
Czechoslovak Mathematical Journal

Vincenzo de Filippis; Giovanni Scudo; Mohammad S. Tammam El-Sayiad
An identity with generalized derivations on Lie ideals, right ideals and Banach algebras

Czechoslovak Mathematical Journal, Vol. 62 (2012), No. 2, 453–468

Persistent URL: http://dml.cz/dmlcz/142838

Terms of use:
© Institute of Mathematics AS CR, 2012

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/142838
http://dml.cz


Czechoslovak Mathematical Journal, 62 (137) (2012), 453–468

AN IDENTITY WITH GENERALIZED DERIVATIONS ON

LIE IDEALS, RIGHT IDEALS AND BANACH ALGEBRAS

Vincenzo de Filippis, Giovanni Scudo, Messina,

Mohammad S. Tammam El-Sayiad, Jeddah

(Received January 3, 2011)

Abstract. Let R be a prime ring of characteristic different from 2, U the Utumi quotient
ring of R, C = Z(U) the extended centroid of R, L a non-central Lie ideal of R, F a non-
zero generalized derivation of R. Suppose that [F (u), u]F (u) = 0 for all u ∈ L, then one of
the following holds:
(1) there exists α ∈ C such that F (x) = αx for all x ∈ R;
(2) R satisfies the standard identity s4 and there exist a ∈ U and α ∈ C such that

F (x) = ax+ xa+ αx for all x ∈ R.
We also extend the result to the one-sided case. Finally, as an application we obtain

some range inclusion results of continuous or spectrally bounded generalized derivations on
Banach algebras.
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1. Introduction

Let R be a prime ring with center Z(R) and extended centroid C. Many results in

literature indicate that the global structure of a ring R is often tightly connected to

the behaviour of additive mappings defined on R. A well known result of Posner [25]

states that if d is a derivation of R such that [d(x), x] ∈ Z(R) for any x ∈ R, then

either d = 0 or R is commutative. Later in [18] Lanski proved that if d is a nonzero

derivation of R such that [d(x), x] ∈ Z(R) for all x ∈ L, a non-central Lie ideal of R,

then char(R) = 2 and R satisfies the standard identity S4.

In [5] the first author proved that if the characteristic of the ring is different from 2,

then the annihilator of the set A = {d(u)u − ud(u), u ∈ L}, with L a non-central

Lie ideal of R, is zero. Moreover, as a consequence of the main result in [6], it
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follows that the centralizer C(A) of the set {d(u)u − ud(u), u ∈ L} is trivial, that is

C(A) = Z(R). These facts in a prime ring are natural tests which indicate that the

set {d(u)u − ud(u), u ∈ L} is rather large in R.

Here we will consider a similar situation in the case the derivation d is re-

placed by the generalized derivations F . Our purpose is to investigate the set

{[F (x), x]F (x), x ∈ S}, where S is either a Lie ideal or a right ideal of a prime ring

R. More specifically, an additive map F : R −→ R is said to be a generalized deriva-

tion if there is a derivation d of R such that, for all x, y ∈ R, F (xy) = F (x)y+xd(y).

A significative example is a map of the form F (x) = ax+xb, for some a, b ∈ R; such

generalized derivations are called inner. Generalized derivations have been primarily

studied on operator algebras. Therefore any investigation from the algebraic point

of view might be interesting (see for example [19]). Here our purpose is to prove the

following theorem:

Theorem. Let R be a prime ring of characteristic different from 2, U the Utumi

quotient ring of R, C = Z(U) the extended centroid of R, L a non-central Lie ideal

of R, F a non-zero generalized derivation of R. Suppose that [F (u), u]F (u) = 0 for

all u ∈ L. Then one of the following assertions holds:

(1) there exists α ∈ C such that F (x) = αx for all x ∈ R;

(2) R satisfies the standard identity s4 and there exist a ∈ U and α ∈ C such that

F (x) = ax + xa + αx for all x ∈ R.

As a consequence we also prove the following:

Theorem. Let R be a non-commutative prime ring of characteristic different

from 2, U the Utumi quotient ring of R, C = Z(U) the extended centroid of R, I

a non-zero right ideal of R, F a non-zero generalized derivation of R. Suppose that

[F (x), x]F (x) = 0 for all x ∈ I. Then one of the following assertions holds:

(1) [I, I]I = (0);

(2) there exist a, b ∈ U and α, β ∈ C such that F (x) = ax + xb for all x ∈ R, with

(a − α)I = (0) and (b − β)I = (0).

