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BOUNDS FOR THE (LAPLACIAN) SPECTRAL RADIUS

OF GRAPHS WITH PARAMETER α

Gui-Xian Tian, Jinhua, Ting-Zhu Huang, Chengdu

(Received April 22, 2011)

Abstract. Let G be a simple connected graph of order n with degree sequence (d1, d2, . . . ,
dn). Denote (

αt)i =
∑

j : i∼j dα
j , (

αm)i = (
αt)i/dα

i and (
αN)i =

∑
j : i∼j (

αt)j , where α is

a real number. Denote by λ1(G) and µ1(G) the spectral radius of the adjacency matrix
and the Laplacian matrix of G, respectively. In this paper, we present some upper and
lower bounds of λ1(G) and µ1(G) in terms of (

αt)i, (
αm)i and (

αN)i. Furthermore, we
also characterize some extreme graphs which attain these upper bounds. These results
theoretically improve and generalize some known results.
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1. Introduction

We only consider simple undirected graphs which have no loops and multiple

edges. Let G = (V, E) be a simple graph with vertex set V = {v1, v2, . . . , vn} and
edge set E. For any two vertices vi, vj ∈ V , we write i ∼ j if vi and vj are adjacent.

For any vertex vi ∈ V , denote the degree of vi by di; and denote by ti the 2-degree

of vi, which is the sum of the degrees of the vertices adjacent to vi; and denote by mi

the average degree of vi, which is ti/di. Furthermore, denote by Ni the sum of the

2-degrees of vertices adjacent to vi. In [8], the following notations are introduced:

(αt)i =
∑

j : i∼j

dα
j , (αm)i =

(αt)i

dα
i
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partment (No. Y201120835) and by Natural Science Foundation of Zhejiang Province
(No. LY12A01006). The second author was supported by NSFC (61170311) and the
Sichuan Province Sci. & Tech. Research Project (12ZC1802).
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where α is a real number. For convenience, (αt)i and (αm)i are called the generalized

2-degree and the generalized average degree of vi, respectively. Here we define

(αN)i =
∑

j : i∼j

(αt)j .

Note that di = (0t)i = (0m)i, ti = (1t)i = (0N)i, mi = (1m)i and Ni = (1N)i.

In addition, for a particular value α, a graph is called generalized pseudo-regular if

all vertices have the same generalized average degrees. A bipartite graph is called

generalized pseudo-semiregular if all vertices in the same part of a bipartition have

the same generalized average degrees. Clearly, if α = 1, then generalized pseudo-

regular graph and generalized pseudo-semiregular graph are the usual pseudo-regular

graph and pseudo-semiregular graph (see, for example, [7], [13]).

The following definitions come from [3]. Let A(G) = (aij) be the adjacency

matrix of G and D(G) = diag(d1, d2, . . . , dn) be the degree diagonal matrix.

Then L(G) = D(G) − A(G) is called the Laplacian matrix of G. Clearly, A(G)

and L(G) are real symmetric matrices. Hence their eigenvalues are real num-

bers. The eigenvalues of A(G) are called the eigenvalues of G and denoted by

λ1(G) > λ2(G) > . . . > λn(G); and the eigenvalues of L(G) are called the Laplacian

eigenvalues of G and denoted by µ1(G) > µ2(G) > . . . > µn(G) = 0. In particular,

λ1(G) and µ1(G) are called the spectral radius of G and the Laplacian spectral radius

of G, respectively.

Up to now, the spectral radius λ1(G) and the Laplacian spectral radius µ1(G)

of G have been extensively investigated for a long time (see, for example, [1], [2],

[4], [5], [6], [7], [8], [11], [12], [13] and the references therein). Recently, Liu and

Lu [8] introduced two new notations (αt)i and (αm)i and obtained some new bounds

for the Laplacian spectral radius µ1(G) of G. Motivated by this technique, we

present some new bounds of λ1(G) and µ1(G) with parameter α and characterize

some extreme graphs which attain these upper bounds. These results theoretically

improve and generalize some known results. Hence they are worthy of being re-

tained in terms of precedence (that is, for a given set of graphs, how often does

the bound yield the best value among a given set of bounds, more information

see [2]).

