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CONDITIONS UNDER WHICH THE LEAST COMPACTIFICATION

OF A REGULAR CONTINUOUS FRAME IS PERFECT
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Abstract. We characterize those regular continuous frames for which the least compacti-
fication is a perfect compactification. Perfect compactifications are those compactifications
of frames for which the right adjoint of the compactification map preserves disjoint binary
joins. Essential to our characterization is the construction of the frame analog of the two-
point compactification of a locally compact Hausdorff space, and the concept of remainder
in a frame compactification. Indeed, one of the characterizations is that the remainder of
the regular continuous frame in each of its compactifications is compact and connected.
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Introduction

The purpose of this paper is to characterize those regular continuous frames whose

least compactifications are perfect. The motivation for investigating this problem

comes from the work of Jung [5] who considered this problem in the setting of

Hausdorff spaces. Specifically he was concerned with characterizing internally those

locally compact Hausdorff spaces whose Alexandroff one-point compactifications are

perfect.

It is well known that for spaces, a space has a smallest compactification if and

only if it is locally compact Hausdorff. In [3] Banaschewski showed that a frame has

a smallest compactification if and only if it is regular continuous. It is natural there-

fore to speak of regular continuous frames as the frame analogue of locally compact

Hausdorff spaces, and the smallest compactification of a frame as the analogue of

the Alexandroff one-point compactification. As perfect compactifications have been
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introduced into the theory of frames (see [2]), this immediately raises the problem

of characterizing those regular continuous frames whose least compactifications are

perfect.

Before we address this problem let us recall the statement of Jung’s characteriza-

tion result:

Theorem 0.1. Let X be locally compact, non-compact and let Y = X ∪ {∞} be

its Alexandroff one-point compactification. The following conditions are equivalent:

(1) Y is a perfect compactification of X .

(2) The set Y \ X = {∞} does not split Y at the point ∞.

(3) No compact subset of X splits X at infinity.

(4) For any compactification Z ofX , the remainder Z\X is compact and connected.

We remind the reader of some of the terminology used in the above theorem. First,

the notion of a perfect compactification goes back to the work of Sklyarenko [6] who

defined a compactification Y ofX to be perfect if for any open subset U ofX we have

FrY (Y \ClY (X \U)) = ClY (FrX U) where Fr denotes the usual frontier or boundary

operator and Cl the closure operator. In his paper Sklyarenko shows that the Stone-

Čech compactification of a Tychonoff space and the Freudenthal compactification of

a rim-compact Hausdorff space are examples of perfect compactifications.

A set N is said to split the space Y at a point x of N (Sklyarenko [6]) if there

is an open set U of Y containing x such that U ∩ (Y \ N) = V ∪ W , where V and

W are disjoint non-empty open subsets of Y \ N with x ∈ ClY V ∩ ClY W .

A compact subset C of a space X splits the space at infinity if X \ C = U ∪ V

where U and V are non-empty disjoint open subsets of X such that C∪U and C ∪V

are non-compact (Aarts and Van Emde Boas [1]).

1. Preliminaries

We recall that a frame L is a complete lattice satisfying the infinite distributive

law:

x ∧
∨

S =
∨

x ∧ s(s ∈ S)

for any subset S of L. A homomorphism h : M → L between frames is a map that

preserves finite meets (including the top element e) and arbitrary joins (including

the bottom element 0). The resulting category is denoted by Frm. A frame L is

said to be regular if for each a ∈ L, a =
∨

x(x ≺ a). Here x ≺ a means that there

exists an element u ∈ L such that x∧u = 0 and u∨a = e. The frame L is said to be

compact if whenever e =
∨

S, then there exists a finite F ⊆ S such that e =
∨

F .

