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Abstract. Let G be a finite group. The prime graph of G is a graph whose vertex set
is the set of prime divisors of |G| and two distinct primes p and q are joined by an edge,
whenever G contains an element of order pq. The prime graph of G is denoted by Γ(G).
It is proved that some finite groups are uniquely determined by their prime graph. In this
paper, we show that if G is a finite group such that Γ(G) = Γ(Bn(5)), where n > 6, then
G has a unique nonabelian composition factor isomorphic to Bn(5) or Cn(5).
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1. Introduction

If n is an integer, then we denote by π(n) the set of all prime divisors of n. If G is

a finite group, then π(|G|) is denoted by π(G). The spectrum of a finite group G

which is denoted by ω(G) is the set of its element orders. We construct the prime

graph of G which is denoted by Γ(G) as follows: the vertex set is π(G), and two

distinct primes p and q are joined by an edge (we write p ∼ q) if and only ifG contains

an element of order pq. Let s(G) be the number of connected components of Γ(G)

and let πi(G), i = 1, . . . , s(G), be the connected components of Γ(G). If 2 ∈ π(G)

we always suppose that 2 ∈ π1(G). In graph theory a subset of vertices of a graph is

called an independent set if its vertices are pairwise non-adjacent. Denote by t(G)

the maximal number of primes in π(G) pairwise non-adjacent in Γ(G). In other

words, if ̺(G) is an independent set with the maximal number of vertices in Γ(G),
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then t(G) = |̺(G)|. Similarly if p ∈ π(G), then let ̺(p, G) be an independent set

with the maximal number of vertices in Γ(G) containing p and t(p, G) = |̺(p, G)|.

A finite group G is called recognizable by prime graph if Γ(H) = Γ(G) implies that

H ∼= G. A nonabelian simple group P is called quasirecognizable by prime graph if

every finite group whose prime graph equals Γ(P ) has a unique nonabelian composi-

tion factor isomorphic to P (see [11]). Obviously, recognition (quasirecognition) by

prime graph implies recognition (quasirecognition) by spectrum, but the converse is

not true in general. Moreover, a method of recognition by spectrum cannot be used

for recognition by prime graph.

Hagie in [7] determined finite groups G satisfying Γ(G) = Γ(S), where S is a spo-

radic simple group. It is proved that if q = 32n+1 (n > 0), then the simple group
2G2(q) is recognizable by its prime graph [11], [27]. A group G is called a CIT group

if G is of even order and the centralizer in G of any involution is a 2-group. In [13],

finite groups with the same prime graph as a CIT simple group are determined. Also

in [14], it is proved that if p > 11 is a prime number and p 6≡ 1 (mod 12), then

PSL(2, p) is recognizable by its prime graph. In [12] and [18], finite groups with the

same prime graph as PSL(2, q), where q is not prime, are determined. It is proved

that simple groups F4(q), where q = 2n > 2 (see [10]) and 2F4(q) (see [1]) are quasirec-

ognizable by prime graph. Also in [9], it is proved that if p is a prime number which

is not a Mersenne or a Fermat prime and p 6= 11, 13, 19, and Γ(G) = Γ(PGL(2, p)),

then G has a unique nonabelian composition factor which is isomorphic to PSL(2, p);

while if p = 13, then G has a unique nonabelian composition factor which is isomor-

phic to PSL(2, 13) or PSL(2, 27). Then it is proved that for an odd prime p and odd

k > 2, PGL(2, pk) is recognizable by its prime graph [2]. In [15], [16], [17], [19] finite

groups with the same prime graph as Ln(2) are obtained. In [3], it is proved that if

p = 2n + 1 > 5 is a prime number, then 2Dp(3) is quasirecognizable by prime graph.

Also in [4], the authors proved that 2D2m+1(3) is recognizable by prime graph.

In this paper as the main result we show that if G is a finite group such that

Γ(G) = Γ(Bn(5)), where n > 6, then G has a unique nonabelian composition factor

isomorphic to Bn(5) or Cn(5).

In this paper, all groups are finite and by simple groups we mean nonabelian simple

groups. All further unexplained notation is standard and referred to [5]. Through-

out the proof we use the classification of finite simple groups. In [23, Tables 2–9],

independent sets and independent numbers for all simple groups are listed and we

use these results in the proof of the main theorem of this paper.
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2. Preliminary results

Lemma 2.1 ([25, Theorem 1]). Let G be a finite group with t(G) > 3 and

t(2, G) > 2. Then the following hold:

(1) there exists a finite nonabelian simple group S such that S 6 G = G/K 6

Aut(S) for the maximal normal soluble subgroup K of G;

(2) for every independent subset ̺ of π(G) with |̺| > 3 at most one prime in ̺

divides the product |K||G/S|. In particular, t(S) > t(G) − 1;

(3) one of the following holds:

(a) every prime r ∈ π(G) non-adjacent to 2 in Γ(G) does not divide the product

|K||G/S|; in particular, t(2, S) > t(2, G);

(b) there exists a prime r ∈ π(K) non-adjacent to 2 in Γ(G); in which case

t(G) = 3, t(2, G) = 2, and S ∼= Alt7 or L2(q) for some odd q.

Remark 2.2. In Lemma 2.1, for every odd prime p ∈ π(S) we have t(p, S) >

t(p, G) − 1.

Lemma 2.3 ([20, Lemma 1]). Let N be a normal subgroup of G. Assume that

G/N is a Frobenius group with Frobenius kernel F and cyclic Frobenius comple-

ment C. If (|N |, |F |) = 1 and F is not contained in NCG(N)/N , then p|C| ∈ πe(G),

where p is a prime divisor of |N |.

Lemma 2.4 (Zsigmondy Theorem, [28]). Let p be a prime and let n be a positive

integer. Then one of the following holds:

(i) there is a primitive prime p′ for pn − 1, that is, p′ | (pn − 1) but p′ ∤ (pm − 1)

for every 1 6 m < n, (usually p′ is denoted by rn)

(ii) p = 2, n = 1 or 6,

(iii) p is a Mersenne prime and n = 2.

Lemma 2.5 ([8]). Let G be a finite simple group.

(1) If G = Cn(q), then G possesses a Frobenius subgroup with kernel of order qn

and cyclic complement of order (qn − 1)/(2, q − 1).

(2) If G = 2Dn(q) and there exists a primitive prime divisor r of q2n−2 − 1, then

G possesses a Frobenius subgroup with kernel of order q2n−2 and cyclic com-

plement of order r.