2. The spectral radius of graphs

For a simple connected graph G, this section shall present some upper and lower

bounds on the spectral radius ofG, which improve and generalize some known results.
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Theorem 2.1. Let G = (V, E) be a simple connected graph of order n with

degree sequence (d1, d2, . . . , dn). Then for any real number α,

(2.1) λ1(G) 6 max
i∼j

√

(αm)i(αm)j .

Moreover, the equality in (2.1) holds for some particular value α if and only if G is

either a generalized pseudo-regular graph or a generalized pseudo-semiregular graph.

P r o o f. Let D̃ = diag{dα
1 , dα

2 , . . . , dα
n}. Then λ1(G) = λ1(D̃

−1A(G)D̃). Now

the (i, j)th element of D̃−1A(G)D̃ is







dα
j

dα
i

if i ∼ j,

0 otherwise.

Let x = (x1, x2, . . . , xn)⊤ be a positive eigenvector of D̃−1A(G)D̃ corresponding

to the eigenvalue λ1(D̃
−1A(G)D̃), where xi corresponds to the vertex vi. Let xs =

max
16i6n

{xi} and xt = max
i : i∼s

{xi}. From D̃−1A(G)D̃x = λ1(D̃
−1A(G)D̃)x = λ1(G)x,

we get

(2.2) λ1(G)xs =
∑

k : k∼s

dα
k

dα
s

xk 6 (αm)sxt

and

(2.3) λ1(G)xt =
∑

k : k∼t

dα
k

dα
t

xk 6 (αm)txs.

Hence, from (2.2) and (2.3), one has

(λ1(G))2 6 (αm)s(
αm)t,

which implies that the inequality (2.1) holds.

Now assume that the equality in (2.1) holds for some particular value α, then

the above equalities in both (2.2) and (2.3) hold. Hence for any vertex vi ∈ V

satisfying i ∼ s, xi = xt and for any vertex vi satisfying i ∼ t, xi = xs. Since G is

connected, by repeated using the equalities in both (2.2) and (2.3), it is easy to see

that for any vi ∈ V , xi = xs or xt when the distance between the vertices vi and

vs is even or odd, respectively. If xs = xt, then x is a constant vector. It follows

from D̃−1A(G)D̃x = λ1(G)x that each vertex vi of G has equal generalized average

degree (αm)i, that is, G is a generalized pseudo-regular graph.
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If xs > xt, let V1 = {vi : xi = xs} and V2 = {vi : xi = xt}. Thus V = V1 ∪ V2

and the subgraphs induced by V1 and V2 respectively are empty graphs. Hence

G is bipartite. It follows from D̃−1A(G)D̃x = λ1(G)x that, for any vk, vl ∈ V1,

λ1(G)xk = (αm)kxt and λ1(G)xl = (αm)lxt, which implies that (αm)k = (αm)l.

Similarly, we have (αm)i = τ for any vi ∈ V2, where τ is a positive constant. Hence

G is a generalized pseudo-semiregular graph.

Conversely, if G is a generalized pseudo-regular graph with equal generalized

average degree (αm)i = τ for each vertex vi ∈ V , where τ is a constant, then

D̃−1A(G)D̃en = τen, where en is the column vector of all ones. By the Perron-

Frobenius Theorem, one has λ1(G) = τ , which implies that the equality in (2.1)

holds for some particular value α. Now suppose that G is a generalized pseudo-

semiregular graph, that is, G is bipartite and there exists a partition V1, V2 of V

such that each vertex vi ∈ V1 has equal generalized average degree (αm)i = τ1 and

each vertex vi ∈ V2 has equal generalized average degree (αm)i = τ2, where τ1, τ2

are two positive constants. Without loss of generality, we may assume that

D̃−1A(G)D̃ =

(

0n1×n1
Bn1×n2

Cn2×n1
0n2×n2

)

,

where 0n1×n1
is an n1 × n1 matrix with all entries zeros and |V1| = n1, |V2| = n2.