506



A complete lattice is called continuous if for each a ∈ L, a =
∨

x(x ≪ a), where

x ≪ a (read as x is way below a) means that for any S ⊆ L such that a 6
∨

S there

exists a finite F ⊆ S such that x 6
∨

F . Banaschewski [3] showed that if a frame L

is regular and continuous, then it has a smallest strong inclusion ◭ on L given by

a ◭ b ⇔ a ≺ b and either ↑a∗ or ↑b is compact, where ↑x = {t ∈ L : t > x}, and

a∗ is the pseudocomplement of a, i.e. the largest element of L whose meet with a

is 0. Recall that a strong inclusion ⊳ on L (Banaschewski [3]) is a binary relation

on L being the frame counterpart of the well known Efremovič proximity relation for

spaces. The set of all strong inclusions on a frame is in a one-to-one correspondence

with the set of all compactifications of L. By a compactification of L we mean

a compact regular frame M together with a dense onto map h : M → L, where

a dense map h is one satisfying the condition that h(x) = 0 =⇒ x = 0. A map h

is said to be codense if h(x) = e =⇒ x = e. The correspondence between strong

inclusions and compactifications is described by Banaschewski [3] as follows: If ⊳ is

a strong inclusion on L, we consider γL = {J : J is a strongly regular ideal of L}

where an ideal J is said to be strongly regular if x ∈ J implies y ∈ J for some x ⊳ y.

Then (γL,∨) is a compactification of L with ∨ : γL → L being the join map. Its

right adjoint k : L → γL is described as k(a) = {x ∈ L : x ⊳ a}. On the other hand,

if (M, h) is a compactification of L, we define ⊳ on L by: x ⊳ y ⇔ r(x) ≺ r(y) where

r : L → M is the right adjoint of h : M → L. Then ⊳ is a strong inclusion on L.

A congruence on a frame L is an equivalence relation on L which is also a subframe

of L × L. The congruence lattice CL of L consists of all the congruences on L. It is

a frame with bottom element ∆ = {(x, x) : x ∈ L} and top element ∇ = L×L. Two

particular congruences associated with each a ∈ L are ∆a = {(x, y) ∈ L×L : x∧a =

y ∧ a} and ∇a = {(x, y) ∈ L × L : x ∨ a = y ∨ a}. These members of CL are com-

plementary to each other in the sense that their meet is the bottom and their join is

the top element. In general, a congruence Θ does not necessarily have a complement

in CL though of course it must have a pseudocomplement which we will denote by Θ∗.

It was shown by Banaschewski [3] that the corresponding compactification of the

regular continuous frame L arising from the smallest strong inclusion on it as de-

scribed above, is the smallest compactification of L. This is the analog in frames of

the Alexandroff one-point compactification of a locally compact non-compact Haus-

dorff space. We recall from Banaschewski [3] also that if L is non-compact and

compactifiable with a least strong inclusion, then its corresponding least compacti-

fication h : M → L satisfies the following: There exists a unique a ∈ M , a < e such

that h(a) = e. The map ↓a → L by h is then codense, hence one-to-one, and since

it is onto, this makes ↓a ∼= L via the map h. Furthermore, for each x ∈ M either

x 6 a or x ∨ a = e.

The reader is referred to the text of Johnstone [4] for a general reference on frames.
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2. Remainder of a frame

We need the concept of the remainder of a frame L in its compactification h : M →

L specifically for the class of regular continuous frames L. As a prelude to the

discussion on remainders and for the purpose of obtaining our main characterization

result later, we note the following theorem proved by Aarts and Van Emde Boas [1]:

Theorem 2.1. Suppose X is a locally compact, non-compact metric space. Then

each remainder of X in a compactification of X is a continuum if and only if no

compact subset of X splits X at infinity.

They remark that the above result is also true in the non-metric case, a remark

that prompted our investigation as to whether the analog of this result holds for

regular continuous frames in general.

Before we embark on this we draw attention to the following well-known result for

spaces: A dense subset of a compact Hausdorff space is locally compact if and only

if it is open.

The analogous result for frames does indeed hold as we show below.

Theorem 2.2. Let h : M → L be any compactification of L, where L is non-

compact. Then L is regular continuous if and only if L ∼= ↓a for some a ∈ M .