In the last section of this paper we will consider R as a Banach algebra with

Jacobson radical rad(R). The classical result of Singer and Wermer in [27] says

that any continuous derivation on a commutative Banach algebra has the range

in the Jacobson radical of the algebra. Singer and Wermer also formulated the

conjecture that the continuity assumption can be removed. In 1988 Thomas verified

this conjecture in [28].

Of course the same result of Singer and Wermer does not hold in noncommutative

Banach algebras (because of inner derivations). Hence in this context a very inter-

esting question is how to obtain the noncommutative version of the Singer-Wermer
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theorem. A first answer to this problem was obtained by Sinclair in [26]. He proved

that every continuous derivation of a Banach algebra leaves primitive ideals of the

algebra invariant. Since then many authors obtained more information about deriva-

tions satisfying certain suitable conditions in Banach algebras.

In [22] Mathieu and Murphy proved the result that if d is a continuous derivation

on an arbitrary Banach algebra such that [d(r), r] ∈ Z(R) for all r ∈ R, then d maps

into the radical. Later in [23] Mathieu and Runde removed the continuity assumption

using the classical result of Posner on centralizing derivations of prime rings in [25]

and Thomas’ theorem in [28]: they showed that if d is a derivation which satisfies

[d(r), r] ∈ Z(R) for all r in a Banach algebra R, then d has its range in the radical

of the algebra.

Continuing along this line, in [16] it is proved that if d is a continuous linear

Jordan derivation in a Banach algebra R such that [d(x), x]d(x)[d(x), x] ∈ rad(R)

for all x ∈ R, then d maps into rad(R). Then in [17] the same conclusion is obtained

in the case d(x)[d(x), x]d(x) ∈ rad(R) for all x ∈ R.

More recently in [24], Park proves that if d is a derivation of a non-commutative

Banach algebra R such that [[d(x), x], d(x)] ∈ rad(R) for all x ∈ R, then again d

maps into rad(R).

Here we will continue the investigation about the relationship between the struc-

ture of an algebra R and the behaviour of generalized derivations defined on R.

Then we apply our first result on prime rings to the study of analogous conditions

for continuous or spectrally bounded generalized derivations on Banach algebras.

More precisely, we will prove:

Theorem. Let R be a non-commutative Banach algebra, F a continuous gener-

alized derivation of R such that F (x) = ax + d(x) for some element a ∈ R and d

a derivation of R. If [F (x), x]F (x) ∈ rad(R) for all x ∈ R, then d(R) ⊆ rad(R),

[a, R] ⊆ rad(R).

Theorem. Let R be a Banach algebra, F = La + d a spectrally bounded gen-

eralized derivation of R for some element a ∈ R and d a derivation of R. If

[F (x), x]F (x) ∈ rad(R) for all x ∈ R then d(R) ⊆ rad(R) and [a, R] ⊆ rad(R).

Before starting with the proofs, we fix some well known facts. In all that follows

let R be a non commutative prime ring, U its Utumi quotient ring and C = Z(U) the

center of U . We refer the reader to [2] for the definitions and the related properties

of these objects. Moreover, we denote by s4 the standard polynomial in 4 non-

commuting variables. In particular, we make use of the following facts:

Fact 1. If I is a two-sided ideal of R, then R, I and U satisfy the same generalized

polynomial identities with coefficients in U ([4]).
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Fact 2. Every derivation d of R can be uniquely extended to a derivation of U

(see Proposition 2.5.1 in [2]).

Fact 3. We denote by Der(U) the set of all derivations on U . By a derivation

word we mean an additive map ∆ of the form ∆ = d1d2 . . . dm, with each di ∈

Der(U). Then a differential polynomial is a generalized polynomial, with coefficents

in U , of the form Φ(∆j xi) involving noncommutative indeterminates xi on which the

derivation words ∆j act as unary operations. The differential polynomial Φ(∆j xi) is

said to be a differential identity on a subset T of U if it vanishes for any assignment

of values from T to its indeterminates xi.

Let Dint be the C-subspace of Der(U) consisting of all inner derivations on U and

let d be a non-zero derivation on R. By Theorem 2 in [15] we have the following

result (see also Theorem 1 in [20]): If Φ(x1, . . . , xn, dx1, . . . ,
dxn) is a differential

identity on R, then one of the following assertions holds:

(1) either d ∈ Dint;

(2) or R satisfies the generalized polynomial identity Φ(x1, . . . , xn, y1, . . . , yn).

Fact 4. If I is a two-sided ideal of R, then R, I and U satisfy the same differential

identities ([20]).

We refer the reader to Chapter 7 in [2] for a complete and detailed description of

the theory of generalized polynomial identities involving derivations.

Fact 5. If one assumes that either R does not satisfy s4 or char (R) 6= 2, then

there exists a non-zero two-sided ideal I of R such that 0 6= [I, R] ⊆ L. In particular,

if R is a simple ring it follows that [R, R] ⊆ L.