Note that the row sums of Bn1×n2
and Cn2×n1

are τ1 and τ2, respectively. Let

x = (
√

τ1e
⊤
n1

,
√

τ2e
⊤
n2

)⊤. Then D̃−1A(G)D̃x =
√

τ1τ2x, which implies that λ1(G) =√
τ1τ2. Hence the equality in (2.1) holds for some particular value α. This completes

the proof. �

Remark 2.1. If α = 0, then the inequality (2.1) becomes

λ1(G) 6 max
i∼j

√

didj ,

which is Berman and Zhang’s bound [1]. If α = 1, then the inequality (2.1) becomes

λ1(G) 6 max
i∼j

√
mimj ,

which is Das and Kumar’s bound [4]. Hence the inequality (2.1) improves and

generalizes some results in [1], [4].

Corollary 2.1. Let G = (V, E) be a simple connected graph of order n with

degree sequence (d1, d2, . . . , dn). Then for any real number α,

(2.4) λ1(G) 6 max
16i6n

(αm)i.

Moreover, the equality in (2.4) holds for some particular value α if and only if G is

a generalized pseudo-regular graph.
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P r o o f. From the proof of Theorem 2.1, we easily get the required result. �

Remark 2.2. If α = 1, then the inequality (2.4) becomes

λ1(G) 6 max
16i6n

mi,

which is the bound by Favaron et al. [5].

In the following, we shall present a new lower bound for the spectral radius of

graphs with parameter α.

Theorem 2.2. Let G = (V, E) be a simple connected graph of order n with degree

sequence (d1, d2, . . . , dn). Then

(2.5) λ1(G) > max
α

√

∑n

i=1
(αN)2i

∑n

i=1
(αt)2i

,

where α ranges over all real numbers. Moreover, the equality in (2.5) holds for some

particular value α if and only if (αN)i/(αt)i is the same for each vertex vi ∈ V or

G is a bipartite graph with a bipartition V = V1 ∪ V2 such that (αN)i/(αt)i is the

same for each vertex vi ∈ V1 and similarly for V2.

P r o o f. Let x = (x1, x2, . . . , xn)⊤ be a positive eigenvector of A(G) correspond-

ing to the eigenvalue λ1(G), where xi corresponds to the vertex vi. By the Raleigh

principle, we get

(2.6) (λ1(G))2 = λ1(A(G)2) =
x⊤(A(G))2x

x⊤x
.

Take C = ((αt)1, (
αt)2, . . . , (

αt)n)⊤. Then

A(G)C =

( n
∑

j=1

a1j(
αt)j ,

n
∑

j=1

a2j(
αt)j , . . . ,

n
∑

j=1

anj(
αt)j

)⊤

=
(

(αN)1, (
αN)2, . . . , (

αN)n

)⊤

and C⊤C =
n
∑

i=1

(αt)2i . It follows from (2.6) that

λ1(G) =

√

x⊤(A(G))2x

x⊤x
>

√

C⊤(A(G))2C

C⊤C
=

√

∑n

i=1
(αN)2i

∑n

i=1
(αt)2i

,

which implies that the inequality (2.5) holds.
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Now suppose that the equality in (2.5) holds for some particular value α. Note

that the following proof is similar to that of Theorem 3.1 in [7]. Then C is an

eigenvector of A(G)2 corresponding to λ1(A(G)2), which implies that the multiplicity

of λ1(A(G)2) is either one or two. If the multiplicity of λ1(A(G)2) is one, then C is

an eigenvector of A(G) corresponding to λ1(G), that is, A(G)C = λ1(G)C. This

implies (αN)i/(αt)i is the same for each vertex vi ∈ V .

If the multiplicity of λ1(A(G)2) is two, then −λ1(G) is also an eigenvalue of G.