P r o o f. “⇐” This was shown by Banaschewski in [3]

“⇒” Now assume L is regular continuous. Put a =
∨

r(x)(x ≪ e) where r is the

right adjoint of h. Now if a = e, then by the compactness of M , there exists xi,

i = 1, 2, . . . , n say, such that xi ≪ e for all i and r(x1) ∨ . . . ∨ r(xn) = e. Hence

e = h(r(x1) ∨ . . . ∨ r(xn)) = hr(x1) ∨ . . . ∨ hr(xn) = x1 ∨ . . . ∨ xn. Since xi ≪ e for

all i, we have x1 ∨ . . . ∨ xn ≪ e and so e ≪ e, contradicting the fact that L is not

compact. Thus a < e. Furthermore h(a) =
∨

hr(x)(x ≪ e) =
∨

x(x ≪ e) = e. We

claim that ↓a ∼= L via the map h: To see this note firstly that h is dense. It is also

onto since h : M → L is onto and h(a) = e.

Also h : ↓a → L is codense. For take b 6 a such that h(b) = e. We shall show

a 6 b. For this take any x ≪ e. We show r(x) 6 b. Now b =
∨

z(z ≺ b), so that

e = h(b) =
∨

h(z)(z ≺ b). Now
∨

(x∗ ∨ h(z))(z ≺ b) = e. Since x ≪ e we have

↑x∗ is compact, and hence we can find z ≺ b such that x∗ ∨ h(z) = e. Now z ≺ b

implies rh(z) 6 b by using the fact that h is dense and onto. Also x 6 h(z) implies

r(x) 6 rh(z) 6 b as required. Thus ↓a ∼= L via the map h. �

Remark 2.3. We have mentioned at the end of Section 1 the result of Ba-

naschewski [3] that for a non-compact frame L with least compactification h : M → L

there is a unique a ∈ M such that a < e and h(a) = e. Moreover, ↓a ∼= L (via h) is
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an isomorphism and a is a maximal element in M . The uniqueness of a ∈ M with

the stated properties, if one studies the proof of Banaschewski [3], is a consequence

of h : M → L being the least compactification of L, and the maximality of a comes

from the uniqueness of a.

An examination of the above theorem reveals that for a regular continuous L and

any compactification h : M → L, whether least or not, there exists a ∈ M , a < e,

h(a) = e such that ↓a ∼= L (via h).

Proposition 2.4. If L is non-compact regular continuous and h : M → L is

a compactification of L, then there exists a ∈ M , a < e, h(a) = e such that ↓a ∼= L

(via h). Moreover, a ∈ M is unique with respect to these properties.

P r o o f. The existence of a ∈ M with the stated properties follows from the

above theorem. To show uniqueness, assume there exists b ∈ M with the stated

properties. We have ↓a
h
→ L is an isomorphism, so it is codense. Now a ∧ b ∈ ↓a

and h(a∧ b) = h(a)∧h(b) = e, so by codenseness, a∧ b = a so a 6 b. Also ↓b
h
→ L is

an isomorphism so it is codense. By the same argument we have b 6 a. Thus a = b,

showing uniqueness. �

If L is non-compact regular continuous and h : M → L is any compactification

of L, denote this unique a ∈ M by aL. Thus ↓aL
∼= L (via h). We define the remain-

der of L in the compactification h : M → L by ↑aL. Recall from Baboolal [2] that for

any compactification h : M → L, L not necessarily regular continuous, we defined the

remainder of L in h : M → L to be M/θ∗ where θ∗ is the pseudocomplement of θ in

the congruence lattice ofM and θ = kerh. The above definition of the remainder for

a regular continuous L coincides with the general one since the congruence∆aL
corre-

sponds to ↓aL and the pseudocomplement of ∆aL
, which is ∇aL

, corresponds to ↑aL.

3. The frame analog of the two-point compactification

We construct a compactification for a class of regular continuous frames, the analog

of the two point compactification for locally compact Hausdorff spaces.

To begin with let L be regular continuous. Suppose L has elements u and v with

the property that u∧v = 0, ↑u∨v is compact, but neither ↑u nor ↑v is compact. Let

N1 = {x ∈ L : ↑x ∨ u is compact} and N2 = {x ∈ L : ↑x ∨ v is compact}.

Recall also that a filter F on a frame L is said to be regular if x ∈ F implies there

exists y ∈ F such that y ≺ x.