(3) If G = Bn(q) or Dn(q) and there exists a primitive prime divisor rm of q
m − 1

wherem = n or n−1 such thatm is odd, then G possesses a Frobenius subgroup

with kernel of order qm(m−1)/2 and cyclic complement of order rm.
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Remark 2.6 ([21]). Let p be a prime number and (q, p) = 1. Let k > 1 be the

smallest positive integer such that qk ≡ 1 (mod p). Then k is called the order of q

with respect to p and we denote it by ordp(q). Obviously by Fermat’s little theorem

it follows that ordp(q) | (p−1). Also if qn ≡ 1 (mod p), then ordp(q) | n. Similarly if

m > 1 is an integer and (q, m) = 1, we can define ordm(q). If a is odd, then orda(q)

is denoted by e(a, q), too.

If q is odd, let e(2, q) = 1 if q ≡ 1 (mod 4) and e(2, q) = 2 if q ≡ −1 (mod 4).

Lemma 2.7 ([24, Proposition 2.4]). Let G be a simple group of Lie type, Bn(q)

or Cn(q) over a field of characteristic p. Define

η(m) =

{

m if m is odd,

m/2 otherwise.

Let r, s be odd primes with r, s ∈ π(G) \ {p}. Put k = e(r, q) and l = e(s, q),

and suppose that 1 6 η(k) 6 η(l). Then r and s are non-adjacent if and only if

η(k) + η(l) > n, and k, l satisfy

l/k is not an odd natural number.

Lemma 2.8 ([23, Proposition 2.1]). Let G = An−1(q) be a finite simple group

of Lie type over a field of characteristic p. Let r and s be odd primes and r, s ∈

π(G) \ {p}. Put k = e(r, q) and l = e(s, q), and suppose that 2 6 k 6 l. Then r and

s are non-adjacent if and only if k + l > n, and k does not divide l.

Lemma2.9 ([23, Proposition 2.2]). Let G = 2An−1(q) be a finite simple group of

Lie type over a field of characteristic p. Define

ν(m) =











m if m ≡ 0 (mod 4);

m/2 if m ≡ 2 (mod 4);

2m if m ≡ 1 (mod 4).

Let r and s be odd primes and r, s ∈ π(G) \ {p}. Put k = e(r, q) and l = e(s, q),

and suppose that 2 6 ν(k) 6 ν(l). Then r and s are non-adjacent if and only if

ν(k) + ν(l) > n, and ν(k) does not divide ν(l).

Let q be a prime. We denote by D+
n (q) the simple group Dn(q), and by D−

n (q)

the simple group 2Dn(q).

472



Lemma 2.10 ([24, Proposition 2.5]). Let G = Dε
n′(q) be a finite simple group

of Lie type over a field of characteristic p and let the function η(m) be defined as

in Lemma 2.7. Let r and s be odd primes and r, s ∈ π(G) \ {p}. Put k = e(r, q)

and l = e(s, q), and 1 6 η(k) 6 η(l). Then r and s are non-adjacent if and only if

2η(k) + 2η(l) > 2n − (1 − ε(−1)k+l), and k, l satisfy

l/k is not an odd natural number.

If ε = +, then the chain of equalities:

n = l = 2η(l) = 2η(k) = 2k

is not true.

3. Main results

Lemma 2.3 is one of the powerful tools for characterization of finite simple groups

by spectrum or prime graph. In the next lemma we get its refinement.

Lemma 3.1. Let G be a group satisfying the conditions of Lemma 2.1, and let

the groups K and S be as in the conclusion of Lemma 2.1. Assume that there exist

p ∈ π(K) and p′ ∈ π(S) such that p ≁ p′ in Γ(G), and that S contains a Frobenius

subgroup with kernel F and cyclic complement C such that (|F |, |K|) = 1. Then

p|C| ∈ ω(G).

P r o o f. We claim that F � KCG(K)/K. Since KCG(K)/K E G/K, so

S ∩ KCG(K)/K E S. Let S ∩ KCG(K)/K = S. Then S 6 KCG(K)/K. So for

every t′ ∈ π(S) and t ∈ π(K) we have t′ ∼ t, which is a contradiction. Consequently

S ∩ KCG(K)/K = 1, since S is a simple group. So F � KCG(K)/K, since F 6 S.

Therefore p|C| ∈ ω(G), by Lemma 2.3. �

Remark 3.2. Let G = Bn(5), where n > 6. By [26, Tables 1a–1c], we have

s(G) = 1 and π(G) = π
(

5n2

( n
∏

i=1

(52i − 1
))

. In the rest of this section we denote

by ri a primitive prime divisor of 5
i−1. By [23, Table 6], we know that ̺(2, Bn(5)) =

{2, r2n}, t(Bn(5)) = [14 (3n + 5)] and {r2i : [12 (n + 1)] 6 i 6 n} ∪ {ri : [12n] < i 6

n, i ≡ 1 (mod 2)} is an independent set of maximal size in Γ(G).

Therefore if n > 9 and A = {r2n, r2(n−1), r2(n−2), r2(n−3), r2(n−4)}, then A is an

independent set in Γ(Bn(5)).
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Lemma 3.3. Let G = Bn(5), where n > 12. If 257 ∈ π(G), then t(257, G) > 62.

Similarly in each case if n is sufficiently large, then t(193, G) > 44, t(1201, G) >

144, t(14281, G) > 82, t(1129, G) > 65, t(11551, G) > 470, t(7321, G) > 450,

t(12705841, G) > 158833 and t(4466009, G) > 558247.

P r o o f. We know that e(193, 5) = 192 and so if 193 ∈ π(G), then n > 96. By

Remark 3.2, B = {r2n, r2(n−1), . . . , r2(n−47)} is an independent set of Γ(G), since
1
2 (n + 1) 6 n − 47. Therefore |B| = 48. If r2i ∈ B, then n − 47 6 i 6 n, therefore

i > n − 95 and so η(2i) + η(192) > n + 1. Hence r2i ≁ 193 in Γ(G) if and only if

i/96 and 96/i are not odd natural numbers. Easily we can see that 96/i is an odd

number if and only if i = 32 or i = 96. Now 96 divides at most one element of

{n − 47, . . . , n}. Therefore at least 44 elements of B are not adjacent to 193.