This implies that G is bipartite (see [3]). Without loss of generality, we may assume

that

(2.7) A(G) =

(

0n1×n1
Bn1×n2

B⊤
n2×n1

0n2×n2

)

where V = V1 ∪ V2, n1 = |V1|, n2 = |V2| with n1 + n2 = n. From A(G)2C =

λ1(A(G)2)C, we have

(2.8) BB⊤C1 = λ1(A(G)2)C1, B⊤BC2 = λ1(A(G)2)C2,

where C1 = ((αt)1, . . . , (
αt)n1

)⊤ and C2 = ((αt)n1+1, . . . , (
αt)n)⊤. Since BB⊤

and B⊤B have the same nonzero eigenvalues, λ1(A(G)2) is the spectral radius of

both BB⊤ and B⊤B with multiplicity one. From (2.8), one has

BB⊤BC2 = λ1(A(G)2)BC2, B⊤BB⊤C1 = λ1(A(G)2)B⊤C1.

Thus BC2 and B⊤C1 are eigenvectors of BB⊤ and B⊤B respectively correspond-

ing to λ1(A(G)2). Hence BC2 = τ1C1 and B⊤C1 = τ2C2, where τ1, τ2 are pos-

itive constants. These imply that (αN)i/(αt)i = τ1 for any vertex vi ∈ V1 and

(αN)i/(αt)i = τ2 for any vertex vi ∈ V2.

Conversely, if (αN)i/(αt)i = τ is the same for each vertex vi ∈ V , then A(G)C =

τC. Since C is a positive vector, then

λ1(G) = τ =

√

∑n

i=1
(αN)2i

∑n

i=1
(αt)2i

.

Now assume that G is a bipartite graph with a bipartition V = V1 ∪ V2 such

that (αN)i/(αt)i = τ1 is the same for any vertex vi ∈ V1 and (αN)i/(αt)i = τ2 is

the same for any vertex vi ∈ V2. Without loss of generality, we may assume that

A(G) has the form (2.7). Let C = (C⊤
1 , C⊤

2 )⊤, where C1 = ((αt)1, . . . , (
αt)n1

)⊤ and

C2 = ((αt)n1+1, . . . , (
αt)n)⊤. By a simple calculation, the ith element of BB⊤C1

is τ1τ2(
αt)i for any vertex vi ∈ V1 and the jth element of B⊤BC2 is τ1τ2(

αt)j for
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any vertex vj ∈ V2. Hence A(G)2C = τ1τ2C. Since C is a positive vector, then

λ1(A(G)2) = τ1τ2 = C⊤A(G)2C. which implies that

λ1(G) =
√

τ1τ2 =

√

∑n

i=1
(αN)2i

∑n

i=1
(αt)2i

.

This completes the proof. �

Remark 2.3. If α = 0, then the inequality (2.5) beecomes

(2.9) λ1(G) >

√

∑n

i=1
t2i

∑n

i=1
d2

i

,

which is the bound of Yu et al. [13]. If α = 1, then the inequality (2.5) becomes

(2.10) λ1(G) >

√

∑n

i=1
N2

i
∑n

i=1
t2i

,

which is Hong and Zhang’s bound [7]. Hence the inequality (2.5) improves and

generalizes some results in [7], [13].

Corollary 2.2. Let G = (V, E) be a simple connected graph of order n with

degree sequence (d1, d2, . . . , dn). Then

(2.11) λ1(G) > max
α

√

∑n

i=1
(αt)2i

∑n

i=1
d2α

i

,

where α ranges over all real numbers. Moreover, the equality in (2.11) holds for

some particular value α if and only if G is a generalized pseudo-regular graph or

a generalized pseudo-semiregular graph.

P r o o f. By a simple calculation, we have

( n
∑

i=1

(αt)2i

)2

=

( n
∑

i=1

(

∑

j : j∼i

dα
j

)

(αt)i

)2

=

( n
∑

i=1

( n
∑

j=1

aijd
α
j

)

(αt)i

)2

=

( n
∑

i=1

n
∑

j=1

aijd
α
j (αt)i

)2

=

( n
∑

j=1

( n
∑

i=1

aij(
αt)i

)

dα
j

)2

=

( n
∑

j=1

(αN)j · dα
j

)2

.
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By the Cauchy-Schwarz inequality,

(2.12)

( n
∑

i=1

(αt)2i

)2

6

n
∑

i=1

(αN)2i ·
n

∑

i=1

d2α
i

with equality if and only if there exists a positive constant l such that (αN)i/dα
i = l

for each vi ∈ V . Following from (2.12) and Theorem 2.2, the inequality (2.11) holds.

