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Abstract

The object of the present paper is to study decomposable almost
pseudo conharmonically symmetric manifolds.
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1 Introduction

Let (Mn, g) be a Riemannian manifold of dimension n, (n ≥ 3). It is well know
that the conformal transformations of (Mn, g) do not change the angle between
two vectors at a point. But a harmonic function, which is defined by a vanishing
Laplacian, is not transformed into a harmonic function by the conformal trans-
formation in general. The condition under which a harmonic function remains
invariant was studied by Ishii [11] who introduced the conharmonic transforma-
tion as a subgroup of conformal transformation satisfying a special differential
equation and defined the conharmonic curvature tensor a geometrical invariant
under conharmonic transformation.
The conharmonic curvature K of type (0, 4) of a Riemannian manifold

(Mn, g) (n > 3) is given by [11].

K(Y, Z, U, V ) = R(Y, Z, U, V )− 1

n− 2
[S(Z,U)g(Y, V )− S(Y, U)g(Z, V )

+ S(Y, V )g(Z,U)− S(Z, V )g(Y, U)] (1)

where S is the Ricci tensor of the manifold of type (0, 2). In [17] Shaikh and
Hui found out that the conharmonic curvature K satisfies all the symmetries
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112 Hülya Bağdatlı Yılmaz

properties of the Riemannian curvature tensor R. The conharmonic tensor K
has many applications in physical field. Abdussattar [1] showed its phsical
significance in general relativity. This tensor has also been studied by Siddiqui
and Ahsan [18], Ghosh, De and Taleshian [10] and many others.
A non-flat Riemannian manifold (Mn, g) (n ≥ 2) is called an almost pseudo

symmetric manifold whose curvature tensor R of type (0, 4) satisfies the condi-
tion [6]

(∇XR) (Y, Z, U, V ) = [A(X) +B(X)]R(Y, Z, U, V )

+A(Y )R(X,Z,U, V ) +A(Z)R(Y,X,U, V )

+A(U)R(Y, Z,X, V ) +A(V )R(Y, Z, U,X) (2)

where A and B are nowhere vanishing 1-forms such that

A(X) = g(X, ρ) and B(X) = g(X,Q) (3)

for all X and ρ and Q are the vector fields associated with the 1-forms A
and B, respectively. An n-dimensional almost pseudo symmetric manifold has
been denoted by A(PS)n. If A = B in (2), then the manifold reduces to a
pseudo symmetric manifold (PS)n introduced by Chaki [3]. It is pointed out
that the notion of pseudo symmetry in the sense of Chaki [3] is different from
that of Deszcz [8]. Pseudo symmetric spaces, generalized symmetric spaces,
were also studied by Mikeš [13, 14]. It is to be noted that the almost pseudo
symmetric manifold is not a praticular case of a weakly symmetric manifold
(WS)n introduced by Tamássy and Binh [20].
The notion of locally symmetric manifolds has been weakened by many au-

thors in several ways to a different extent such as conformally symmetric man-
ifolds by Chaki and Gupta [4], recurrent manifolds introduced by Walker [21],
conformally recurrent manifolds by Adati and Miyazawa [2], projective sym-
metric manifolds by Soos [19], projective-symmetric and projectively recurrent
affinely connected spaces by Mikeš [12], pseudo conformally symmetric spaces
by De and Biswas [5], almost pseudo conformally symmetric manifolds by De
and Gazi [7], weakly conharmonically symmetric manifolds by Shaikh and Hui
[17], etc.
The present paper is concerned with a non-conharmonic flat Riemannian

manifold (Mn, g) (n > 3) whose conharmonic curvature tensor K satisfies the
condition

(∇XK) (Y, Z, U, V ) = [A(X) +B(X)]K(Y, Z, U, V )

+A(Y )K(X,Z,U, V ) +A(Z)K(Y,X,U, V )