Similarly to the above, since e(257, 5) = 256, e(1201, 5) = 600, e(14281, 5) =

340, e(1129, 5) = 282, e(11551, 5) = 1925, e(7321, 5) = 1830, e(12705841, G) =

635292, and e(4466009, 5) = 2233004, we derive t(257, G) > 62, t(1201, G) >

144, t(14281, G) > 82, t(1129, G) > 65, t(11551, G) > 470, t(7321, G) > 450,

t(12705841, G) > 158833, and t(4466009, G) > 558247. �

Lemma 3.4. Let G be a finite simple group of Lie type overGF(q), where q = pα.

Let p′ be a prime divisor of |G|. In Table 1, we give some upper bounds for t(p′, G)

for some simple groups G and some prime numbers p′.

An(pα) 2An(pα) Bn(pα) or Cn(pα) Dn(pα)r or 2Dn(pα)

(p, p′) = (2, 257) 17 17 13 15

(p, p′) = (3, 193) 17 17 13 15

(p, p′) = (7, 1201) 9 9 7 9

(p, p′) = (13, 14281) 9 9 7 9

(p, p′) = (31, 1129) 9 9 7 9

(p, p′) = (313, 11551) 12 12 9 10

Table 1. An upper bound for t(p′, G)

P r o o f. We determine t(257, G) in case q = 2α, and the proofs of the other

cases are similar. Now we consider each case separately.

Case 1. Let G = An′
−1(q), where q = 2α. We know that e(257, q) | 16, since

e(257, 2) = 16. If e(257, q) = 1, then 257 is adjacent to each prime divisor of

qi − 1, where i 6 n′ − 2, by [23, Proposition 4.1], so t(257, G) 6 3. Otherwise since

e(257, q) | 16, hence 257 is adjacent to each prime divisor of qi−1, where i 6 n′−16,

by Lemma 2.8, so |̺(257, G) \ {257}| 6 16 and so t(257, G) 6 17.

Case 2. Let G = 2An′−1(q), where q = 2α. If e(257, q) = 2, then 257 is adjacent

to each prime divisor of qi − 1, where ν(i) 6 n′ − 2, by [23, Proposition 4.2], so
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t(257, G) 6 3. Otherwise since e(257, q) | 16, hence 257 is adjacent to each prime

divisor of qi − (−1)i, where ν(i) 6 n′−16, by Lemma 2.9, so |̺(257, G)\{257}| 6 16

and so t(257, G) 6 17.

Case 3. LetG = Bn′(q), where q = 2α. We have e(257, q) | 16, since e(257, 2) = 16.

Therefore 257 is adjacent to each prime divisor of qi − 1, where η(i) 6 n′ − 8, by

Lemma 2.7, so |̺(257, G) \ {257}| 6 12 and so t(257, G) 6 13.

Case 4. Let G = Dε
n′(q), where q = 2α. We know that e(257, q) | 16. Therefore

257 is adjacent to each prime divisor of qi − 1, where η(i) 6 n′ − 9, by Lemma 2.10,

so |̺(257, G) \ {257}| 6 14 and so t(257, G) 6 15. �

Lemma 3.5. If n′ > 10, then t(7321, Dε
n′(11α)) 6 9. Similarly, t(12705841,

Dε
n′(71α)) 6 9, t(4466009, Dε

n′(521α)) 6 9.

P r o o f. Similarly to Lemma 3.4, we get the result, since e(7321, 11) | 8. �

Theorem 3.6. Let G be a finite group such that Γ(G) = Γ(Bn(5)), where n > 6.

Then G has a unique nonabelian composition factor isomorphic to Bn(5) or Cn(5).

P r o o f. We know that t(Bn(5)) > 5 and t(2, Bn(5)) = 2. By Lemma 2.1, there

exists a nonabelian simple group S such that S 6 G = G/K 6 Aut(S), where K is

the maximal normal soluble subgroup of G.

We know that if n > 9, then A = {r2n, r2(n−1), r2(n−2), r2(n−3), r2(n−4)} is an

independent set of Γ(G) and so |A ∩ π(S)| > 4, by Lemma 2.1. Since r2n ∈ ̺(2, G),

it follows that r2n ∈ π(S) and r2n ≁ 2 in Γ(S). By Lemma 2.1 we know that t(S) > 4

and t(2, S) > 2. In the sequel, using [26, Tabs. 1a–1c] we consider each possibility

for S such that t(S) > 4.

Case 1. Let S ∼= An′ .

If n′ 6 16, then t(S) 6 3, which is a contradiction with t(S) > 4. Consequently,

n′ > 17. Let n > 12. If x ∈ π(An′ ) is such that x ≁ 17, then n′ − 17 < x 6 n′,

by [23, Proposition 1.1]. On the other hand, there exist [18/2] + [18/3]− [18/6] = 12

elements of [n′−17, n′] which are divisible by 2 or by 3. Therefore at most 6 elements

of [n′ − 17, n′] are prime numbers. Hence t(17, S) 6 7. Therefore by Remark 2.2,

t(17, G) 6 8. Since n > 12, [(n + 1)/2] 6 n − 5 so H = {r2i : n − 5 6 i 6 n} ∪ {ri :

n − 5 6 i 6 n, i ≡ 1 (mod 2)}, is an independent set of Γ(G), by Remark 3.2. We

know that e(17, 5) = 16 and easily we can see that 17 is not adjacent to at least

8 elements of H and so t(17, G) > 9, which is a contradiction.

If n = 6, then 601 = r2n ∈ π(S), so n′ > 601. Therefore 449 ∈ π(S), which is

a contradiction, since 449 /∈ π(B6(5)). Similarly we derive that n /∈ {7, 8, 9, 10, 11}.

In the rest of the proof, if S is a simple group of Lie type over GF(q), then let r′i
be a primitive prime divisor of qi − 1.
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Case 2. Let S ∼= An′−1(q), where q = pα.

By Lemma 2.1, t(S) > t(G) − 1, so

(3.1) 2n′ > 3n − 5.

(a) If n > 12, then (3.1) implies that n′ > 16.

(2.1.a) Let p 6= 5. By [23, Propositions 3.1, 4.1], every r′i, where i /∈ {n′ − 1, n′},

is adjacent to 2 and p in Γ(S). Since r2n ∈ π(S) and 2 ≁ r2n in Γ(S) we obtain

e(r2n, q) ∈ {n′ − 1, n′}. Since A is an independent set in Γ(G), it follows that

e(ri, q) 6= e(rj , q) for ri, rj ∈ A and i 6= j. We know that |A ∩ π(S)| > 4, by

Lemma 2.1. Hence p is adjacent to at least two elements of π(S)∩A\ {r2n} in Γ(S),

since t(p, S) = 3. For example, let p be adjacent to r2(n−3) and r2(n−4) in Γ(S).