By Theorem 2.2, the equality in (2.5) holds for some particular value α if and only

if (αN)i/(αt)i = t is the same for each vertex vi ∈ V or G is a bipartite graph with

a bipartition V = V1 ∪ V2 such that (αN)i/(αt)i = t1 is the same for each vertex

vi ∈ V1 and (αN)i/(αt)i = t2 is the same for each vertex vi ∈ V2. Hence the equality

in (2.11) holds for some particular value α if and only if (αm)i = (αt)i/dα
i = l/t , τ

is the same for each vertex vi ∈ V or G is a bipartite graph with a bipartition

V = V1 ∪ V2 such that (αm)i = (αt)i/dα
i = l/t1 , τ1 is the same for each vertex

vi ∈ V1 and (αm)i = (αt)i/dα
i = l/t2 , τ2 is the same for each vertex vi ∈ V2,

that is, G is a generalized pseudo-regular graph or a generalized pseudo-semiregular

graph. �

Remark 2.4. If α = 0, then the inequality (2.11) becomes

(2.13) λ1(G) >

Ã

1

n

n
∑

i=1

d2
i ,

which is Hofmeister’s bound [6] (see also [7], [13]). If α = 1/2, then the inequal-

ity (2.11) becomes

(2.14) λ1(G) >

√

∑n

i=1

(
∑

j : j∼i

√

dj

)2

2m
,

which is Shi’s bound [11]. If α = 1, then the inequality (2.11) is the bound (2.9)

in Remark 2.3. Hence the inequality (2.11) improves and generalizes some known

results in [6], [7], [11], [13].

Example 2.1. Let G be the graph shown in Figure 1. Values of λ1(G) and of

the various lower bounds for λ1(G) are given (to four decimal places) in Table 1.

Taking α ∈ [−10, 10] in both (2.5) and (2.11), the lower bounds of λ1(G) given in

Figure 2 also show that (2.5) is never worse than (2.11).

λ1(G) α = 0.7 in (2.5) (2.9) (2.10) (2.13) (2.14)

2.9032 2.9023 2.8868 2.8983 2.8284 2.8859

Table 1. Values of λ1(G) and of the various lower bounds for λ1(G).
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Figure 1. The graph G in Example 2.1.

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

10− 8− 6− 4− 2− 0 2 4 6 8 10

(2.5)

(2.11)

α ∈ [−10, 10]

T
h
e

lo
w

er
b
ou

n
d
s

of
λ

1
(G

)

Figure 2. The comparison of the inequalities (2.5) and (2.11).

Remark 2.5. As pointed out in Remark 1 at the end of [10], every lower bound

on λ1(G) gives a corresponding upper bound on the energy of G (the energy of G

is defined as the sum of the absolute values of the eigenvalues of G). Thus, using

a similar technique as in the proof of Theorem 2.5 in [9], together with Theorem 2.2

and Corollary 2.2, we may get some new upper bounds on the energy of G, which

theoretically improve some results obtained in [9], [14], [15]. These results are omitted

here.
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3. The Laplacian spectral radius of bipartite graphs

In this section, we shall give a new lower bound for the Laplacian spectral radius

of bipartite graphs. Some known bounds are shown to be the consequences of our

bounds.

Theorem 3.1. Let G be a simple connected bipartite graph of order n with degree

sequence (d1, d2, . . . , dn). Then

(3.1) µ1(G) > max
α

Ã

∑n

i=1

(

di(d
α+1

i + (αt)i) +
∑

j : j∼i (dα+1

j + (αt)j))2

∑n

i=1
(dα+1

i + (αt)i

)2
,

where α ranges over all real numbers. Moreover, the equality in (3.1) holds for some

particular value α if and only if there exists a positive constant τ such that, for any

vertex vi ∈ V ,

di(d
α+1

i + (αt)i) +
∑

j : j∼i (dα+1

j + (αt)j)

dα+1

i + (αt)i

= τ.