+A(U)K(Y, Z,X, V ) +A(V )K(Y, Z, U,X) (4)

where A and B have the meaning already stated. Such a manifold will be called
an almost pseudo conharmonic symmetric manifold and denoted byA(PCHS)n.
Since the conformal curvature tensor vanishes identically for n = 3, we assume
the condition n > 3 throughout the paper.
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The paper is organized as follows: In Section 2, it deals with an A(PCHS)n.
In Section 3, it is concerned with a decomposable A(PCHS)n and exactly
defined each decomposition of an A(PCHS)n. In Section 4, it is shown that the
integral curves of the unit torse-forming vector field ρ in an Einstein A(PCHS)n
are geodesics. Hence it is also found that the vector field Q is the torse-forming
vector field and its the integral curves are geodesics. Finally in Section 5, it is
given non-trivial two examples of a decomposable A(PCHS)n.

2 A(PCHS)n

L denotes the symmetric endomorphism of the tangent space at each point of
the manifold corresponding to the Ricci tensor S of type (0, 2), that is

g(LX, Y ) = S(X,Y ) (5)

Let {ei}, (1 ≤ i ≤ n) be an orthonormal basis of the tangent space at any
point of the manifold. From (1), we have

F (Z,U) =

n∑
i=1

K(Z, ei, ei, U) =

n∑
i=1

K(ei, Z, U, ei) = − r

n− 2
g(Z,U)

n∑
i=1

K(ei, ei, Y, Z) =

n∑
i=1

K(Y, Z, ei, ei) = 0

(6)

where r is the scalar curvature of the manifold.
From (4) and (6), it follows that

(∇XF ) (Z,U) = − r

n− 2
{[A(X) +B(X)] g(Z,U)

+A(Z)g(X,U) +A(U)g(Z,X)}
+A (R(X,Z)U)− 1

n− 2
{S(Z,U)A(X)− S(X,U)A(Z)

+A(LX)g(Z,U)−A(LZ)g(X,U)}
+A (R(X,U)Z)− 1

n− 2
{S(U,Z)A(X)− S(X,Z)A(U)

+A(LX)g(U,Z)− A(LU)g(X,Z)} (7)

putting Z = U = ei in (7) and taking summation over i, (1 ≤ i ≤ n), it follows
from (6) that

∇Xr = r

{(
n+ 4

n

)
A(X) +B(X)

}
(8)

Hence we can state the following:

Theorem 1 The scalar curvature r of an A(PCHS)n is satisfied the following
relation:

∇Xr = r

{(
n+ 4

n

)
A(X) +B(X)

}
for all X (9)
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We now suppose that an A(PCHS)n of non-zero constant scalar curvature.
Then, from (9) and r �= 0, we get

(
n+ 4

n

)
A(X) +B(X) = 0 for all X (10)

Thus we can state the following:

Theorem 2 The two associated 1-forms in an A(PCHS)n of non-zero con-
stant scalar curvature are linearly dependent.

3 The torse-forming vector field ρ

We consider an A(PCHS)n defined by (4) which is an Einstein manifold. Then
its Ricci tensor S satisfies

S(Z,U) =
r

n
g(Z,U) (11)

It follows that
dr(Z) = 0 and (∇XS) (Z,U) = 0 (12)

We suppose that ρ is a unit torse-forming vector [22] defined by

∇Xρ = λX + w(X)ρ (13)

where λ is a non-zero scalar and w is a non-zero 1-form, called the scalar and
1-form of the vector field ρ, respectively. Some properties of torse forming vector
fields in Riemannian spaces have been studied by Rachunek and Mikeš [15] and
various mathematicians.
Now, due to (12), we get

(∇XS) (Z, ρ) = 0 (14)

Remembering that (∇XS) (Z, ρ) = ∇XS(Z, ρ)− S (∇XZ, ρ)− S (Z,∇Xρ) and
using (3) and (11), we have

r

n
(∇XA) (Z)− S (Z,∇Xρ) = 0 (15)

Substituting (13) in (15) and using (11), we obtain

r

n
(∇XA) (Z)− λS (Z,X)− r

n
w(X)A(Z) = 0 (16)

Putting Z = ρ in (16) and remembering that ρ is a unit vector, thus the equation
(16) takes the form

(∇XA) (ρ) = λA(X) + w(X) (17)