Then r2(n−3) ∼ p and r2(n−4) ∼ p in Γ(G). Denote e(p, 5) by a. Since p ∼ r2(n−4)

by Lemma 2.7 it follows that n − 4 + η(a) 6 n or 2(n − 4)/a is odd. Similarly since

p ∼ r2(n−3) it follows that n − 3 + η(a) 6 n or 2(n − 3)/a is odd. So η(a) 6 4,

which implies that a ∈ {1, 2, 3, 4, 6, 8} and so p ∈ {2, 3, 7, 13, 31, 313}. Similarly to

the above for every ri and rj , where i, j ∈ {2(n − 1), 2(n − 2), 2(n − 3), 2(n − 4)},

and ri ∼ p ∼ rj , it follows that p ∈ {2, 3, 7, 13, 31, 313}.

Assume that p = 2. Since n′ > 16 and e(257, 2α) | 16, it follows that 257 ∈ π(S).

Hence by Lemma 3.4, t(257, S) 6 17, while by Lemma 3.3, t(257, G) > 62. Therefore

by Remark 2.2 we get a contradiction. Similarly for every p ∈ {3, 7, 13, 31, 313}, we

get a contradiction.

(2.2.a) Let p = 5 and so q = 5α. We note that π(S) ⊆ π(G) and by Lemma 2.4, it

follows that αn′ 6 2n. On the other hand, 2 ≁ r2n in Γ(S), so e(r2n, q) ∈ {n′−1, n′}

by [23, Proposition 4.1]. Therefore 2n = e(r2n, 5) divides n′α or (n′ − 1)α. If

2n | (n′ − 1)α, then 2n 6 (n′ − 1)α < n′α 6 2n, which is a contradiction. Therefore

2n = αn′. If α = 1, then 2n = n′ and so rn′−1 = r2n−1 ∈ π(S) ⊆ π(G), which is

a contradiction. If α > 2, then n > n′. Now (3.1) implies that n < 5, and this is

a contradiction.

(b) Let 6 6 n 6 11.

If n = 6, then π(G) = π(B6(5)) = {2, 3, 5, 7, 11, 13, 31, 71, 313, 521, 601}. We know

that p ∈ π(S) and so p ∈ π(G). By (3.1) we have n′ > 7, so π(p7 − 1) ⊆ π(q7 − 1) ⊆

π(S). For every p ∈ π(G), we can easily see that π(p7 − 1) * π(G), and so we get

a contradiction. For example, if p = 2, then 127 ∈ π(27 − 1) and 127 /∈ π(G).

If n = 7, then π(G) = {2, 3, 5, 7, 11, 13, 29, 31, 71, 313, 449, 521, 601, 19531}. By

(3.1) we have n′ > 9. If p ∈ π(G) \ {5}, then similarly to the previous case we get

a contradiction.

Let p = 5. Since π(S) ⊆ π(G), hence n′α 6 14. Therefore 9 6 n′ 6 14 and α = 1.

Now we get a contradiction, since r9 /∈ π(G).

Similarly for 8 6 n 6 11, we get a contradiction.
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Case 3. Let S ∼= 2An′−1(q), where q = pα.

By Lemma 2.1, t(S) > t(G) − 1, so

(3.2) 2n′ > 3n − 5.

(a) Let n > 12. Then (3.2) implies n′ > 16.

(3.1.a) Let p 6= 5. Every r′i ∈ π(S), where ν(i) /∈ {n′ − 1, n′}, is adjacent to 2 and

p in Γ(S), by [23, Propositions 3.1, 4.2]. We know that 2 ≁ r2n in Γ(S), therefore

ν(e(r2n, q)) ∈ {n′ − 1, n′}, by [23, Proposition 4.2]. Also we know that ν(e(ri, q)) 6=

ν(e(rj , q)) for ri, rj ∈ A and i 6= j, since A is an independent set in Γ(G). Therefore

p is adjacent to at least two elements of π(S) ∩ A \ {r2n} in Γ(S), since t(p, S) = 3.

Denote e(p, 5) by a. Similarly to Case 2, it follows that p ∈ {2, 3, 7, 13, 31, 313}.

If p = 3, then by Lemma 3.4, t(193, S) 6 17, while by Lemma 3.3, t(193, G) > 44.

Now by Remark 2.2, we get a contradiction.

If p = 7, then by Lemma 3.4, t(1201, S) 6 9, while by Lemma 3.3, t(1201, G) >

144, which is a contradiction.

Similarly for every p ∈ {2, 3, 7, 13, 31, 313}, we get a contradiction.

(3.2.a) Let p = 5. By Lemma 2.4, it follows that 2αn′ 6 2n or 2α(n′ − 1) 6 2n,

since π(S) ⊆ π(G). We know that 2 ≁ r2n in Γ(S). By [23, Proposition 4.2],

ν(e(r2n, q)) ∈ {n′ − 1, n′}. Therefore 2n = e(r2n, 5) | 2αn′ or 2n = e(r2n, 5) |

2α(n′ − 1). So we consider the following two cases:

1. Let 2n = 2αn′, so n > n′. Now (3.2) implies that n < 5, which is a contradic-

tion.

2. Let 2n = 2α(n′ − 1). Then n > n′ − 1 and by (3.2) we have n < 7, which is

a contradiction.

(b) Let 6 6 n 6 11.

If n = 6, then π(G) = π(B6(5)). We note that p ∈ π(S) ⊆ π(G). By (3.2) we have

n′ > 7. Since r2n = 601 ≁ 2 in Γ(S), using [23, Proposition 4.2] we conclude that

ν(e(r2n, q)) ∈ {n′ − 1, n′} and so 601 = r2n ∈ {r′(n′−ε)/2, r
′

n′
−1, r

′

2(n′−1), r
′

n′ , r′2n′},

where ε = 0 if n′ is even and ε = 1 if n′ is odd.

Let p = 2. If r′n′ = 601, then 25 | n′α, since e(601, 2) = 25. We consider the

following cases:

1. If n′ is even, then (225 − 1) | (2n′α − (−1)n′

). So 1801 ∈ π(S), which is

a contradiction.