At several points in the proofs later on we make use of the following simple, but

useful, observation. This is perhaps very well known or part of the folklore of the

subject.
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Proposition 3.1. If L is a regular continuous frame then z ≪ e iff ↑z∗ is compact.

P r o o f. Suppose z ≪ e. Take e =
∨

S with z∗ 6 s for each s ∈ S. By the

interpolation property we can find t such that z ≪ t ≪ e. Now t ≪ e implies there

exists finite S0 ⊆ S such that t 6
∨

S0. Now since z∗ ∨ t = e we have z∗ ∨
∨

S0 = e

and, because of the condition satisfied by z∗, we have then that
∨

S0 = e. This

shows that ↑z∗ is compact.

Now suppose ↑z∗ is compact, and let e =
∨

S. Then e =
∨

(z∗ ∨ s)(s ∈ S) so by

the compactness of ↑z∗ we have e = z∗ ∨
∨

S0 for some finite subset S0 of S. Hence

z 6
∨

S0 and thus z ≪ e. �

Lemma 3.2. N1 and N2 are regular proper filters of L.

P r o o f. Note that 0 is not in Ni (i = 1, 2) since ↑u and ↑v are not compact.

Using the fact that ↑s, ↑t is compact if and only if ↑s∧ t is compact, and ↑s compact,

s 6 t implies ↑t is compact, it follows that N1 and N2 are proper filters of L. We now

show regularity of N1: Let w ∈ N1. Then ↑w ∨ u is compact. Now e =
∨

z(z ≪ e),

so ↑w ∨ u compact implies there exists z ≪ e such that w ∨ u∨ z = e. Now z ≪ e if

and only if ↑z∗ is compact and thus z∗ ∈ N1.

Now z ∨ u ∨ w = e =⇒ (z ∨ u)∗∗ ∨ w = e =⇒ (z ∨ u)∗ ≺ w =⇒ z∗ ∧ u∗ ≺ w. Now

u∧ v = 0 implies v 6 u∗, and since v ∈ N1 (as ↑u∨ v is compact), we have u∗ ∈ N1.

Thus z∗ ∈ N1, u∗ ∈ N1 and hence z∗ ∧ u∗ ∈ N1. Thus N1 is regular. The argument

that N2 is regular follows by symmetry and we are therefore done. �

Lemma 3.3. ↑w is compact if and only if w ∈ N1 ∩ N2.

P r o o f. Assume ↑w is compact. Then ↑w ∨ u and ↑w ∨ v are compact. Thus

w ∈ N1∩N2. Conversely if w ∈ N1∩N2, then ↑w∨u and ↑w∨v are compact. Hence

↑(w ∨ u) ∧ (w ∨ v) is compact. Since u ∧ v = 0 this means ↑w is compact. �

Now define a ⊳ b in L by: a ⊳ b ⇔ a ≺ b and for each i = 1, 2 either a∗ ∈ Ni or

b ∈ Ni.

Lemma 3.4. ⊳ is a strong inclusion on L.

P r o o f. (i) Assume x 6 a ⊳ b 6 y. Now a ≺ b, so clearly x ≺ y. Take any Ni

(i = 1, 2). If a∗ ∈ Ni, then x∗ ∈ Ni since a∗ 6 x∗ and Ni is a filter. If b ∈ Ni, then

b 6 y implies y ∈ Ni. Thus x ⊳ y.

(ii) 0 ⊳ 0 since 0 ≺ 0 and 0∗ = e ∈ Ni for each i. Also e ⊳ e since e ≺ e and e ∈ Ni.

Then suppose x, y ⊳ a. Then x ≺ a, y ≺ a, so x ∨ y ≺ a. Fix i. If a ∈ Ni, then

x ∨ y ⊳ a. If x∗ ∈ Ni, y∗ ∈ Ni, then x∗ ∧ y∗ ∈ Ni, i.e. (x ∨ y)∗ ∈ Ni. Thus x ∨ y ⊳ a.

