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Duality properties and Riesz representation

theorem in Besicovitch-Musielak-Orlicz

space of almost periodic functions

A. Daoui, M. Morsli, M. Smaali

Abstract. This paper is an extension of the work done in [Morsli M., Bedouhene F.,
Boulahia F., Duality properties and Riesz representation theorem in the Besicovitch-

Orlicz space of almost periodic functions, Comment. Math. Univ. Carolin. 43
(2002), no. 1, 103–117] to the Besicovitch-Musielak-Orlicz space of almost pe-
riodic functions. Necessary and sufficient conditions for the reflexivity of this
space are given. A Riesz type “duality representation theorem” is also stated.

Keywords: Orlicz norm, Amemiya norm, conjugate function, Besicovitch-Musielak-
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Classification: 46B20, 42A75

1. Introduction

The Besicovitch-Musielak-Orlicz space of almost periodic functions was re-
cently introduced in [9] and [10], where the authors characterized also some of its
metric properties with respect to the Luxemburg norm.

In the present work, this space is endowed with the so-called Orlicz norm.
Different properties and formulations of this norm are pointed out.

Next, necessary and sufficient conditions for the reflexivity of the space are
given. A Riesz type “duality representation theorem” is also stated in this space.

2. Preliminaries

Let ϕ be a Musielak-Orlicz function, i.e. ϕ : R× R+ −→ R+ is such that:

(1) ∀t ∈ R, ϕ(t, ·) is convex on R+;
(2) ∀x ∈ R+, ϕ(·, x) is Lebesgue measurable on R and ϕ(t, x) = 0 iff x = 0,

∀t ∈ R;
(3) ∀t ∈ R, lim

x→+∞
ϕ(t,x)
x = +∞ and lim

x→0

ϕ(t,x)
x = 0.

In the sequel we assume that ϕ verifies also the following two conditions:

(4) ϕ(·, ·) is continuous on R× R+;
(5) ∀x ∈ R+, ϕ(·, x) is periodic with period T independent of x (we may

suppose T = 1).
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We denote by ψ the function complementary to ϕ, i.e.

ψ(t, x) = sup
y≥0

{xy − ϕ(t, y)}, ∀t ∈ R, ∀x ∈ R+.

Recall that ψ is also a Musielak-Orlicz function (see [11]). The pair (ϕ, ψ)
satisfies the Young inequality:

xy ≤ ϕ(t, x) + ψ(t, y) for all t ∈ R, and x, y ∈ R+.

Let now M(R,C) = M be the set of all Lebesgue measurable functions on R
with values in C. The functional

ρϕ : M −→ [0,+∞]

f −→ ρϕ(f) = lim
T→+∞

1

2T

∫ +T

−T
ϕ(t, |f(t)|) dt =M [ϕ(·, |f(·)|)]

is a convex pseudo-modular on M (see [1]). The associated modular space:

Bϕ = {f ∈ M : lim
α→0

ρϕ(αf) = 0}
= {f ∈ M : ρϕ(λf) < +∞, for some λ > 0}

is called the Besicovitch-Musielak-Orlicz space. This space is naturally endowed
with the Luxemburg norm:

‖f‖ϕ = inf

{
k > 0, ρϕ

(
f

k

)
≤ 1

}
.

We can also consider the so-called Amemiya norm defined as follows:

‖f‖Aϕ = inf

{
1

k
(ρϕ(kf) + 1), k > 0

}
.

These two norms are in fact equivalent:

(2.1) ‖f‖ϕ ≤ ‖f‖Aϕ ≤ 2‖f‖ϕ, for all f ∈ Bϕ (see [7]).

Let A be the set of all generalized trigonometric polynomials, i.e.,

A = {Pn(t) =
j=n∑

j=1

aje
iλj t, aj ∈ C, λj ∈ R, n ∈ N}.

The Besicovitch-Musielak-Orlicz space of almost periodic functions denoted by
Bϕa.p. is the closure of the set A with respect to the Luxemburg norm,

Bϕa.p. =

{
f ∈ Bϕ : ∃{pn} ∈ A s.t. lim

n→+∞
‖f − pn‖ϕ = 0

}
.
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When ϕ(t, x) = |x| the space Bϕa.p. is denoted by B1a.p. The closure of the set

A with respect to the modular ρϕ is the subspace of Bϕ denoted by B̃ϕa.p.:

B̃ϕa.p. = {f ∈ Bϕ : ∃{pn} ∈ A s.t. lim
n→+∞

ρϕ(α(f − pn)) = 0 for some α > 0}.