2. Let n′ be odd. If α is odd, then (225 + 1) | (2n′α − (−1)n′

). Therefore

4051 ∈ π(S), which is a contradiction. Let α be even. If n′ = 7, then S ∼= 2A6(2
α).

We know that 25 | 7α, so (225−1) | |S|. Hence 1801 ∈ π(S), which is a contradiction.

Hence n′ > 9 and so 257 ∈ π(216 − 1) ⊆ π(q8 − 1) ⊆ π(S), which is a contradiction.

Similarly 601 /∈ {r′(n′
−ε)/2, r

′

n′
−1, r

′

2(n′
−1), r

′

2n′}, where ε = 0 if n′ is even and ε = 1

if n′ is odd.
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Let p = 3. Since e(601, 3) = 75, similarly we get a contradiction.

Let p = 5. Since π(S) ⊆ π(G), hence 2n′α 6 12 or 2(n′ − 1)α 6 12. Therefore

n′ = 7 and α = 1, since n′ > 7, so S ∼= 2A6(5). We know that 601 ∈ π(S), which is

a contradiction.

Let p = 7. Since n′ > 7, hence π(p6 − 1) ⊆ π(S). Therefore 43 ∈ π(S), which is

a contradiction. Similarly for every p ∈ {11, 13, 31, 71, 313, 521, 601}, we get a con-

tradiction.

Finally, for 7 6 n 6 11, we can get a contradiction similarly and we omit the proof

for these cases.

Case 4. Let S ∼= Dε
n′(q), where q = pα.

By Lemma 2.1, t(S) > t(G) − 1, so

(3.3) 3n′ > 3n − 7.

(a) Let n > 12. Since t(S) > t(G) − 1, we see that (3) implies that if ε = +, then

n′ > 11 and if ε = −, then n′ > 10.

We note that B = A ∪ {r2(n−5)} is an independent set in Γ(G), since n > 12.

(4.1.a) Let p 6= 5. We know that every r′i ∈ π(S), where η(i) /∈ {n′ − 1, n′}, is

adjacent to 2 and p in Γ(S), by [23, Propositions 3.1, 4.4]. For every ri, rj ∈ B,

where i 6= j we have η(e(ri, q)) 6= η(e(rj , q)), since B is an independent set in Γ(G).

Since 2 ≁ r2n in Γ(S), we obtain η(e(r2n, q)) ∈ {n′ − 1, n′}. Therefore p is adjacent

to at least two elements of π(S)∩B \ {r2n} in Γ(S). If a = e(p, 5), then similarly to

Case 2 we conclude that p ∈ {2, 3, 7, 11, 13, 31, 71, 313, 521}.

If p = 13, then by Lemma 3.4, t(14281, S) 6 9, while by Lemma 3.3, t(14281, G) >

82. Therefore by Remark 2.2, we get a contradiction.

If p = 11, then by Lemma 3.5, t(7321, S) 6 9, while by Lemma 3.3, t(7321, G) >

450. So we get a contradiction.

Similarly for every p ∈ {2, 3, 7, 11, 13, 31, 71, 313, 521} we get a contradiction.

(4.2.a) Let p = 5. Then r2n ∈ π(S) and 2 ≁ r2n, since r2n ∈ ̺(2, G).

• Let S ∼= 2Dn′(5α). By [23, Proposition 4.4], r2n ∈ {r′2n′ , r′2(n′
−1)}. Therefore

2n = e(r2n, 5) | 2αn′ or 2n = e(r2n, 5) | 2α(n′ − 1). On the other hand, π(S) ⊆ π(G)

and by Lemma 2.4, it follows that 2αn′ 6 2n. Hence 2n = 2αn′ and so n′ = n/α.

Therefore by (3.3), α = 1, since n′ > 10. Therefore q = 5. Now we consider two

subcases:

1. If n is odd, then rn /∈ π(S) so rn ∈ π(K) ∪ π(G/S). Since π(Out(S)) = {2},

we have rn ∈ π(K). Then by Lemma 2.5, S contains a Frobenius subgroup with

kernel F of order 52(n−1) and a cyclic complement C of order r2(n−1), where r2(n−1)

is a primitive prime divisor of 52(n−1) − 1. Since r2n ∈ π(S) and rn ≁ r2n in Γ(G),

then by Lemma 3.1, rn ∼ r2(n−1), which is a contradiction, by Lemma 2.7.
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2. If n is even, then rn+2 ∈ π(52(n+2)/2 − 1) ⊆ π(S). Similarly it follows that

rn−2 ∈ π(S). Now using Lemma 2.7, we conclude that rn−2 ∼ rn+2 in Γ(G) and using

Lemma 2.10, it follows that rn−2 ≁ rn+2 in Γ(S). Since π(G/S) = {2} it follows

that rn−2 ∈ π(K) or rn+2 ∈ π(K). By Lemma 2.5, S contains a Frobenius subgroup

of the form 52n−2 : r2n−2. We note that rn−1 ∈ π(S), rn−1 ≁ rn−2 and rn−1 ≁ rn+2

in Γ(G). Therefore by Lemma 3.1, we have r2n−2 ∼ rn−2 or r2n−2 ∼ rn+2, which is

a contradiction with Lemma 2.7.

• Let S ∼= Dn′(5α). By [23, Proposition 4.4], e(r2n, q) ∈ {2(n′ − 1), n′ − 1, n′}.

Therefore 2n = e(r2n, 5) divides 2α(n′ − 1), α(n′ − 1), or αn′. On the other hand,

we note that π(S) ⊆ π(G) and by Lemma 2.4 it follows that 2α(n′ − 1) 6 2n. So

2n = 2α(n′−1). If α > 2, then by (3.3) we have 3n′ > 3α(n′−1)−7 > 6n′−13, which

is a contradiction, since n′ > 7. Therefore α = 1, n′ = n + 1 and so S ∼= Dn+1(5).

Consequently, if n is even, then rn+1 = rn′ ∈ π(S) and rn+1 /∈ π(G), which is

a contradiction. Let n be odd. If 4 | (n−1), then r2(n−1) ≁ r4 in Γ(G) by Lemma 2.7.

But r2(n−1) ∼ r4 in Γ(S) by Lemma 2.10, which is a contradiction. If 4 | (n−3), then

similarly to the above r2(n−3) ≁ r8 in Γ(G) and r2(n−3) ∼ r8 in Γ(S) by Lemmas 2.7

and 2.10, which is a contradiction.