Since ρ is a unit vector, we get

(∇XA) (ρ) = −A (∇Xρ) (18)
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From (13) and (18), it follows that

(∇XA) (ρ) = −λA(X)− w(X) (19)

From (17) and (19), we get w(X) = −λA(X). It means that

λ = −w(ρ) (20)

Substituting (20) in (13), we obtain

∇Xρ = −w(ρ)X + w(X)ρ (21)

Hence it follows that ∇ρρ = 0. Therefore we can state the following:

Theorem 3 If in an Einstein A(PCHS)n the vector field ρ is a unit torse-
forming vector field, then the integral curves of the vector ρ are geodesics.

Remembering that an Einstein manifold is a constant scalar curvature, so
from Theorem 2, two associated 1-forms in an Einstein A(PCHS)n whose scalar
curvature is non-zero are linearly dependent. Also, it follows from (3) and (10)
that

ρ = −
(

n

n+ 4

)
Q (22)

In virtue of (21) and (22), the vector field Q is also a torse-forming vector
field. Thus, from Theorem 3, the integral curves of the vector field Q are also
geodesics.

4 Decomposable A(PCHS)n

A Riemannian manifold (Mn, g) is called decomposable if it can be expressed
as the product Mp

1 ×Mn−p
2 for (2 ≤ p ≤ n− 2), namely, if coordinates can be

found so that its metric takes the form [16]

ds2 = gijdx
idxj = gabdx

adxb + g�αβdx
αdxβ (23)

where gab are functions of x
1, x2, . . . , xp and g�αβ are functions of x

p+1, xp+2, . . . ,
xn only: a, b, c, . . . are taken to have range from 1 to p and α, β, γ, . . . are taken
to have range from p + 1 to n. The two parts of (23) are the metrics of Mp

1

(p ≥ 2) and Mn−p
2 (n− p ≥ 2) which are called the decomposable spaces of Mn

[9].
In virtue of (23), it follows that

gab = gab, gαβ = g�αβ , gab = gab, gαβ = g�αβ , gaβ = gaβ = 0 (24)

Let (Mn, g) now be a decomposable Riemannian manifold such that it is the
form: Mn = Mp

1 ×Mn−p
2 (2 ≤ p ≤ n − 2). Throughout the paper each object

denoted by a ‘bar’ is assumed to be fromM1 and each object denoted by a ‘star’
is assumed to be from M2.
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Let X,Y , Z, U, V ∈ χ(M1) and X�, Y �, Z�, U�, V � ∈ χ(M2). In decompos-
able Riemannian manifold the following relations hold [23]:

R(X�, Y , Z, U) = 0 = R(X,Y �, Z, U�) = R(X,Y �, Z�, U�)

(∇X�R) (Y , Z, U, V ) = 0 = (∇XR) (Y , Z�, U, V �) = (∇X�R) (Y , Z�, U, V �)

R(X,Y , Z, U) = R(X,Y , Z, U);

R(X�, Y �, Z�, U�) = R�(X�, Y �, Z�, U�)

S(X,Y ) = S(X,Y ); (25)

S(X�, Y �) = S�(X�, Y �)

(∇XS) (Y , Z) =
(∇XS

)
(Y , Z);

(∇X�S) (Y �, Z�) = (∇�
X�S) (Y �, Z�)

r = r + r�

We consider a decomposable A(PCHS)n , which is decomposable M
p
1 and

Mn−p
2 (2 ≤ p ≤ n− 2). Then, using (25), it follows from (1) that

K(X�, Y , Z, U) = K(X,Y �, Z�, U�) = 0

K(X�, Y , Z, U�) = − 1

n− 2

[
S(Y , Z)g(X�, U�) + S(X�, U�)g(Y , Z)

] (26)

from (4), on the manifold M1 we have

(∇XK) (Y , Z, U, V ) =
[
A(X) +B(X)

]
K(Y , Z, U, V )

+ A(Y )K(X,Z,U, V ) +A(Z)K(Y ,X,U, V )

+ A(U)K(Y , Z,X, V ) +A(V )K(Y , Z, U,X) (27)

replacing X and X� in (27) and using (25) and (26), it follows that

[A(X�) +B(X�)]K(Y , Z, U, V ) = 0 (28)