P r o o f. Since G is a bipartite graph, L(G) = D(G) − A(G) and D(G) + A(G)

have the same eigenvalues. Note that D(G) + A(G) is a nonnegative irreducible

symmetric matrix.

Suppose that x = (x1, x2, . . . , xn)⊤ is the positive eigenvector of D(G) + A(G)

corresponding to µ1(G). From the Raleigh principle, one has

(3.2) (µ1(G))2 = (µ1(D(G) + A(G)))2 =
x⊤(D(G) + A(G))2x

x⊤x
.

Take C = (dα+1

1 + (αt)1, d
α+1

2 + (αt)2, . . . , d
α+1
n + (αt)n)⊤. Then

(D(G) + A(G))C = D(G)C + A(G)C

=













d1(d
α+1

1 + (αt)1) +
n
∑

j=1

a1j(d
α+1

j + (αt)j)

...

dn(dα+1
n + (αt)n) +

n
∑

j=1

anj(d
α+1

j + (αt)j)













=











d1(d
α+1

1 + (αt)1) +
∑

j : j∼1

(dα+1

j + (αt)j)

...

dn(dα+1
n + (αt)n) +

∑

j : j∼n

(dα+1

j + (αt)j)











.
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Note that C⊤C =
n
∑

i=1

(dα+1

i + (αt)i)
2. It follows from (3.2) that

µ1(G) =

√

x⊤(D(G) + A(G))2x

x⊤x

>

√

C⊤(D(G) + A(G))2C

C⊤C

=

Õ

n
∑

i=1

(di(d
α+1

i + (αt)i) +
∑

j : j∼i(d
α+1

j + (αt)j))2

∑n

i=1
(dα+1

i + (αt)i)2
.

Hence the inequality (3.1) holds.

Now assume that the equality in (3.1) holds for some particular value α. Then

C is the eigenvector of (D(G)+A(G))2 corresponding to µ1((D(G)+A(G))2). Thus

the multiplicity of (µ1(G))2 = µ1((D(G) + A(G))2) is either one or two. Since

(D(G) + A(G))2 is a nonnegative irreducible positive semidefinite matrix, then the

multiplicity of (µ1(G))2 = µ1((D(G)+A(G))2) must be one, and C is the eigenvector

of D(G) + A(G) corresponding to µ1(G). Hence (D(G) + A(G))C = µ1(G)C, which

implies, for any vertex vi ∈ V ,

di(d
α+1

i + (αt)i) +
∑

j : j∼i(d
α+1

j + (αt)j)

dα+1

i + (αt)i

= µ1(G).

Conversely, if there exists a positive constant τ such that, for any vertex vi ∈ V ,

di(d
α+1

i + (αt)i) +
∑

j : j∼i (dα+1

j + (αt)j)

dα+1

i + (αt)i

= τ,

then (D(G) + A(G))C = τC, where C = (dα+1

1 + (αt)1, d
α+1

2 + (αt)2, . . . , d
α+1
n +

(αt)n)⊤. It follows from the Perron-Frobenius Theorem that the equality in (2.10)

holds for some particular value α. This completes the proof. �

Remark 3.1. If α = 0, then the inequality (3.1) becomes

µ1(G) >

√

∑n

i=1
(d2

i + ti)2
∑n

i=1
d2

i

,

which is the bound by Yu et al. [13]. If α = 1, then the inequality (3.1) becomes

µ1(G) >

√

∑n

i=1
(di(d2

i + ti) +
∑

j : j∼i (d2
j + tj))2

∑n

i=1
(d2

i + ti)2
,

which is the bound by Tian et al. [12]. Hence the inequality (3.1) improves and

generalizes some results in [12], [13].
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Corollary 3.1 ([8]). Let G be a simple connected bipartite graph of order n with

degree sequence (d1, d2, . . . , dn). Then

(3.3) µ1(G) > max
α

√

∑n

i=1
(dα+1

i + (αt)i)2
∑n

i=1
d2α

i

,

where α ranges over all real numbers. Moreover, the equality in (3.3) holds for

some particular value α if and only if there exists a positive constant τ such that

di + (αm)i = τ for any vertex vi ∈ V . In particular, if α < 1, then the equality

in (3.3) holds if and only if G is a regular bipartite graph; if α = 1, then the equality

in (3.3) holds if and only if G is a semiregular bipartite graph; if α > 1 and G is

a regular bipartite graph, then the equality in (3.3) holds.