(b) Let 6 6 n 6 11.

• Let S ∼= 2Dn′(q).

If n = 6, then p ∈ π(S) ⊆ π(B6(5)). By (3.3), we have n′ > 4. Let p = 2. Since

n′ > 4, we can easily see that (q8 − 1) | |S| and so (p8 − 1) | |S|. So 17 ∈ π(S), which

is a contradiction. Similarly p 6= 3.

Let p = 5. Since π(S) ⊆ π(G), we have 2n′α 6 12. Therefore 4 6 n′ 6 6 and

α = 1. We know that 601 ∈ π(S). Then n′ = 6, since e(601, 5) = 12. So S ∼= 2D6(5).

We know that r8 ∼ r4 in Γ(G) and r8 ≁ r4 in Γ(S), by Lemma 2.7 and Lemma 2.10.

Therefore r4 ∈ π(G/S)∪π(K) or r8 ∈ π(G/S)∪π(K). We know that π(G/S) = {2}.

Therefore r4 ∈ π(K) or r8 ∈ π(K). By Lemma 2.5, 2D6(5) contains a Frobenius

subgroup of the form 510 : r10. We know that r5 ∈ π(S) and r5 ≁ r4 and r5 ≁ r8

in Γ(B6(5)). Therefore by Lemma 3.1, r4 ∼ r10 or r8 ∼ r10, which is a contradiction.

Let p = 7. Since n′ > 4, we have π(p6 − 1) ⊆ π(S). Therefore 43 ∈ π(S),

which is a contradiction. Similarly for every p ∈ {11, 13, 31, 71, 313, 521, 601} we get

a contradiction.

Similarly to the above for 7 6 n 6 11, we get a contradiction.

• Let S ∼= Dn′(q).

If n = 6, then p ∈ π(B6(5)). By (3.3), we have n′ > 4. Since r2n ≁ 2 in Γ(S),

hence 601 = r2n ∈ {r′n′ , r′n′−1, r
′

2(n′−1)}, by [23, Proposition 4.4].

Let p = 2. If r′n′ = 601, then 25 | n′α, since e(601, 2) = 25. Therefore 1801 ∈

π(225 − 1) ⊆ π(S), which is a contradiction. Similarly 601 /∈ {r′n′
−1, r

′

2(n′
−1)}.
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Let p = 3. We have e(601, 3) = 75 and similarly to the above, we get a contradic-

tion.

Let p = 5. Since π(S) ⊆ π(G), it follows that 2(n′ − 1)α 6 12. Therefore we

consider the following cases:

1. Let α = 2 and n′ = 4, so S ∼= D4(5
2). Therefore r5 ∈ π(G) and r5 /∈ π(S). So

r5 ∈ π(G/S) ∪ π(K). Since π(Out(S)) = {2}, we have r5 ∈ π(K). By Lemma 2.5,

D4(5
2) contains a Frobenius subgroup of the form 56 : r6. We know that r12 ∈ π(S)

and r12 ≁ r5 in Γ(B6(5)). Therefore by Lemma 3.1, r5 ∼ r6 in Γ(B6(5)), which is

a contradiction.

2. Let α = 1 and 4 6 n′ 6 7. We know that 601 ∈ π(S) and e(601, 5) = 12, hence

n′ = 7. So S ∼= D7(5). Therefore r7 ∈ π(S) and r7 /∈ π(G), which is a contradiction.

Let p = 7. Since n′ > 4, we have π(p6 − 1) ⊆ π(S). Therefore 43 ∈ π(S),

which is a contradiction. Similarly for every p ∈ {11, 13, 31, 71, 313, 521, 601}, we get

a contradiction.

If n = 7, then π(G) = {2, 3, 5, 7, 11, 13, 29, 31, 71, 313, 449, 521, 601, 19531}. Since

t(S) > t(G) − 1, we have n′ > 6. If p ∈ π(G) \ {5}, then similarly to the previous

case, we get a contradiction.

Let p = 5. Since π(S) ⊆ π(G), we have 2(n′ − 1)α 6 14. Therefore 6 6 n′ 6 8

and α = 1. We know that 29 ∈ π(S) and e(29, 5) = 14, so n′ = 8. Then S ∼= D8(5).

Now by Lemmas 2.10 and 2.7, r3 ∼ r5 in Γ(S) and r3 ≁ r5 in Γ(G), which is

a contradiction.

Similarly to the above for 8 6 n 6 11, we get a contradiction.

Case 5. Let S ∼= Cn′(q), where q = pα.

By Lemma 2.1, t(S) > t(G) − 1, so

(3.4) 3n′ > 3n − 8.

(a) Let n > 12. Then (4) implies that n′ > 10.

(5.1.a) Let p 6= 5. By [23, Propositions 3.1, 4.3], every r′i ∈ π(S), where i /∈

{2n′, n′}, is adjacent to 2 and p in Γ(S). We obtain e(r2n, q) ∈ {2n′, n′}, since

r2n ∈ ̺(2, G). Since A is an independent set in Γ(G), it follows that η(e(ri, q)) 6=

η(e(rj , q)) for ri, rj ∈ A and i 6= j. Therefore p is adjacent to at least two elements

of π(S) ∩ A \ {r2n} in Γ(S). So similarly to Case 2, p ∈ {2, 3, 7, 13, 31, 313}.

If p = 31, then by Lemma 3.4, t(1129, S) 6 7, while by Lemma 3.3, t(1129, G) >

65. Therefore by Remark 2.2, we get a contradiction.

Similarly for every p ∈ {2, 3, 7, 13, 31, 313} we get a contradiction.

In the same manner we prove that S cannot be isomorphic to Bn′(q), where q = pα,

p 6= 5, and n′ > 10.

(5.2.a) Let p = 5. We know that r2n ∈ π(S) and 2 ≁ r2n in Γ(S). By [23,

Proposition 4.3], e(r2n, q) ∈ {2n′, n′}. Therefore, 2n = e(r2n, 5) | 2αn′ or 2n =
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e(r2n, 5) | αn′. On the other hand, 2αn′ 6 2n, by Lemma 2.4. So 2αn′ = 2n, and

by (3.4), α = 1, since n′ > 10. Then S ∼= Cn(5). We note that Γ(Cn(5)) = Γ(Bn(5))

(see [24, Proposition 2.4]).