Similarly, replasing Y and Y �, we have

A(Y �)K(X,Z,U, V ) = 0 (29)

putting X = X� and U = U� in (27), we get

A(Y )K(X�, Z, U�, V ) +A(Z)K(Y ,X�, U�, V ) +A(V )K(Y , Z, U�, X�) = 0
(30)

Similarly, putting Y = Y � and V = V � in (27), we obtain

[
A(X) +B(X)

]
K(Y �, Z, U, V �) + A(Z)K(Y �, X, U, V �)

+ A(U)K(Y �, Z,X, V �) = 0 (31)
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Setting X = X�, Y = Y � and V = V � in (27), we get

(∇X�K) (Y �, Z, U, V �) = [A(X�) +B(X�)]K(Y �, Z, U, V �)

+A(Y �)K(X�, Z, U, V �)

+A(V �)K(Y �, Z, U,X�) (32)

In the similar way from (27), we have the following relations:

A(Z�)K(Y ,X,U�, V �) + A(U�)K(Y , Z�, X, V �)

+ A(V �)K(Y , Z�, U�, X) = 0 (33)[
A(X) +B(X)

]
K(Y �, Z�, U�, V �) = 0 (34)

A(Y )K(X�, Z�, U�, V �) = 0 (35)

(∇X�K) (Y �, Z�, U�, V �) = [A(X�) +B(X�)]K(Y �, Z�, U�, V �)

+A(Y �)K(X�, Z�, U�, V �)

+A(Z�)K(Y �, X�, U�, V �)

+A(U�)K(Y �, Z�, X�, V �)

+A(V �)K(Y �, Z�, U�, X�) (36)

Thus from (28), (29), (34) and (35) we can state the following:

Theorem 4 Let an A(PCHS)n be a decomposable space such thatMn = Mp
1×

Mn−p
2 (2 ≤ p ≤ n− 2). Then one of the decomposition is conharmonically flat
and on the other is A = B = 0.

Let us now deal with each decomposition individually. Let one of the de-
composition be conharmonically flat. Then we get

K(Y , Z, U, V ) = 0 for Y , Z, U, V ∈ χ(M1)

Using (1), we obtain

R(Y , Z, U, V ) =
1

n− 2

[
S(Z,U)g(Y , V )− S(Y , U)g(Z, V )

+ S(Y , V )g(Z,U)− S(Z, V )g(Y , U)
]

contracting over Y and V , we get

S(Z,U) =
r

(n− p)
g(Z,U) (37)

Hence we see that the manifold M1 is an Einstein manifold. So it is of constant
curvature.
Again, taking the contraction over Z and U , we obtain

(n− 2p)r = 0 (38)

It implies that either r = 0 or p = n
2 .
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Let us consider the other decomposition, that is, A = B = 0 on M2. Then
from (32), we get

(∇X�K) (Y �, Z, U, V �) = 0

which implies that
(∇X�S) (Y �, V �) = 0 (39)

Hence we see that the manifold M2 is Ricci-symmetric. By virtue of (36), it
follows that

(∇X�K) (Y �, Z�, U�, V �) = 0 (40)

From (1), we get

(∇X�R) (Y �, Z�, U�, V �) =
1

n− 2

{
g(Y �, V �)∇X�S(Z�, U�)

− g(Z�, V �)∇X�S(Y �, U�)

+ g(Z�, U�)∇X�S(Y �, V �)

− g(Y �, U�)∇X�S(Z�, V �)
}

(41)

Contracting over Y � and V �, we obtain

(∇X�S) (Z�, U�) =
1

p
(∇X�r�) g(Z�, U�) (42)

Substituting (42) in (41), we have

(∇X�R) (Y �, Z�, U�, V �) =
2

(n− 2)p
(∇X�r�)

{
g(Y �, V �)g(Z�, U�)

− g(Z�, V �)g(Y �, U�)
}

(43)

Contracting in (42) over Z� and U�, we get

(∇X�r�) = 0 (44)

From (43) and (44), it follows that

(∇X�R) (Y �, Z�, U�, V �) = 0 (45)

Hence M2 is a locally symmetric manifold. Moreover, from (40), we can say
that M2 is a conharmonically symmetric manifold.