Now suppose x ⊳ a, x ⊳ b. Then x ≺ a, x ≺ b, so x ≺ a∧ b. Fix i. If a∧ b ∈ Ni, then
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x ⊳ a∧ b. If not, then either a lies outside Ni or b lies outside Ni. Thus x∗ ∈ Ni and

hence x ⊳ a ∧ b.

(iii) x ⊳ a implies x ≺ a follows from the definition.

(iv) Now suppose x ⊳ a. Then x ≺ a. If either ↑x∗ or ↑a is compact, then x ◭ a in

which case there exists y ∈ L such that x ◭ y ◭ a. Since ◭⊆⊳ this means x ⊳ y ⊳ a so

that interpolation holds. If ↑x∗ is not compact and ↑a is not compact then both x∗

and a lie outside N1∩N2 by the above lemma. There are two cases here: (a) x∗ ∈ N1

and a ∈ N2, and (b) x∗ ∈ N2 and a ∈ N1. Symmetry considerations make it sufficient

to consider just one of these cases, say x∗ ∈ N1 and a ∈ N2. We seek y such that

x ⊳ y ⊳ a. By the fact that ↑x∗ ∨ u is compact, x ≺ a and a =
∨

z(z ≪ a), we can

find z ≪ a such that x∗ ∨ u ∨ z = e. Also from the fact that ↑a ∨ v is compact,

x ≺ a and x∗ =
∨

t(t ≪ x∗), we can find t ≪ x∗ such that a ∨ v ∨ t = e. Now

we have x ≺ u ∨ z and x ≺ t∗, and thus x ≺ (u ∨ z) ∧ t∗ = (u ∧ t∗) ∨ (z ∧ t∗).

We also have u ∧ t∗ ≺ a, since the element v ∨ t is such that a ∨ v ∨ t = e and

(u ∧ t∗) ∧ (v ∨ t) = (u ∧ t∗ ∧ v) ∨ (u ∧ t∗ ∧ t) = 0. Also z ∧ t∗ 6 z ≺ a. Hence

(u ∧ t∗) ∨ (z ∧ t∗) ≺ a. Thus x ≺ (u ∧ t∗) ∨ (z ∧ t∗) = t∗ ∧ (u ∨ z) ≺ a. Put

y = t∗ ∧ (u ∨ z). We claim that x ⊳ y ⊳ a.

x ⊳ y: Obviously x ≺ y, x∗ ∈ N1. We show that y ∈ N2. Now t ≪ e implies ↑t∗ is

compact and hence t∗ ∈ N1∩N2 by the above lemma. Also u∨ z ∈ N2 since u ∈ N2.

Thus t∗ ∧ (u ∨ z) ∈ N2, i.e. y ∈ N2. Hence x ⊳ y.

y ⊳ a: Obviously y ≺ a and a ∈ N2. Now z ≪ a implies z ≪ e and so ↑z∗

is compact. Hence z∗ ∈ N1. Also v ∈ N1, v 6 u∗ implies u∗ ∈ N1. Furthermore,

z∗∧u∗ 6 y∗ since z∗∧u∗∧y = z∗∧u∗∧(t∗∧(u∨z)) = (z∗∧u∗∧t∗∧u)∨(z∗∧u∗∧t∗∧z) =

0. Hence y∗ ∈ N1 and thus y ⊳ a. Thus ⊳ interpolates.

(v) x ⊳ a =⇒ a∗ ⊳ x∗: x ⊳ a implies x ≺ a and hence a∗ ≺ x∗. Again, if either ↑x∗

or ↑a is compact, then x ◭ a and hence a∗ ◭ x∗ from which a∗ ⊳ x∗. As in (iv) we

need only consider the case x∗ ∈ N1, a ∈ N2. In this case a 6 a∗∗ implies a∗∗ ∈ N2.

Since also x∗ ∈ N1 we have then that a∗ ⊳ x∗ as required.

(vi) For each a ∈ L, a =
∨

x(x ◭ a). But as remarked earlier, x ◭ a implies x ⊳ a.

Hence a =
∨

x(x ⊳ a).