P r o o f. By a simple calculation, one has
( n

∑

i=1

(dα+1

i + (αt)i)
2

)2

=

( n
∑

i=1

dα+1

i (dα+1

i + (αt)i) +
n

∑

j=1

(dα+1

j + (αt)j)(
αt)j

)2

=

( n
∑

i=1

dα+1

i (dα+1

i + (αt)i) +
n

∑

j=1

(dα+1

j + (αt)j)
n

∑

i=1

aijd
α
i

)2

=

( n
∑

i=1

dα+1

i (dα+1

i + (αt)i) +

n
∑

i=1

dα
i

n
∑

j=1

aij(d
α+1

j + (αt)j)

)2

=

( n
∑

i=1

(

dα+1

i (dα+1

i + (αt)i) + dα
i

∑

j : j∼i

(dα+1

j + (αt)j)

))2

=

( n
∑

i=1

(

di(d
α+1

i + (αt)i) +
∑

j : j∼i

(dα+1

j + (αt)j)

)

· dα
i

)2

.

By the Cauchy-Schwarz inequality, one has
( n

∑

i=1

(dα+1

i + (αt)i)
2

)2

(3.4)

6

n
∑

i=1

(

di(d
α+1

i + (αt)i) +
∑

j : j∼i

(dα+1

j + (αt)j)

)2

·
n

∑

i=1

d2α
i

with equality if and only if there exists a positive constant l such that, for any vertex

vi ∈ V ,
di(d

α+1

i + (αt)i) +
∑

j : j∼i (dα+1

j + (αt)j)

dα
i

= l.

Following from (3.4) and Theorem 3.1, the inequality (3.3) holds.
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By Theorem 3.1, the equality in (3.1) holds for some particular value α if and only

if there exists a positive constant t such that, for any vertex vi ∈ V ,

di(d
α+1

i + (αt)i) +
∑

j : j∼i (dα+1

j + (αt)j)

dα+1

i + (αt)i

= t.

Hence the equality in (3.3) holds for some particular value α if and only if there

exists a positive constant τ such that, for any vertex vi ∈ V ,

dα+1

i + (αt)i

dα
i

= di + (αm)i =
l

t
, τ.

The rest of the proof is similar to those of Theorem 4.2 in [8] and Theorem 9 in [13].

�

Remark 3.2. Corollary 3.1 shows that Theorem 3.1 is an improvement on The-

orem 4.2 in [8]. In addition, as pointed out in Note 4.3 at the end of [8], Corollary 3.1

improves and generalizes some results in [7], [11], [13].

Remark 3.3. Using a similar technique as in the proofs of Theorems 7 and

8 in [12], together with Theorem 3.1, we may obtain some new upper and lower

bounds on the sum of powers of the Laplacian eigenvalues of bipartite graphs, which

theoretically improve some results obtained in [12]. We omit these results here.

4. Conclusion

Theorems 2.1 and 2.2 give two upper and lower bounds on the spectral ra-

dius λ1(G) of a graph G in terms of (αt)i, (αm)i and (αN)i. Theorem 3.1 gives

a lower bound on the Laplacian spectral radius µ1(G) of G in terms of di and (αt)i.

Furthermore, we characterize some extreme graphs which attain these upper and

lower bounds. These results not only improve and generalize some known results

theoretically, but also imply some upper bounds on the energy of graphs and the

sum of powers of the Laplacian eigenvalues of bipartite graphs. In addition, given

a graph G, by choosing the parameter α, we may get the optimal bounds on λ1(G)

and µ1(G). Hence these bounds are worthy of being retained.

579



References

[1] A. Berman, X.-D. Zhang: On the spectral radius of graphs with cut vertices. J. Combin.
Theory, Ser. B 83 (2001), 233–240.
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