If it is repeated the above operations for (34) and (35), then it is obtained
similar results. Therefore we can all state the following:

Theorem 5 Let A(PCHS)n be a decomposable Riemannian manifold Mn =
Mp

1 ×Mn−p
2 (2 ≤ p ≤ n− 2). Then the following holds:

(i) If one of the decomposition is conharmonically flat, then it is of constant
curvature. Also, either its the scalar curvature vanishes or its dimension is
equal to half of that of M .
(ii) If 1-forms A and B vanish on the other, then both this decomposition is

Ricci-symmetric and locally symmetric, also it is conharmonically symmetric.
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Now, contracting in (30) over X� and U�, we get

A(Y )
{
(n− p)S(Z, V ) + r�g(Z, V )

}−A(Z)
{
(n− p)S(Y , V ) + r�g(Y , V )

}
= 0
(46)

Again contracting over Z and V , we obtain

A(LY ) =

{
(p− 1)

(n− p)
r� + r

}
A(Y ) (47)

Repeating similar operation for (31), we have

0 =
[
A(X) +B(X)

] {
(n− p)S(Z,U) + r�g(Z,U)

}
+A(Z)

{
(n− p)S(X,U) + r�g(X,U)

}
+A(U)

{
(n− p)S(Z,X) + r�g(Z,X)

}
(48)

and

A(X) {(n− p)r + (p+ 2)r�}+B(X) {(n− p)r + pr�}+ 2(n− p)A(LX) = 0
(49)

From (47), it follows that

3A(X) +B(X) = 0 (50)

Thus we can state the following.

Theorem 6 Let (M, g) be a decomposable Riemannian manifold, Mp
1 ×Mn−p

2 ,
(2 ≤ p ≤ n − 2). If M is an A(PCHS)n, then the following relations are
satisfied

A(LX) =

{
(p− 1)

(n− p)
r� + r

}
A(X) and 3A(X) +B(X) = 0

on M1.

Contracting in (33) over Y ,X and Z�, V �, respectively, we obtain

A(LU�) =

{
r� +

(p− 1)

p
r

}
A(U�)

on M2. Hence we can state the following.

Theorem 7 Let (M, g) be a decomposable Riemannian manifold, Mp
1 ×Mn−p

2 ,
(2 ≤ p ≤ n− 2). If M is an A(PCHS)n, then the following relation is satisfied

A(LU�) =

{
r� +

(p− 1)

p
r

}
A(U�)

on M2.
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5 Examples of a decomposable A(PCHS)n

Example 1 Let Mn =
{
(x1, x2, x3, . . . , xn) ∈ R

n : 0 < x4 < 1
}
be a manifold

endowed with the metric

ds2 = gijdx
idxj =

[(
x4

) 4
3 − 1

] [
(dx1)2 + (dx2)2 + (dx3)2

]
+ δabdx

adxb (51)

where δab is the Kronecker delta and each index runs over 1, 2, . . . , n. Then the
only non-vanishing components of the Christoffel symbols and the curvature
tensors are

Γ1
14 = Γ2

24 = Γ3
34 =

2

3x4
,

Γ4
11 = Γ4

22 = Γ4
33 = −2

3
(x4)1/3 (52)

R1441 = R2442 = R3443 = −2

9
(x4)−2/3

and the components obtained by the symmetry properties.
In the metric considered, the covariant and contravariant components of the

metric are as follows

g11 = g22 = g33 =
(
x4

) 4
3 , g44 = g55 = · · · = gnn = 1

g11 = g22 = g33 =
(
x4

)− 4
3 , g44 = g55 = · · · = gnn = 1

(53)

Due to (52) and (53), the non-vanishing components of the Ricci tensor are

S11 = S22 = S33 = −2

9
(x4)−2/3, S44 = −2

3
(x4)−2 (54)