Thus ⊳ is a strong inclusion on L. �

Let ∨ : αL → L be the least compactification corresponding to the least strong

inclusion ◭ on L and let k : L → αL be its right adjoint. Let J =
∨

k(x)(x ≪ e), so

that by Section 2, ↑J would be the remainder of L in αL. Note further that J < L.

We then have:

Lemma 3.5. If w ∈ L, then ↑w is compact if and only if k(w) ∨ J = L.
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P r o o f. Assume ↑w is compact. Now w ∨
∨

x(x ≪ e) = e. Thus
∨

w ∨ x(x ≪

e) = e, so by compactness of ↑w we have w∨x = e for some x ≪ e. Thus w∨x∗∗ = e,

whence x∗ ≺ w. Since ↑w is compact, this means x∗ ◭ w and hence x∗ ∈ k(w). Now∨
J = e implies

∨
x∗ ∨ y(y ∈ J) = e, from which, since ↑x∗ is compact (as x ≪ e),

we have x∗ ∨ y = e for some y ∈ J . Thus k(w) ∨ J = L.

Conversely, assume k(w) ∨ J = L. Then e = x ∨ y for some x ◭ w, y ∈ J .

Now either ↑x∗ is compact or ↑w is compact. If ↑x∗ is compact, then x ≪ e, so

that x ≪ z ≪ e for some z ∈ L. Hence x ◭ z ≪ e so that x ∈ k(z) ⊆ J . Thus

e = x ∨ y ∈ J which would imply J = L, a contradiction. Thus ↑w is compact. �

Remark 3.6. Observe that the necessity of the above lemma that ↑w compact

implies k(w)∨ J = L is in fact true for any strong inclusion ⊳ on L, whether least or

not, where as before k is the right adjoint of the join map and J =
∨

k(x)(x ≪ e).

Theorem 3.7. Let L be regular continuous. Suppose L has elements u and v

with the property that u∧v = 0, ↑u∨v is compact, but neither ↑u nor ↑v is compact.

Let N1 = {x ∈ L : ↑x ∨ u is compact} and N2 = {x ∈ L : ↑x ∨ v is compact}. The

compactification ∨ : γL → L arising from the strong inclusion ⊳ given by: a ⊳ b ⇔

a ≺ b and for each i = 1, 2 either a∗ ∈ Ni or b ∈ Ni is such that the remainder of L

in it is disconnected.

P r o o f. Let J =
∨

k(x)(x ≪ e) where k : L → γL is the right adjoint of the

join map. We show that the remainder ↑J in γL is disconnected. We claim that

k(u ∨ v) = k(u) ∨ k(v): For this, obviously k(u) ∨ k(v) ⊆ k(u ∨ v). For the reverse,

take s ∈ k(u∨ v). Then s ⊳ u ∨ v and hence s ≺ u ∨ v. Since u∧ v = 0 we have that

s ∧ u ≺ u and s ∧ v ≺ v. We have (s ∧ u)∗ ∨ u = e, so ↑(s ∧ u)∗ ∨ u = ↑e is compact.

Thus (s ∧ u)∗ ∈ N1. Also, since ↑u ∨ v is compact, we have u ∈ N2. Thus for each i

we have either (s ∧ u)∗ ∈ Ni or u ∈ Ni, i.e. s ∧ u ⊳ u. Similarly s ∧ v ⊳ v. Thus

s = (s∧u)∨(s∧v) ∈ k(u)∨k(v), proving the claim. Since ↑u ∨ v is compact we have

by the above remark that k(u∨v)∨J = L and hence that k(u)∨k(v)∨J = L. Thus

(k(u)∨ J)∨ (k(v)∨ J) = L, (k(u)∨ J)∧ (k(v)∨ J) = J since k(u)∧ k(v) = k(0) = 0.