Let {u.a.p.} denote the classical Bohr’s algebra of almost periodic functions. It
is known that {u.a.p.} is the closure of the set A with respect to the uniform
norm. It is easily seen that {u.a.p.} ⊆ Bϕa.p. ⊆ B1a.p. Moreover, in view of
Theorem 2.8 in [2] we have the following property:

If f ∈ {u.a.p.}, ϕ(·, ·) is continuous and ϕ(·, x) is uniformly almost
periodic with respect to x then ϕ(·, |f(·)|) ∈ {u.a.p.}.

Therefore a fortiori, this holds true for a Musielak-Orlicz function satisfying the
conditions (4) and (5) presented above.

A fundamental result concerning the functions in Bϕa.p. is the following:

(2.2) If f ∈ Bϕa.p., then ϕ(·, |f(·)|) ∈ B1a.p. (see [10]).

This property ensures the existence of the limit in the expression of ρϕ(f).
In order to end this introductory section, we define the so-called Orlicz norm

in Bϕa.p.,

‖f‖oϕ = sup
{
M(|fg|), g ∈ Bψa.p., ρψ(g) ≤ 1

}
.

Using the Young inequality it is easy to see that

(2.3) ‖f‖oϕ ≤ ‖f‖Aϕ , for all f ∈ Bϕa.p.

3. Auxiliary results

The fundamental convergence results of measure theory cannot be used directly
in Bϕa.p. A key role in our computations is played by the set function µ defined
on the σ-algebra Σ(R) = Σ of Lebesgue measurable sets as follows:

µ(A) = lim
T→+∞

1

2T

∫ +T

−T
χA(t) dt = lim

T→+∞
1

2T
µ(A ∩ [−T,+T ]),

where µ denotes the Lebesgue measure on R. Note that µ is not a measure.
We list here definitions and some properties concerning convergence type results

with respect to the set function µ.

Let {fn} be a sequence in Bϕ. We say that:

• {fn} is µ convergent to f (and denote by fn
µ−→ f) when, ∀η > 0,

lim
n→+∞

µ{t ∈ R : |fn − f | > η} = 0;

• {fn} is modular convergent to f when, ∃α > 0 such that:
lim

n→+∞
ρϕ(α(fn − f)) = 0.

We have the following relations between the different kinds of convergence:
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Lemma 1. (1) lim
n→+∞

‖fn − f‖ϕ = 0 iff ∀α > 0, lim
n→+∞

ρϕ(α(fn − f)) = 0

(see [11]).

(2) If lim
n→+∞

ρϕ(fn − f) = 0 then fn
µ−→ f (see Lemma 2 in [10]).

(3) Let {fn} ⊂ Bϕ and f ∈ Bϕ. If fn
µ−→ f and max(fn, f) ≤ g with

g ∈ Bϕa.p., then ρϕ(fn) −→ ρϕ(f) (see Lemma 5 in [10]).

(4) Let {fn} ⊂ Bϕ be such that fn
µ−→ f and g(t, x) a continuous function

on R× R+, periodic with respect to t. Then g(·, fn(·)) µ−→ g(·, f(·)) (see
the proof of Proposition 1 in [10]).

The following two results are very useful in our computations and proofs:

Lemma 2. Let f ∈ Bϕa.p., ρϕ(f) > 0, and {fn} be a sequence µ convergent
to f . Then we have:

(1) there exist α, β, θ with 0 < α < β; θ ∈]0, 1[ and G = {t ∈ R, α ≤ |f(t)| ≤
β} such that µ(G) ≥ θ (see [10]);

(2) there exist α
′
, β

′
, θ

′
with 0 < α

′
< β

′
; θ

′ ∈]0, 1[ and Gn = {t ∈ R, α′ ≤
|fn(t)| ≤ β

′} such that µ(Gn) ≥ θ
′
(see [8]).

In the following we denote by Lϕ([0, 1]) the usual Musielak-Orlicz space of
functions defined on [0, 1]. The proposition below shows that Lϕ([0, 1]) is isomet-
rically imbedded into the Besicovitch-Musielak-Orlicz space of almost periodic

functions B̃ϕa.p.