From r = gijSij = g11S11+g22S22+g33S33+ · · ·+gnnSnn, using (53) and (54),
we can be easly seen that the scalar curvature of (Mn, g) is the following

r = −4

3
(x4)−2 (55)

Therefore (Mn, g) is of non-zero and non-constant scalar curvature.
Now let us calculate the conharmonic curvature tensor K. In virtue of (1),

we obtain that the only non-vanishing components of the conharmonic curvature
tensor K of (Mn, g) are

K1221 = K1331 = K2332 =
4

9(n− 2)

(
x4

) 2
3

K1441 = K2442 = K3443 = −2(n− 6)

9(n− 2)

(
x4

)− 2
3 (56)

Kpqqp =
2

9(n− 2)

(
x4

)− 2
3 , (1 ≤ p ≤ 4), (5 ≤ q ≤ n)
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and the components obtained by the symmetry properties. Hence (Mn, g) is of
non-conharmonic flat. From (56), it can be easily shown that the only non-zero
terms of ∇lKikjm are

∇4K1221 = ∇4K1331 = ∇4K2332 = − 8

9(n− 2)

(
x4

)− 1
3

∇4K1441 = ∇4K2442 = ∇4K3443 =
4(n− 6)

9(n− 2)

(
x4

)− 5
3 (57)

∇4Kpqqp = − 4

9(n− 2)

(
x4

)− 5
3 , (1 ≤ p ≤ 4), (5 ≤ q ≤ n)

All other components of∇lKikjm vanish identically. Thus ourMn with the con-
sidered metric g in (51) is a Riemannian manifold with non-zero scalar curvature
which is neither conharmonically symmetric nor conharmonically flat.
If we consider the 1-forms

Ai = 0 for all i and Bi =

⎧⎨
⎩

− 2

(x4)
, for i = 4

0, otherwise
(58)

then (4) reduces with these 1-forms to the following equations. It is sufficient
to check this equations in order to verify (4) in Mn:

1. ∇4K1221 = [A4 +B4]K1221 +A1K4221 +A2K1421 +A2K1241 +A1K1224

2. ∇4K1331 = [A4 +B4]K1331 +A1K4331 +A3K1431 +A3K1341 +A1K1334

3. ∇4K1441 = [A4 +B4]K1441 +A1K4441 +A4K1441 +A2K1441 +A1K1444

4. ∇4Kpqqp = [A4 +B4]Kpqqp + ApK4qqp +AqKp4qp +AqKpq4p +ApKpqq4

As for the case other than (1)–(4), the components of Kikjm and ∇lKikjm

vanish identically and the equation (4) holds trivially. It can be easly seen that
the relations (1)–(4) are satisfied. Thus (Mn, g) is an A(PCHS)n with non-zero
scalar curvature and conharmonically recurrent. It can be stated the following:

Theorem 8 LetMn =
{
(x1, x2, x3, . . . , xn) ∈ R

n : 0 < x4 < 1
}
be an open sub-

set of Rn equipped with the metric

ds2 = gijdx
idxj =

[(
x4

) 4
3 − 1

] [
(dx1)2 + (dx2)2 + (dx3)2

]
+ δabdx

adxb

where δab is the Kronecker delta and each index runs over 1, 2, . . . , n. Then
(Mn, g) is a conharmonically recurrent A(PCHS)n with non-zero and non-
constant scalar curvature which is neither conharmonically symmetric nor con-
harmonically flat.
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Example 2 Let M4 be an open subset of R4 equipped with the metric

ds2 = gijdx
idxj =

(
x4

) 4
3
[
(dx1)2 + (dx2)2 + (dx3)2

]
+ (dx4)2 (59)

Then the only non-vanishing components of the Christoffel symbols and the
curvature tensors are in the form (52). In the metric considered, the covariant
and contravariant components of the metric are as follows

g11 = g22 = g33 =
(
x4

) 4
3 , g44 = 1

g11 = g22 = g33 =
(
x4

)− 4
3 , g44 = 1

(60)

Due to (52) and (60), the non-vanishing components of the Ricci tensor are the
same as in (54). Therefore, by performing the same as calculation, we can easily
see that the scalar curvature of (M4, g) is r = − 4