Furthermore, k(u) ∨ J 6= J for otherwise k(u) ⊆ J and hence k(v) ∨ J = L. Since

J =
∨

k(x)(x ≪ e) we have by the compactness of γL that k(v)∨k(x) = L for some

x ≪ e. Taking joins we then have v ∨ x = e. Hence ↑v ∨ x = ↑e is compact so that

x ∈ N2. Now since x ≪ e we have ↑x∗ is compact and therefore x∗ ∈ N2. Thus

0 = x ∧ x∗ ∈ N2 implying that ↑v is compact, a contradiction. Hence k(u) ∨ J 6= J

and similarly k(v) ∨ J 6= J . Thus ↑J is disconnected in γL. �
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4. The characterization

We recall from [2] that a compactification h : M → L is called a perfect compact-

ification if the right adjoint r of h satisfies the condition: r(u∨u∗) = r(u)∨ r(u∗) for

all u ∈ L. This is the frame analog of the topological definition due to Sklyarenko [6]

described earlier. The Stone-Čech compactification of a completely regular frame is

an example of such a compactification as was shown in [2].

As a first step towards our characterization we now prove the following:

Theorem 4.1. Let L be regular continuous. Then every compactification h :

M → L has a remainder which is compact and connected if and only if whenever

↑u ∨ v is compact and u ∧ v = 0 in L, then either ↑u is compact or ↑v is compact.

P r o o f. We prove the sufficiency first. Let h : M → L be a compactification

of L. To avoid unnecessary symbols let us simply denote the unique aL ∈ M deter-

mining the remainder of L in M described earlier by a ∈ M . Now ↑a is compact,

being a closed sublocale of compact M . Assume ↑a is not connected. Then there

exists c, d ∈ ↑a, c, d 6= a such that c ∨ d = e and c ∧ d = a. Since M , being com-

pact regular, is normal there exists f, g ∈ M such that c ∨ f = e, d ∨ g = e, and

f ∧ g = 0. Now (c ∨ f) ∧ (d ∨ g) = e =⇒ ((c ∨ f) ∧ d) ∨ ((c ∨ f) ∧ g) = e =⇒

(c∧ d) ∨ (f ∧ d)∨ (c ∧ g)∨ (f ∧ g) = e =⇒ a∨ f ∨ g = e. Consider the frame ↓a. We

claim that in this frame ↑↓a (f ∧ a) ∨ (g ∧ a) is compact. For this consider the map

ϕ : ↑f ∨ g → ↑↓aa ∧ (f ∨ g)) given by ϕ(x) = x ∧ a. We have ϕ(f ∨ g) = a ∧ (f ∨ g),

ϕ(e) = e∧a = a so ϕ preserves top and bottom. It is then clearly a frame map. Fur-

thermore, ϕ(x) = ϕ(y) =⇒ x∧a = y∧a =⇒ x = x∧(a∨f∨g) = (x∧a)∨(x∧(f∨g)) =

(y ∧ a) ∨ (f ∨ g) 6 y ∨ y = y, so that x = y, by symmetry. Thus ϕ is one to one.

Furthermore, ϕ is also onto. Indeed, take y ∈ M , a ∧ (f ∨ g) 6 y and y 6 a. Then

ϕ(y ∨ (f ∨ g)) = (y ∨ (f ∨ g)) ∧ a = (y ∧ a) ∨ ((f ∨ g) ∧ a) = y ∨ ((f ∨ g) ∧ a) = y.

Thus ↑f ∨ g ∼= ↑↓aa ∧ (f ∨ g), and since ↑f ∨ g is compact, being a closed sublocale

of M, ↑↓aa ∧ (f ∨ g) must also be compact. Thus ↑↓a(f ∧ a) ∨ (g ∧ a) is compact.

Since h : ↓a → L is an isomorphism and ↑↓a(f ∧ a) ∨ (g ∧ a) is compact, we must

have ↑h(f) ∨ h(g) compact in L. Since h(f) ∧ h(g) = 0, we must have either ↑h(f)

compact or ↑h(g) compact, say ↑h(f) compact.

