ≤ x ≤M .

Next, we consider the existence of a positive ω-periodic solution for problem (1.4).
We give explicit intervals of λ such that (1.4) has at least one positive ω-periodic
solution.

In the following, we assume that a, h, τ : R → R are ω-periodic continuous
functions and a(t) > 0, h(t) > 0 for any t ∈ [0, ω]. f : (0,+∞) → (0,+∞) is
continuous.

Put

f0 = lim sup
t→0+

f(t)
tα

, f0 = lim inf
t→0+

f(t)
tα

, f∞ = lim sup
t→+∞

f(t)
tα

, f∞ = lim inf
t→+∞

f(t)
tα

,

δ∗ = max
t∈[0,ω]

h(t)
a(t) , δ = min

t∈[0,ω]

h(t)
a(t) .

Theorem 2.2. The problem (1.4) has at least one positive periodic solution if one
of the following conditions holds:



PERIODIC SOLUTIONS FOR A CLASS OF FUNCTIONAL DIFFERENTIAL SYSTEM 145

(H1) α < 0, lim inft→0+ f(t) > 0, lim supt→+∞ f(t) < +∞ and
(f∞δ)

−1 < λ < (f0δ
∗)−1;

(H2) α > 0, lim supt→0+ f(t) < +∞, lim inft→+∞ f(t) > 0 and
(f0δ)

−1 < λ < (f∞δ∗)−1.

Proof. Assume that (H1) holds. From the definition of f0, f∞ and (H1), there
exist r1 > 0 and r̄1 > r1 such that

λh(t)f(u)
a(t) ≤ uα , 0 < u ≤ r1 , inf

u∈(0,r1]
f(u) > 0 ,

λh(t)f(u)
a(t) ≥ uα , u ≥ r̄1 , sup

u∈[r̄1,+∞)
f(u) < +∞ .

Let λ ∈
( 1
f
∞
δ ,

1
f0δ
∗

)
. It is easy to check that

inf
{λh(t)f(u)

a(t) : t ∈ [0, ω], u ∈ (0, r̄1]
}

:= µ1 > 0 ,

sup
{λh(t)f(u)

a(t) : t ∈ [0, ω], u ∈ [r1,+∞)
}

:= µ̄1 < +∞ .

Put

m = min
{r1

2 , µ̄
1
α
1

}
, M = max

{
2r̄1, µ

1
α
1

}
,

then

Mα ≤ µ1 ≤
λh(t)f(u)
a(t) ≤ xα ≤ mα , m ≤ u ≤ r1 ,

Mα ≤ xα ≤ λh(t)f(u)
a(t) ≤ µ̄1 ≤ mα , r̄1 ≤ u ≤M .

On the other hand,

Mα ≤ µ1 ≤
λh(t)f(u)
a(t) ≤ µ̄1 ≤ mα , r1 ≤ u ≤ r̄1 .

Hence,

Mα ≤ λh(t)f(u)
a(t) ≤ mα , m ≤ u ≤M .

By Theorem 2.1, (1.4) has at least one periodic solution x ∈ Cω : 0 < m ≤ x ≤M .

Assume that (H2) holds. There exist 0 < r3 < 1 and r̄3 > 1 such that
λh(t)f(u)
a(t) ≥ uα , 0 < u ≤ r3 , sup

u∈(0,r3]
f(u) < +∞ ,

λh(t)f(u)
a(t) ≤ uα , u ≥ r̄3 , inf

u∈[r̄3,+∞)
f(u) > 0 .
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Let λ ∈
( 1
f

0
δ ,

1
f∞δ

∗

)
, then

inf
{λh(t)f(u)

a(t) : t ∈ [0, ω], u ∈ [r3,+∞)
}

:= µ3 > 0 ,

sup
{λh(t)f(u)

a(t) : t ∈ [0, ω], u ∈ (0, r̄3]
}

:= µ̄3 < +∞ .

Put

m = min
{r3

2 , µ
1
α
3

}
, M = max

{
2r̄3, µ̄

1
α
3

}
,

then

mα ≤ λh(t)f(u)
a(t) ≤Mα , m ≤ u ≤M .

By Theorem 2.1, (1.4) has at least one periodic solution x ∈ Cω : 0 < m ≤ x ≤M .
The proof is complete. �

Corollary 2.2.

(1) Assume that α < 0 and 0 < lim inft→0+ f(t) ≤ lim supt→0+ f(t) < +∞,
then (1.4) has at least one positive periodic solution for sufficiently large
λ > 0.