(b) Let 6 6 n 6 11.

If n = 6, then p ∈ π(B6(5)). By (3.4), we have n′ > 4.

Let p = 5. Since π(S) ⊆ π(G), so 2n′α 6 12. Therefore 4 6 n′ 6 6 and α = 1.

We know that 601 ∈ π(S) and e(601, 5) = 12, so n′ = 6. Then S ∼= C6(5).

If p = 2, then 17 ∈ π(28 − 1) ⊆ π(S), which is a contradiction. Similarly for every

p ∈ {3, 7, 11, 13, 31, 71, 313, 521, 601}, we get a contradiction.

Similarly to the above for 7 6 n 6 11, we can prove that S ∼= Cn(5).

Similarly to the above discussion it follows that S ∼= Bn(5).

Case 6. Let S ∼= F4(q), where q = pα.

We know that t(S) 6 5. If n > 7, then t(G) > 7, which is a contradiction, by

Lemma 2.1.

If n = 6, then p ∈ π(B6(5)).

Let p = 5. Since π(S) ⊆ π(G), we have 12α 6 12. Therefore α = 1 and S ∼= F4(5).

We know that r10 ∈ π(G) and r10 /∈ π(S). So r10 ∈ π(G/S)∪π(K). Therefore r10 ∈

π(K), since Out(S) = 1. By [22], B4(5) 6 F4(5) and by Lemma 2.5, B4(5) contains

a Frobenius subgroup of the form 53 : r3. We know that r12 ∈ π(S) and r12 ≁ r10

in Γ(G). Therefore by Lemma 3.1, r3 ∼ r10, which is a contradiction.

If p = 2, then 17 ∈ π(28 − 1) ⊆ π(S), which is a contradiction. Similarly for every

p ∈ {3, 7, 11, 13, 31, 71, 313, 521, 601}, we get a contradiction.

If n = 7, then in a similar manner, we get a contradiction.

Case 7. Let S ∼= E6(q), where q = pα.

We know that t(S) = 5. If n > 7, then t(G) > 7, which is a contradiction, by

Lemma 2.1.

If n = 6, then p ∈ π(B6(5)). Similarly to Case 6, if p 6= 5, then we get a contra-

diction.

Let p = 5. Since π(S) ⊆ π(G), hence 12α 6 12. Therefore α = 1 and S ∼= E6(5).

Now by [22], F4(5) 6 E6(5) and using the previous case we get a contradiction.

If n = 7, then similarly we get a contradiction.

In the same manner we can prove that S is not isomorphic to 2E6(q).

Case 8. Let S ∼= E7(q), where q = pα.

We know that t(S) = 8. If n > 12, then t(G) > 10, which is a contradiction, by

Lemma 2.1. We know that 19 ∈ π(S), therefore n > 9. Also p ∈ π(G). If n = 9,

then

π(G) = {2, 3, 5, 7, 11, 13, 17, 19, 29, 31, 71, 313, 449, 521, 601, 829, 5167, 11489, 19531}.
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Let p = 5. Since π(S) ⊆ π(G), we have 18α 6 18, and so α = 1 and S ∼= E7(5).

We know that r16 ∈ π(G) and r16 /∈ π(S). So r16 ∈ π(G/S) ∪ π(K). Therefore

r16 ∈ π(K), since π(Out(S)) = {2}. By [22], C4(5) 6 A7(5) 6 E7(5) and by

Lemma 2.5, C4(5) contains a Frobenius subgroup of the form 54 : (54 − 1)/2. We

know that r18 ∈ π(S) and r18 ≁ r16 in Γ(B9(5)). Therefore by Lemma 3.1, r4 ∼ r16

in Γ(G), which is a contradiction.

If p = 2, then 73 ∈ π(218−1) ⊆ π(S), which is a contradiction. Similarly for every

p ∈ π(G), we get a contradiction.

Similarly to the above for n = 10 and n = 11, we get a contradiction.

Case 9. Let S ∼= E8(q), where q = pα.

We know that t(S) = 12. So by Lemma 2.1 we have n 6 16. We know that

19 ∈ π(S), so n > 9. Therefore 9 6 n 6 16 and p ∈ π(G).

Let n = 16. For every p ∈ π(G) \ {5}, we get a contradiction, since π(p30 − 1) *
π(B16(5)). For example, if p = 2, then 151 ∈ π(230−1) ⊆ π(S) and 151 /∈ π(B16(5)).

Let p = 5. Since π(S) ⊆ π(G), so 30α 6 32. Therefore α = 1 and S ∼= E8(5).

We know that r13 ∈ π(G) and r13 /∈ π(S). So r13 ∈ π(G/S) ∪ π(K). Therefore

r13 ∈ π(K), sinceOut(S) = 1. Using [22], we haveD8(5) 6 E8(5) andD8(5) contains

a Frobenius subgroup 521 : r7. Now r30 ≁ r7 and by Lemma 3.1, we have r13 ∼ r7,

which is a contradiction, by Lemma 2.7. For other cases we easily get a contradiction.

Case 10. Let S ∼= 2B2(q), where q = 22n′+1.

We know that t(S) = 4. Therefore n = 6. Then A = {r5, r6, r8, r10, r12} is an

independent set in Γ(G). At least 4 elements of A belong to π(S). Since t(S) = 4

and 2 ∈ ̺(S), it follows that one of the elements of A must be equal to 2, which is

a contradiction.

Case 11. Let S ∼= 2G2(q), where q = 32n′+1.

We know that t(S) = 5. Therefore n = 6 or n = 7.

If n = 7, then A = {r5, r7, r8, r10, r12, r14} is an independent set in Γ(G). On the

other hand, for each independent set ̺(S) we have |̺(S) \ {3}| = 4, by [23, Table 9].

So we get a contradiction since |A ∩ π(S)| > 5.

Let n = 6, we know that r2n = 601 ∈ π(S). So 601 | (q − 1) or 601 | (q3 + 1).

If 601 | (q − 1), then 75 | (2n′ + 1), since e(601, 3) = 75. Therefore 4561 ∈

π(375 − 1) ⊆ π(q − 1) ⊆ π(S), which is a contradiction. Similarly, if 601 | (q3 + 1),

we get a contradiction.

Case 12. Let S ∼= 2F4(q), where q = 22n′+1 > 32.

We know that t(S) = 5, so n = 6 or n = 7.