This follows from pp. 4–5 in [11], Lemma 2 and Proposition 1 in [8].

2. The case of inner generalized derivations on prime rings

In this section we study the case when the generalized derivation F is inner defined

as follows: F (x) = ax + xb for all x ∈ R, where a, b are fixed elements of U .

In all that follows we denote

P (x1, x2) = [a[x1, x2] + [x1, x2]b, [x1, x2]](a[x1, x2] + [x1, x2]b)

and assume that R satisfies the generalized identity P (x1, x2).

In order to prove the main proposition, we also need the following

Remark 1. Notice that in case F is an inner generalized derivation, then we may

write F (x) = ax + xb for all x ∈ R and by the main assumption of the paper we

have that

[a[r1, r2] + [r1, r2]b, [r1, r2]](a[r1, r2] + [r1, r2]b) = 0
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for all r1, r2 ∈ R. Moreover, for any inner automorphism ϕ of R we have that

[ϕ(a)[r1, r2] + [r1, r2]ϕ(b), [r1, r2]](ϕ(a)[r1, r2] + [r1, r2]ϕ(b)) = 0

for all r1, r2 ∈ R. Clearly a (or b, a + b, a− b) is central in R if and only if ϕ(a) (or

ϕ(b), ϕ(a + b), ϕ(a − b), respectively) is central in R. Hence, to prove our result, if

necessary we may replace a, b respectively with ϕ(a), ϕ(b).

Lemma 1. Let F be a infinite field and n > 2. If A1, . . . , Ak are not scalar

matrices in Mn(F ) then there exists an invertible matrix Q ∈ Mn(F ) such that

each of the matrices QA1Q
−1, . . . , QAkQ−1 has no zero entries (for the Proof see [7]

Lemma 1.5)

Lemma 2. Let R = Mm(K) be the ring of m × m matrices over the field K of

characteristic different from 2, with m > 1, q ∈ R such that [uq, u]uq = 0 for all

u ∈ [R, R]. Then q ∈ Z(R).

P r o o f. Assume q is a non-scalar matrix and prove that a contradiction follows.

By Remark 1 and Lemma 1, we may assume that q has no zero entries. Say q =
∑

ij

qijeij , where qij ∈ K, and eij are the usual matrix units. Let u = [r1, r2] =

[eij , eji] = eii − ejj for any i 6= j. Thus

X = [(eii − ejj)q, eii − ejj ](eii − ejj)q = 0

and, in particular, the (j, i)-entry of the matrix X is zero. By calculation it follows

that −2qjiqii = 0, which is a contradiction. Thus we conclude that q must be

a central matrix in R. �

Lemma 3. Let R = Mm(K) be the ring of m × m matrices over the field F

of characteristic different from 2, with m > 3, q ∈ R and α ∈ Z(R) such that

[q, u2](qu + uq + αu) = 0 for all u ∈ [R, R]. Then q ∈ Z(R).

P r o o f. As above, let q =
∑

ij

qijeij , where qij ∈ K, and eij are the usual matrix

units. Let u = [r1, r2] = [eij , eji] = eii − ejj for any i 6= j. Applying the main

assumption of this lemma we have that

[q, eii + ejj ](q(eii − ejj) + (eii − ejj)q + α(eii − ejj))

and both the right and left multiplying by ekk for any k 6= i, j yields

(1) qkiqik − qkjqjk = 0.
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By Remark 1 we know that q and ϕ(q) possess the same properties for all ϕ ∈

Aut (R). In particular, let ϕ(x) = (1 + ekj)x(1− ekj), χ(x) = (1− ekj)x(1 + ekj) for

all k 6= i, j, and denote ϕ(q) =
∑

crsers, χ(q) = prsers, for suitable elements crs and

prs of K. By applying (1) we have

ckicik − ckjcjk = 0,

that is

(2) qjiqik − qjjqjk + qkkqjk + q2

jk = 0

and also

pkipik − pkjpjk = 0,

that is

(3) −qjiqik + qjjqjk − qkkqjk + q2

jk = 0.

Comparing (2) with (3) we get qjk = 0, that is, q is a diagonal matrix in R. Consider

now the inner automorphism of R induced by the invertible matrix P = I+eij for any

i 6= j : λ(x) = PxP−1. By calculation we have that λ(q) = q+eijq−qeij−eijqeij and

by the previous argument we also have that λ(q) is a diagonal matrix. In particular,

the (i, j)-entry of λ(q) is zero, that is qii = qjj . By the arbitrariness of i 6= j, we

have that q is a central matrix in R. �

Lemma 4. Let R = Mm(K) be the ring of m×mmatrices over the infinite fieldK

of characteristic different from 2, withm > 2, a, b ∈ R such that [au+ub, u](au+ub) =

0 for all u ∈ [R, R]. Then either a, b ∈ Z(R) or m = 2 and b − a ∈ Z(R).