(2) Assume that α < 0 and 0 < lim inft→+∞ f(t) ≤ lim supt→+∞ f(t) < +∞,
then (1.4) has at least one positive periodic solution for sufficiently small
λ > 0.

(3) Assume that α > 0 and 0 < lim inft→0+ f(t) ≤ lim supt→0+ f(t) < +∞,
then (1.4) has at least one positive periodic solution for sufficiently small
λ > 0.

(4) Assume that α > 0 and 0 < lim inft→+∞ f(t) ≤ lim supt→+∞ f(t) < +∞,
then (1.4) has at least one positive periodic solution for sufficiently large
λ > 0.

Proof. Here we only prove case (1). Since 0 < lim inft→0+ f(t) ≤ lim supt→0+ f(t) <
+∞, there exists 0 < r < 1 such that

µ := inf
t∈(0,r]

f(t) ≤ sup
t∈(0,r]

f(t) := ν < +∞ .

Let λ > 0 such that (λδµ) 1
α < r and set

m = (λδ̄ν) 1
α , M = (λδµ) 1

α ,

then r > M > m > 0 and

Mα ≤ λh(t)f(u)
a(t) ≤ mα , m ≤ u ≤M .

By Theorem 2.1, (1.4) has at least one periodic solution x ∈ Cω : 0 < m ≤ x ≤M .
The proof is complete. �
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3. Some examples

In this section, we apply the main results obtained in previous section to several
examples.

Example 3.1. Consider the differential equation

(3.1) x′(t) = 1
3
√

sin x(t)
+ b(t) ,

where b(t) is a ω-periodic continuous function.
It is easy to verify form Theorem 2.1 that (3.1) has least two periodic solutions

0 < |x1| < 0.5π < |x2| < π if |b(t)| > 1 for all t ∈ R. Since xi + 2kπ(i = 1, 2, k ∈ Z)
is also the periodic solutions of (3.1), (3.1) has infinitely many periodic solutions
when |b(t)| > 1.

Example 3.2. Consider the differential equation

(3.2) x′(t) =
(

1 + sin t
100

)
x3(t)− f

(
x(t− cos t)

)
,

where

f(u) =
{

0.1 , u < 2
3 ,

u2 − u+ 5
4 , u > 1 .

In (3.2), a(t) = 1 + 0.01 sin t and g(x) = x3. Put m1 = 0.1, M1 = 0.6, m2 = 1.1,
M2 = 2, then

g(mi) ≤
f(u)
a(t) ≤ g(Mi) , ∀u ∈ [mi,Mi] , t ∈ R , i = 1, 2 .

By Theorem 2.1, (3.2) has two positive 2π-periodic solutions x1, x2 such that
m1 ≤ x1 ≤M1,m2 ≤ x2 ≤M2.

Example 3.3. Consider the differential equation

(3.3) x′(t) = x3(t) + 1
x(t) − λ

(
1 + sin t

2

)(
2− sin x(t− cos t)

)
where λ > 0 is a positive real parameter.

In (3.3), a(t) = 1, g(x) = x3 + x−1 and f(t, u) = λ
(
1 + sin t

2
)
(2− sin u). Put

m1 = 2
9λ , M1 = 1 , m2 = 1 , M2 = 3

√
9λ
2 ,

then for sufficiently large λ > 0,

g(M1) ≤ f(t, u) ≤ g(m1) , u ∈ [m1,M1] , t ∈ R ,

g(m2) ≤ f(t, u) ≤ g(M2) , u ∈ [m2,M2] , t ∈ R .

By Theorem 2.1, (3.3) has two positive 2π-periodic solutions x1 ∈ [m1,M1], x2 ∈
[m2,M2] for sufficiently large λ > 0.
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Example 3.4. Consider the differential system

(3.4)

x
′(t) = (2− cos t)x(t)− y2(t) ,

y′(t) = −2 sin y(t) + exp(0.5x(t)− y(t)) .

Put D = [0.01, 0.29]× [0.2, 0.53], then for (u1, u2) ∈ D and t ∈ [0, 2π],

0.01 ≤ u2
2

2− cos t ≤ 0.29 , 2 sin 0.2 ≤ e0.5u1−u2 ≤ 2 sin 0.53 .

By Theorem 2.1, (3.4) has a 2π-periodic solution (x(t), y(t)) such that 0.01 ≤
x(t) ≤ 0.29 and 0.2 ≤ y(t) ≤ 0.53.

Acknowledgement. The authors would like to thank the referees for the com-
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