Let n = 7. We know that 29 = r2n ∈ π(S). So 29 divides q − 1, q3 + 1, q4 − 1,

or q6 + 1. If 29 | (q − 1), then 28 | (2n′ + 1), since e(29, 2) = 28. Therefore

127 ∈ π(228 − 1) ⊆ π(q − 1) ⊆ π(S), which is a contradiction. Similarly for other

cases, we get a contradiction.
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Similarly to the above for n = 6, we get a contradiction.

Case 13. Let S be a sporadic group.

If n > 16, then t(G) > 13, which is a contradiction by Lemma 2.1, since t(S) 6 11.

For 6 6 n 6 15 we can easily see that r2n /∈ π(S), which is a contradiction. �

Theorem 3.7. If Γ(G) = Γ(Bn(5)), where n > 6, then there exists a nonabelian

simple group S such that S 6 G/K 6 Aut(S), and one of the following holds:

(1) S ∼= Bn(5) and K is a {2, 3}-group.

(2) S ∼= Cn(5), where n is odd, and K is an elementary abelian rm-group such that

m | n.

(2) S ∼= Cn(5), where n is even, and K is an elementary abelian rm-group such that

η(m) 6 n/2 or n/m is odd.

P r o o f. By Lemma 2.1, we know that S 6 G/K 6 Aut(S), where K is the

maximal normal soluble subgroup of G. By Theorem 3.6, S ∼= Bn(5) or S ∼= Cn(5).

Assume that there exists p such that p | |K|. We claim that without loss of generality

we can consider K as an elementary abelian p-group for p ∈ π(G). SinceK is soluble,

there is p ∈ π(G) such that Op(K) 6= K. Then K/Op(K) is a nontrivial p-group.

Let K̂ = K/Op(K) and Ĝ = G/Op(K), since Op(K) is a characteristic subgroup

of K and K ⊳ G. If the Frattini subgroup of K̂ is denoted by Φ(K̂), then K̂/Φ(K̂)

is an elementary abelian p-group and we have

G

K
∼=

Ĝ

K̂
∼=

Ĝ/Φ(Ĝ)

K̂/Φ(K̂)
.

Therefore without loss of generality we can assume that K is an elementary abelian

p-group. Since by [6] we know that Bn(5) and Cn(5) act unisingularly we conclude

that p 6= 5.

We claim that if n > 6 is odd, then for each element t ∈ π(Bn(5)) = π(Cn(5)) we

have t ≁ rn or t ≁ r2n. If t = 2, then 2 ≁ rn or 2 ≁ r2n by [23, Proposition 2.4]. Let

t 6= 2 and denote e(t, 5) by a. If t ∼ rn and t ∼ r2n, then by Lemma 2.7, n/a and

2n/a are odd, which is a contradiction.

Also we claim that if n > 6 is even, then for each element t ∈ π(Bn(5)) = π(Cn(5))

we have t ≁ r2(n−1) or t ≁ r2n. Let e(t, 5) = a. Let t ∼ r2(n−1) and t ∼ r2n. Since

t ∼ r2(n−1), it follows that n − 1 + η(a) 6 n or 2(n − 1)/a is odd, by Lemma 2.7.

Similarly, since t ∼ r2n, it follows that 2n/a is odd, by Lemma 2.7. Therefore a = 1

or 2 and 2n/a is odd, which is a contradiction, since n is even.

• Let S ∼= Bn(5).

If n is odd, then S contains a Frobenius subgroup with kernel of order 5n(n−1)/2 and

a cyclic complement of order rn, by Lemma 2.5. By assumption, S 6 G/K, and so
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G/K contains a Frobenius subgroup T/K of the form 5n(n−1)/2 : rn. If p ≁ rn, then

since p 6= 5, by Lemma 3.1, it follows that p ∼ rn, which is a contradiction. Therefore

p ∼ rn, and so p ≁ r2n, by the above discussion. Also we know thatBn−2(5) 6 Bn(5),

by [22], and so Bn−2(5) 6 G/K. Similarly G/K contains a Frobenius subgroup of

the form 5(n−2)(n−3)/2 : rn−2, by Lemma 2.5. Since p 6= 5 and p ≁ r2n it follows

that p ∼ rn−2, by Lemma 3.1. Let e(p, 5) = m. Since p ∼ rn it follows that n/m is

odd, by Lemma 2.7. Similarly since p ∼ rn−2 it follows that n − 2 + η(m) 6 n or

(n−2)/m is odd. Consequently, m = 1 and so p = 2, since m is odd. Therefore K is

a 2-group.

Let n be even. We note that G/K contains a Frobenius subgroup of the form

5(n−1)(n−2)/2 : rn−1, by Lemma 2.5. By the above discussion, p ≁ r2(n−1) or p ≁ r2n.

Therefore since p 6= 5, by Lemma 3.1, we conclude that p ∼ rn−1. Also we know

that Bn−2(5) 6 Bn(5), by [22]. Similarly G/K contains a Frobenius subgroup of the

form 5(n−3)(n−4)/2 : rn−3, by Lemma 2.5. Similarly p ∼ rn−3, by Lemma 3.1. Let

e(p, 5) = m. Since p ∼ rn−1, it follows that n−1+ η(m) 6 n or (n−1)/m is odd, by

Lemma 2.7. Similarly since p ∼ rn−3 it follows that n − 3 + η(m) 6 n or (n − 3)/m

is odd. Consequently, m ∈ {1, 2, 3}, so p ∈ {2, 3, 31}.

Let p = 31. We know that 2Dn(5) 6 Bn(5), by [22], and by Lemma 2.5,
2Dn(5) contains a Frobenius subgroup of the form 52(n−1) : r2(n−1). We know that

p ≁ r2(n−1) or p ≁ r2n. Since p 6= 5 by Lemma 3.1, 31 = p ∼ r2(n−1), which is

a contradiction by Lemma 2.7. Therefore p = 3 or p = 2, so K is a {2, 3}-group.

• Let S ∼= Cn(5).

By Lemma 2.5, Cn(5) contains a Frobenius subgroup of the form 5n : (5n − 1)/2.

By assumption, S 6 G/K. Then G/K contains a Frobenius subgroup T/K of the

form 5n(n−1)/2 : rn. Now using Lemma 3.1 similarly to the above, p ∼ rn. Let

p = rm. If n is odd, then m | n, by Lemma 2.7; and if n is even then η(m) 6 n/2 or

n/m is odd, by Lemma 2.7. �
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