Now take any 0 6= z ≺ f . Then z∗ ∨ f = e and hence h(z∗) ∨ h(f) = e. Now

h(z∗) =
∨

w(w ≪ h(z∗)), and hence h(f) ∨
∨

w(w ≪ h(z∗)) = e, i.e.
∨

(h(f) ∨

w)(w ≪ h(z∗)) = e. Due to compactness of ↑h(f) we can therefore find w ≪ h(z∗)

such that h(f) ∨ w = e. Now w ≪ h(z∗) =⇒ w ≪ e and hence r(w) 6 a by the

definition of a. Now h(f∗) 6 w since h(f) ∨ w = e and hence f∗ 6 r(w) 6 a. Thus

since g ∧ f = 0, we have g 6 f∗ 6 a, and therefore e = d∨ g 6 d∨ a = d since a 6 d.
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Hence c = c ∧ e = c ∧ d = a, a contradiction since c 6= a. Thus the remainder ↑a is

connected.

For the necessity suppose every compactification h : M → L has a remainder

which is compact and connected. Assume the condition on L is not satisfied. Then

there exists u, v ∈ L, u∧ v = 0, ↑u ∨ v compact but neither ↑u nor ↑v is compact. It

follows that u 6= 0 and v 6= 0. From Section 3 we can construct a compactification

of L such that the remainder of L in it is disconnected. Thus the condition on L

must be satisfied. �

We can now prove our main result:

Theorem 4.2. The following conditions are equivalent for a non-compact regular

continuous frame L.

(1) The least compactification of L is perfect.

(2) Whenever ↑u ∨ v is compact, u, v ∈ L, u ∧ v = 0 then either k(u) ∨ J = L or

k(v) ∨ J = L where J & L is the unique element in αL such that ↓J
∨
→ L is an

isomorphism, and k : L → αL is the right adjoint of ∨.

(3) Whenever ↑u ∨ v is compact, u, v ∈ L, u ∧ v = 0, then either ↑u is compact or

↑v is compact.

(4) For every compactification h : M → L the remainder of L in it is compact and

connected.

P r o o f. (1) ⇒ (2) Assume ∨ : αL → L is perfect. Take u, v ∈ L, u ∧ v = 0

with ↑u ∨ v compact. By Lemma 3.5, k(u ∨ v) ∨ J = L. Since (αL,∨) is perfect, we

then have k(u) ∨ k(v) ∨ J = L. Now, we cannot have both k(u) ⊆ J and k(v) ⊆ J ,

otherwise J = L which is not possible. Thus either k(u) * J or k(v) * J . Hence, by

the remarks at the end of Section 1, we have either k(u) ∨ J = L or k(v) ∨ J = L.

(2) ⇒ (3) Suppose ↑u ∨ v is compact, u ∧ v = 0. Then either k(u) ∨ J = L or

k(v) ∨ J = L, and hence by Lemma 3.5, either ↑u is compact or ↑v is compact.

(3) =⇒ (1) We recall from Baboolal [2] that if h : M → L is a compactification

of L with r : L → M the right adjoint of h, then h : M → L is perfect if and only if

the following condition is satisfied: x ⊳ u ∨ u∗, x 6 u implies x ⊳ u for all x, u ∈ L,

where ⊳ is the associated strong inclusion arising from h : M → L. In the present

case of ∨ : αL → L with right adjoint k : L → αL, we have to show x ◭ u ∨ u∗,

x 6 u implies x ◭ u.

Consider first the case when ↑u∨u∗ is compact. Then either ↑u is compact or ↑u∗ is

compact. Now x ◭ u ∨ u∗ implies x ≺ u ∨ u∗, and x 6 u implies x ≺ u: for, there

exists v such that x∧v = 0, v∨u∨u∗ = e. Thus x∧ (v ∨u∗) = (x∧v)∨ (x∧u∗ ) = 0

and v ∨u∗ ∨u = e with a separating element v ∨u∗. If ↑u is compact then x ◭ u. If,
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on the other hand, ↑u∗ is compact, then x ≺ u implies u∗ ≺ x∗ from which it follows

that ↑x∗ is compact. This implies x ◭ u as well.

Now consider the case where ↑u ∨ u∗ is not compact. Take x ◭ u ∨ u∗, x 6 u. As

before, x ≺ u. Also either ↑x∗ is compact or ↑u ∨ u∗ is compact. Since the latter

is not possible, we have ↑x∗ is compact. Hence x ◭ u and thus (αL,∨) is a perfect

compactification. �
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