P r o o f. Assume that neither a nor b − a is a scalar matrix. By Remark 1 and

Lemma 1, we may assume that a and b − a have no zero entries. Say a =
∑

ij

aijeij

and b− a =
∑

ij

cijeij , where aij , cij ∈ K, and eij are the usual matrix units. Let u =

[r1, r2] = [eij , ejj ] = eij for any i 6= j. Thus by our assumption eij(b− a)eijaeij = 0,

that is cjiaji = 0, a contradiction. Therefore either a ∈ Z(R) or b − a ∈ Z(R). In

any case the conclusion follows respectively from Lemma 2 or Lemma 3. �

Proposition 1. Let R be a prime ring of characteristic different from 2, a, b ∈ R

such that [au + ub, u](au + ub) = 0 for all u ∈ [R, R]. Then either a, b ∈ Z(R) or R

satisfies s4(x1, . . . , x4), the standard identity of degree 4, and b − a ∈ Z(R).
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P r o o f. Since R satisfies the generalized polynomial identity

P (x1, x2) = [a[x1, x2] + [x1, x2]b, [x1, x2]](a[x1, x2] + [x1, x2]b)

by a theorem due to Beidar (Theorem 2 in [1]) this generalized polynomial identity is

also satisfied by U . In case C is infinite, we have P (r1, r2) = 0 for all r1, r2 ∈ U⊗C C,

where C is the algebraic closure of C. Since both U and U ⊗C C are centrally closed

([9], Theorems 2.5 and 3.5), we may replace R by U or U ⊗C C according as C

is finite or infinite. Thus we may assume that R is centrally closed over C which

is either finite or algebraically closed. If a, b ∈ C, then we are done, thus we may

assume that either a /∈ C or b /∈ C. In this case, by [4], P (x1, x2) is a non-trivial

generalized polynomial identity for R. Hence, by Martindale’s theorem [21], R is

a primitive ring having a non-zero socle H with C as the associated division ring. In

light of Jacobson’s theorem ([13], page 75) R is isomorphic to a dense ring of linear

transformations on some vector space V over C.

Assume first that V is finite-dimensional over C. Then the density of R on V

implies that R ∼= Mm(C), the ring of all m × m matrices over C. Since R is not

commutative we assume m > 2.

If we assume that C is infinite, we are done by Lemma 4.

Now let K be an infinite field which is an extension of the field C and let

R = Mm(K) ∼= R⊗C K. Notice that R satisfies s4(x1, . . . , x4) if and only R satisfies

s4(x1, . . . , x4). As above we consider the generalized polynomial P (x1, x2) and re-

mark that it is multi-homogeneous of multi-degree (2, 2) in the indeterminates x1, x2.

Hence the complete linearization of P (x1, x2) is a multilinear generalized polyno-

mial Θ(x1, x2, y1, y2) in 4 indeterminates, moreover, Θ(x1, x2, x1, x2) = 4P (x1, x2).

Clearly the multilinear polynomial Θ(x1, x2, y1, y2) is a generalized polynomial iden-

tity for R and R as well. Since char(C) 6= 2 we obtain P (r1, r2) = 0 for all r1, r2 ∈ R,

and the conclusion follows from the first argument.

Assume next that V is infinite-dimensional over C. As in Lemma 2 in [29], the

set [R, R] is dense on R and so from P (r1, r2) = 0 for all r1, r2 ∈ R we have [ar +

rb, r](ar + rb) = 0 for all r ∈ R. Due to the infinite-dimensionality, R cannot

satisfy any polynomial identity. In particular, the non-zero ideal H cannot satisfy

s4(x1, . . . , x4). Suppose that either a /∈ C or b /∈ C, then at least one of them

doesn’t centralize the non zero ideal H of R, and we will prove that this leads to

a contradiction.

Hence we are supposing that there exist h1, h2 ∈ H such that either [a, h1] 6= 0 or

[b, h2] 6= 0 and there exist h3, h4, h5, h6 ∈ H such that s4(h3, . . . , h6) 6= 0.

Let e2 = e be any non-trivial idempotent element of H . For r = exe, with any

x ∈ R, we have that [aexe+exeb, exe](aexe+exeb) = 0. By left and right multiplying
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with (1−e) we obtain (1−e)a(exe)3b(1−e) = 0. Since eRe is a central simple algebra,

we have that either (1−e)ae = 0 or eb(1−e) = 0. If (1−e)ae = 0 then ae = eae and

bae = beae. On the other hand, if eb(1− e) = 0, we get eb = ebe, and so eba = abea.