3 (x
4)−2. That is, (M4, g) is of

non-zero and non-constant scalar curvature.
In virtue of (1) we obtain that the only non-vanishing components of the

conharmonic curvature tensor K of (M4, g) are

K1221 = K1331 = K2332 =
2

9

(
x4

) 2
3

K1441 = K2442 = K3443 =
2

9

(
x4

)− 2
3

(61)

and the components obtained by the symmetry properties. From (61), the only
non-zero terms of ∇lKikjm are

∇4K1221 = ∇4K1331 = ∇4K2332 = −4

9

(
x4

)− 1
3

∇4K1441 = ∇4K2442 = ∇4K3443 = −4

9

(
x4

)− 5
3

(62)

All other components of ∇lKikjm vanish identically. Thus our M4 with the
considered metric g in (59) is a Riemannian manifold with non-vanishing scalar
curvature which is neither conharmonically symmetric nor conharmonically flat.
if we consider the 1-forms

Ai = 0 for all i and Bi =

⎧⎨
⎩

− 2

(x4)
, for i = 4

0, otherwise

then (4) reduces with these 1-forms to the following equations. It is sufficient
to check this equations in order to verify (4) in M4:

1. ∇4K1221 = [A4 +B4]K1221 +A1K4221 +A2K1421 +A2K1241 +A1K1224

2. ∇4K1331 = [A4 +B4]K1331 +A1K4331 +A3K1431 +A3K1341 +A1K1334

3. ∇4K1441 = [A4 +B4]K1441 +A1K4441 +A4K1441 +A2K1441 +A1K1444
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As for the case other than (1)–(3), the components of each term Kikjm and
∇lKikjm vanish identically and the equation (4) holds trivially. It can be easly
seen that the relations (1)–(3) are satisfied. Thus (M4, g) is an A(PCHS)n
with non-vanishing and non-constant scalar curvature and conharmonically re-
current. It can be stated the following:

Theorem 9 Let M4 be an open subset of R4 equipped with the metric

ds2 = gijdx
idxj =

(
x4

) 4
3
[
(dx1)2 + (dx2)2 + (dx3)2

]
+ (dx4)2

Then (M4, g) is a conharmonically recurrent A(PCHS)n with non-vanishing
and non-constant scalar curvature which is neither conharmonically symmetric
nor conharmonically flat.

Let us denote the metric (59) by g and (M4, g) be a Riemannian manifold
in Example 2. Also, let (Rn−4, g�) be an (n − 4)-dimensional Euclidean space
whose the metric g� is a standard metric. Then we can say that (Mn, g) in the
Example 1 is a product manifold of (M4, g) and (Rn−4, g�). Hence we can state
the following:

Theorem 10 Let (Mn, g), (n > 4) be a Riemannian manifold equipped with
the metric given in (51). Then (Mn, g) is a decomposable almost pseudo con-
harmonic symmetric manifold Mn = (M4, g) × (Rn−4, g�) whose the scalar
curvature is non-vanishing and non-constant and neither conharmonically flat
nor conharmonically symmetric but conharmonically recurrent.
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[14] Mikeš, J.: Geodesic mappings of affine-connected and Riemannian spaces. J. Math. Sci.
78 (1996), 311–333.
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[20] Tamássy, L., Binh, T. Q.: On weakly symmetric and weakly projective symmetric Rie-
mannian manifolds. Colloq. Math. Soc. J. Bolyai, Differential geometry and its applica-
tions (Eger, 1989) 56 (1992), 663–670.

[21] Walker, A. G.: On Ruse’s spaces of recurrent curvature. Proc. London Math. Soc. 52, 2
(1950), 36–64.

[22] Yano, K.: On the torse-forming directions in Riemannian spaces. Proc. Imp. Acad.
Tokyo 20 (1944), 340–345.

[23] Yano, K., Kon, M.: Structure on Manifolds. World Scientific, Singapore, 1986.


		webmaster@dml.cz
	2014-03-12T21:33:04+0100
	CZ
	DML-CZ attests to the accuracy and integrity of this document