In either case we notice that the ring eRe satisfies the generalized identity

[(eae)X + X(ebe), X ]((eae)X + X(ebe)).

By Litoff’s theorem in [10] there exists e2 = e ∈ H such that h1, h2, h3, h4, h5, h6 ∈

eRe, moreover, eRe is a central simple algebra finite dimensional over its center.

Since s4(h3, . . . , h6) 6= 0, we have eRe ∼= Mt(C) for t > 3. By the finite dimensional

case, we have that eae, ebe ∈ Z(eRe), but this contradicts the choices of h1, h2 in

eRe. �

3. The results on Lie ideals and right ideals

In the following we will make use of the result of Kharchenko [15] about the

differential identities on a prime ring R (see Facts 1–4). We refer to Chapter 7

in [2] for a complete and detailed description of the theory of generalized polynomial

identities involving derivations.

We first prove

Theorem 1. Let R be a prime ring of characteristic different from 2, U the Utumi

quotient ring of R, C = Z(U) the extended centroid of R, L a non-central Lie ideal

of R, F a non-zero generalized derivations of R. Suppose that [F (u), u]F (u) = 0 for

all u ∈ L. Then one of the following assertions holds:

(1) there exists α ∈ C such that F (x) = αx for all x ∈ R;

(2) R satisfies the standard identity s4 and there exist a ∈ U and α ∈ C such that

F (x) = ax + xa + αx, for all x ∈ R.

P r o o f. By Theorem 3 in [19] every generalized derivation g on a dense right

ideal of R can be uniquely extended to the Utumi quotient ring U of R, and thus we

can think of any generalized derivation of R to be defined on the whole U and to be

of the form g(x) = ax + d(x) for some a ∈ U and a derivation d on U . Thus we will

assume in all that follows that there exist a ∈ U and a derivation d on U such that

F (x) = ax+ d(x). We note that we may assume that R is not commutative, since L

is not central. Moreover, since char(R) 6= 2, there exists a non-central two-sided ideal

I of R such that [I, I] ⊆ L (see Fact 5). Therefore [F (u), u]F (u) = 0 for all u ∈ [I, I].

Moreover, by [20] R and I satisfy the same differential polynomial identities, that is

[F (u), u]F (u) = 0 for all u ∈ [R, R].
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By assumption R satisfies the differential identity

(4) [a[x1, x2] + [d(x1), x2] + [x1, d(x2)], [x1, x2]](a[x1, x2] + [d(x1), x2] + [x1, d(x2)]).

First suppose that 0 6= d is not an inner derivation on U . By Kharchenko’s theorem

[15] R satisfies the polynomial identity

(5) [a[x1, x2] + [y1, x2] + [x1, y2], [x1, x2]](a[x1, x2] + [y1, x2] + [x1, y2]),

in particular, R satisfies the blended component

[a[x1, x2], [x1, x2]]a[x1, x2]

and by Proposition 1 we have that a ∈ C and by (5) R satisfies the following

polynomial identity with coefficient in C:

[[x1, y2], [x1, x2]](a[x1, x2] + [x1, y2]).

Since R satisfies a polynomial identity, there exists Mm(K), the ring of all matrices

over a suitable fieldK, such thatR andMm(K) satisfy the same polynomial identities

(see [12], Theorem 2 p. 54 and Lemma 1 p. 89). Suppose m > 2 and choose x1 = e11,

y2 = e12, x2 = e21. Thus we obtain

[e12,−e21](−ae21 + e12) = 0

and right multiplying by e22 yields the contradiction −e12 = 0. Hence m = 1 and R

is commutative.

Notice that in case d = 0, R satisfies [a[x1, x2], [x1, x2]](a[x1, x2]) and the same

conclusion as above holds.

Finally we consider 0 6= d is an inner derivation of U . Thus there exists q ∈ U

such that F (x) = ax + [q, x] = (a + q)x + x(−q) for all x ∈ R. In this case by

Proposition 1 we have that one of the following assertions holds:

(1) either a, q ∈ C, and in this case F (x) = ax for all x ∈ R;

(2) or R satisfies s4(x1, . . . , x4) and a + q = −q + γ for a suitable γ ∈ C, that is

F (x) = −qx − xq + γx for all x ∈ R. �

As a reduction of the previous Theorem, we may also prove
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Theorem 2. Let R be a non-commutative prime ring of characteristic different

from 2, U the Utumi quotient ring of R, C = Z(U) the extended centroid of R, F

a non-zero generalized derivation of R. Suppose that [F (x), x]F (x) = 0 for all x ∈ R.

Then there exists α ∈ C such that F (x) = αx for all x ∈ R.

P r o o f. By Theorem 1, we have to consider the only case when R satisfies the

standard identity s4 and there exist a ∈ U and α ∈ C such that F (x) = ax+xa+αx

for all x ∈ R. Hence R is a PI-ring, thus there exists a suitable field K such that

R and the matrix ring M2(K) satisfy the same generalized polynomial identities. In

particular, because of the form of F , M2(K) satisfies

(6) [a, x2](ax + xa + αx).

Denote a =
∑

aijeij for suitable aij ∈ K. For x = eii in (6), both the right

and left multiplying by ejj , for j 6= i, yields ajiaij = 0. Consider now the inner

automorphisms of R induced by the invertible matrices P = I + eij and Q = I − eij

for any i 6= j : λ(x) = PxP−1 and χ(x) = QxQ−1, respectively. By calculation we

have that λ(a) = a + eija − aeij − eijaeij and denote λ(a) =
∑

a′

ijeij for suitable

a′

ij ∈ K. Since [λ(a), x2](λ(a)x+xλ(a)+αx) = 0 for all x ∈ M2(K) by the previous

argument we also have that a′

jia
′

ij = 0. By calculation we have

(7) aji(ajj − aii − aji) = 0

and analogously by applying the same argument to χ(a) = a− eija + aeij − eijaeij ,

(8) aji(−ajj + aii − aji) = 0.

Hence comparing (7) with (8) we obtain aji = 0, that is, a is a diagonal matrix.

Finally, since also λ(a) must be a diagonal matrix, in particular the (i, j)-entry

of λ(a) is zero, that is aii = ajj . By the arbitrariness of i 6= j, we have that q is

a central matrix in M2(K) as well as in R. �

Remark 2. Since F (x) = ax + d(x) for suitable a ∈ U and a derivation d of R,

we point out that one can rewrite the conclusions of the previous theorem as follows:

either R is commutative or there exists q ∈ U sucht that d is the inner derivation

induced by q, a ∈ C and q ∈ C, that is d = 0.

We conclude this section with
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Theorem 3. Let R be a non-commutative prime ring of characteristic different

from 2, U the Utumi quotient ring of R, C = Z(U) the extended centroid of R, I

a non-zero right ideal of R, F a non-zero generalized derivation of R. Suppose that

[F (x), x]F (x) = 0 for all x ∈ I. Then one of the following assertions holds:

(1) [I, I]I = (0);

(2) there exist a, b ∈ U and α, β ∈ C such that F (x) = ax + xb for all x ∈ R, with

(a − α)I = (0) and (b − β)I = (0).

P r o o f. As remarked above, by Theorem 3 in [19] we will assume in all that

follows that there exist c ∈ U and a derivation d on U such that F (x) = cx + d(x),

and divide the proof into two cases. �

3.1. d is an inner derivation of U . In this case there exists q ∈ U such that

d(x) = [q, x] for all x ∈ R, and by the hypothesis we have that I satisfies

(9) [ax + xb, x](ax + xb)

where a = c+ q and b = −q. Assume that the conclusion does not hold that is, there

exist c1, c2, c3, c4, c5 ∈ I such that [c1, c2]c3 6= 0, ac4 /∈ CI and bc4 /∈ CI. We will

prove that this leads to a contradiction. Notice that for all x0 ∈ I and for all y ∈ R,

starting from (9), we have that

(10) [ax0y + x0yb, x0y](ax0y + x0yb)

is a generalized polynomial identity for R. Since for x0 = c4, ax0 and x0 are linearly

C-independent, (10) is a non-trivial generalized polynomial identity for R (see [4]).

Since R is GPI, U has a non-zero socle H with non-zero right ideal J = IH . Note

thatH is simple, J = JH and J satisfies the same basic conditions as I. Now without

loss of generality we just replace R by H and I by J . Moreover, R = H is a regular

ring, hence there exists e = e2 ∈ I such that c1R + c2R + c3R + c4R + c5R = eR,

with ci = eci for each i = 1, . . . , 5. Therefore eR satisfies (9), in particular, for all

x ∈ R we have

[aex(1 − e) + ex(1 − e)b, ex(1 − e)](aex(1 − e) + ex(1 − e)b) = 0

and the left multiplying by (1 − e) yields easily that (1 − e)ae = 0, that is ae ∈ eR.

Thus F (x) = ax + xb ∈ eR for all x ∈ eR, that is F (eR) ⊆ eR. Let ̺ = eR,

¯̺ = ̺/̺ ∩ lR(̺), with lR(̺) the left annihilator of ̺ in R. Therefore ¯̺ satisfies the

generalized polynomial identity (9). By Theorem 2 we have that one of the following

assertions holds:
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⊲ either [a, eR]e = (0) and [b, eR]e = (0), which implies that there exist α, β ∈ C

such that (a − α)e = (0) and (b − β)e = 0, and this contradicts the choices of

c4, c5 ∈ eR;

⊲ or [x1, x2] is a polynomial identity for ¯̺, that is [x1, x2]x3 is a polynomial identity

for eR, which contradicts the choices of c1, c2, c3 ∈ eR.

3.2. d is not an inner derivation of U . Starting from the main hypothesis we

have that for all x0 ∈ I, R satisfies

(11) [cx0y + d(x0)y + x0d(y), x0y](cx0y + d(x0)y + x0d(y)).

In view of Kharchenko’s result in [15] and by (11) R satisfies

(12) [cx0y + d(x0)y + x0t, x0y](cx0y + d(x0)y + x0t)

and in particular R satisfies the blended component

(13) [x0t, x0y](cx0y + d(x0)y + x0t)

which is a non-trivial generalized polynomial identity for R, since we may assume

there is at least one element x0 ∈ I−C (see [4]). As above, without loss of generality

we just replaceR byH and I by J . Moreover, also here we assume that the conclusion

does not hold, more precisely, there exist h1, h2, h3 ∈ I such that [h1, h2]h3 6= 0. By

the regularity of R, there exists g = g2 ∈ I such that h1R + h2R + h3R = gR, with

hi = ghi for each i = 1, . . . , 3. Since gR satisfies (13), in particular for all y ∈ R, we

have that

(14) [gt, gy(1 − g)](cgy + d(g)y(1 − g) + gt),

that is gy(1 − g)(cg + d(g))y(1 − e) = 0, which implies (1 − g)(cg + d(g)) = 0,

that is cg + d(g) = g(cg + d(g)) ∈ gR. Hence F (gR) ⊆ gR. Let now ̺ = gR,

¯̺ = ̺/̺ ∩ lR(̺), with lR(̺) the left annihilator of ̺ in R. Therefore ¯̺ satisfies the

generalized polynomial identity (12). By Theorem 2, and since d is not inner, we

have that [x1, x2] is a polynomial identity for ¯̺, that is, [x1, x2]x3 is a polynomial

identity for eR, which contradicts the choices of h1, h2, h3 ∈ gR. �
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4. The results in Banach algebras

Here R will denote a complex Banach algebra. Let us introduce some well known

and elementary definitions for the sake of completeness.

By a Banach algebra we shall mean a complex normed algebra R whose underlying

vector space is a Banach space. By rad(R) we denote the Jacobson radical of R.

Without loss of generality we assume R to be unital. In fact any Banach agebra R

without a unity can be embedded into a unital Banach algebra RI = R⊕C as an ideal

of codimension one. In particular, we may identify R with the ideal {(x, 0): x ∈ R}

in RI via the isometric isomorphism x → (x, 0).

Our first result in this section concerns continuous generalized derivations on Ba-

nach algebras:

Theorem 4. Let R be a non-commutative Banach algebra, F a continuous gen-

eralized derivation of R such that F (x) = ax + d(x) for some element a ∈ R and

d a derivation of R. If [F (x), x]F (x) ∈ rad(R) for all x ∈ R, then d(R) ⊆ rad(R),

[a, R] ⊆ rad(R).

P r o o f. Under the assumption that F is continuous, and since it is well known

that the left multiplication map is also continuous, we have that the derivation d

is continuous. In [26] Sinclair proved that any continuous derivation of a Banach

algebra leaves the primitive ideals invariant. Therefore, for any primitive ideal P of

R, it follows that F (P ) ⊆ aP + d(P ) ⊆ P , that is, also the continuous generalized

derivation F leaves the primitive ideals invariant. Denote R/P = R for any primitive

ideals P . Hence we may introduce the generalized derivation FP : R → R by FP (x̄) =

FP (x + P ) ⊆ F (x) + P = ax + d(x) + P for all x ∈ R and x̄ = x + P . Moreover, by

[F (r), r]F (r) ∈ rad(R) for all r ∈ R, it follows that [FP (r̄), r̄]FP (r̄) = 0̄ for all r̄ ∈ R.

Since R is primitive, a fortiori it is prime. Thus by Theorem 2 and Remark 2, one

of the following assertions holds:

⊲ either R is commutative, that is [R, R] ⊆ P ;

⊲ or [a, R] ⊆ P and d = 0̄, more precisely, d is inner in R, induced by an element

q̄ ∈ R and q̄ ∈ Z(R), that is d(R) ⊆ P .

Now let P be a primitive ideal such that R is commutative. Singer and Wermer in

[27] proved that any continuous linear derivation on a commutative Banach algebra

maps the algebra into its radical. Moreover, by a result of Johnson and Sinclair [14]

any linear derivation on a semisimple Banach algebra is continuous. Hence there

are no non-zero linear continuous derivations on commutative semisimple Banach

algebras. Therefore d = 0̄ in R, and since [R, R] ⊆ P follows by the commutativity

of R, we also have [a, R] + d(R) ⊆ P .
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Hence in any case d(R) ⊆ P and [a, R] + d(R) ⊆ P for all primitive ideals P of R.

Since the radical rad(R) of R is the intersection of all primitive ideals, we get the

required conclusion. �

In the special case when R is a semisimple Banach algebra we may prove

Theorem 5. Let R be a non-commutative semisimple Banach algebra, F a gen-

eralized derivation of R such that F (x) = ax + d(x) for some element a ∈ R and d

a derivation of R. If [F (x), x]F (x) = 0 for all x ∈ R, then d(R) = 0 and [a, R] = 0.

P r o o f. We may prove the result in the same way as Theorem 4 and we omit the

proof for brevity. Just let us remark that at the beginning of the proof one has to use

the fact that the derivation d is continuous in a semisimple Banach algebra (see [26]).

Hence, since any left multiplication map is continuous, also F is continuous. Finally,

we use the fact that rad(R) = 0, since R is semisimple. �

The last result of this paper has the same flavour as Theorem 4. Now we replace the

assumption concerning the continuity of the generalized derivation F by the one that

F is spectrally bounded. Here we denote by I(R) the set of invertible elements in R.

The spectrum of an element x is the subset given by σ(x) = {λ ∈ C : x−λe /∈ I(R)},

where e denotes the unity of R. The spectral radius r(x) of an element x is defined

as r(x) = sup{|λ| : λ ∈ σ(x)}, provided σ(x) is not empty. Finally, a linear map

f : R → R is called spectrally bounded if there exists a constant α > 0 such that

r(f(x)) 6 αr(x) for all x ∈ R. In order to prove our final theorem we will use

some results concerning spectrally bounded derivations and generalized derivations

contained in [3], more precisely, we need the following facts:

Fact 6. Every spectrally bounded derivation on a unital Banach algebra maps

the algebra into the radical (Theorem 2.5 in [3]).

Fact 7. Every spectrally bounded generalized derivation leaves each primitive

ideal invariant (Lemma 2.7 in [3]).

Fact 8. Let F = La +d be a generalized derivation on a unital Banach algebra R,

where La is the left multiplication (by the element a) map and d some derivation of

R. Then F is spectrally bounded if and only if both La and d are spectrally bounded

(Theorem 2.8 in [3]).

Now we may prove
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Theorem 6. Let R be a Banach algebra, F = La + d a spectrally bounded

generalized derivation of R for some element a ∈ R and a derivation d of R. If

[F (x), x]F (x) ∈ rad(R) for all x ∈ R then d(R) ⊆ rad(R) and [a, R] ⊆ rad(R).

P r o o f. Since F is spectrally bounded, by Fact 8, La and d are spectrally

bounded.

Combining this with Fact 6 we have that d(R) ⊆ rad(R). Moreover, by Fact 7, F

leaves each primitive ideal invariant. Thus it follows that for any primitive ideal P

of R we may introduce generalized derivations FP : R → R by FP (x̄) = FP (x+P ) ⊆

FP (x) + P ⊆ ax + d(x) + P ⊆ ax + P for all x ∈ R and x̄ = x + P . As above, since

[F (r), r]F (r) ∈ rad(R) for all r ∈ R, it follows that [FP (r̄), r̄]FP (r̄) = 0̄ for all r̄ ∈ R.

By Theorem 2 and Remark 2, one has that

⊲ either R is commutative, that is [R, R] ⊆ P ;

⊲ or d = 0̄, more precisely d is inner in R, induced by an element q̄ ∈ R and

q̄ ∈ Z(R), that is d(R) + [a, R] ⊆ P .

Now let P be a primitive ideal such that R is commutative. As remarked in the

proof of Theorem 4, by combining the results in [27] and [14], we have that there

are no non-zero linear continuous derivations on commutative semisimple Banach

algebras. Therefore d = 0̄ in R, and since [R, R] ⊆ P follows by the commutativity

of R, we also have [a, R] ⊆ P .

Hence in any case d(R) ⊆ P and [a, R] ⊆ P for all primitive ideals P of R. Since

the radical rad(R) of R is the intersection of all primitive ideals, we get the required

conclusion. �
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