Proposition 1 ([10]). Let f ∈ Lϕ([0, 1]). Then,

(1) if f̃ is the periodic extension of f to the whole R (with period τ = 1),

we have f̃ ∈ B̃ϕa.p.;

(2) the injection map i : Lϕ([0, 1]) →֒ B̃ϕa.p., i(f) = f̃ is an isometry with
respect to the modulars and for the respective Luxemburg norms.

Definition 1. • We say that a function f ∈ Bϕ is absolutely integrable
when:

∀ε > 0, ∃δ > 0 ∀Q ∈ Σ, µ(Q) ≤ δ =⇒ ρϕ(fχQ) ≤ ε.

• A sequence {fn} ⊂ Bϕ is said equi-absolutely integrable when:

∀ε > 0, ∃δ > 0 ∃n0 ∈ N ∀Q ∈ Σ, µ(Q) ≤ δ and n ≥ n0 =⇒ ρϕ(fnχQ) ≤ ε.

Remark that all the functions in Bϕa.p. are absolutely integrable [10].

Lemma 3. Let {fn} ⊂ B1 be µ convergent to f ∈ B1a.p. Then, if {fn} is
equi-absolutely integrable we have ρ1(fn) −→

n→+∞
ρ1(f).

Proof: Fix θ > 0 and consider the set:

Aθn = {t ∈ R : |fn(t)− f(t)| > θ}.
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Since the sequence {fn} is µ convergent to f , we have

(3.1) lim
n→+∞

µ(Aθn) = 0.

Now

ρ1(|fn − f |) ≤ ρ1(|fn − f |χAθn) + ρ1(|fn − f |χCAθn)
≤ ρ1(|fn|χAθn) + ρ1(|f |χAθn) + ρ1(|fn − f |χCAθn)
≤ ρ1(fnχAθn) + ρ1(fχAθn) + θ.

Given any ε > 0, the equi-absolute integrability of {fn} ensures the existence of
n1 ∈ N and δ1 > 0 s.t.

(3.2) ∀Q ∈ Σ, µ(Q) ≤ δ1 and n ≥ n1 =⇒ ρ1(fnχQ) ≤
ε

2
.

On the other hand the absolute integrability of f ensures the existence of a δ2 s.t.

(3.3) µ(Q) ≤ δ2 =⇒ ρ1(fχQ) ≤
ε

2
.

Put δ = min(δ1, δ2). Then by (3.1) there exists n2 ∈ N s.t. ∀n ≥ n2 we have
µ(Aθn) ≤ δ. Hence for n0 = max(n1, n2), we get ∀n ≥ n0

max(ρ1(fχAθn), ρ1(fnχAθn)) ≤
ε

2
,

and then:

∀ε > 0, ∃n0 ∈ N, ∀n ≥ n0, ρ1(|fn − f |) ≤ ε+ θ.

Letting n tending to infinity we get:

lim
n→+∞

ρ1(fn − f) ≤ θ.

Finally, since θ > 0 is arbitrary we deduce that lim
n→+∞

ρ1(fn − f) = 0, i.e.

ρ1(fn) −→
n→+∞

ρ1(f). �

Remark 1. Under the same hypothesis, the result of Lemma 3 remains true
when {fn} ⊂ Bϕ and f ∈ Bϕa.p., i.e. ρϕ(fn) −→

n→+∞
ρϕ(f).

Corollary 1. Let {fn} ⊂ Bϕ be such that lim
n→+∞

‖fn−f‖ϕ = 0, with f ∈ Bϕa.p.

Then ρϕ(fn) −→
n→+∞

ρϕ(f).

Proof: Since the sequence {fn} is µ convergent to f , it suffices to show that it
is equi-absolutely integrable. In fact: ρϕ(fn) ≤ 1

2ρϕ(2(fn − f)) + 1
2ρϕ(2f).

Given any ε > 0, since 2f ∈ Bϕa.p. there exists δ > 0 s.t. ∀Q ∈ Σ we have
µ(Q) ≤ δ =⇒ ρϕ(2fχQ) ≤ ε.
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On the other hand there exists n0 ∈ N s.t. ρϕ(2(fn − f)) ≤ ε, ∀n ≥ n0. Finally,
we have the following:

ρϕ(fnχQ) ≤
1

2
ρϕ(2(fn − f)χQ) +

1

2
ρϕ(2fχQ) ≤ ε, ∀n ≥ n0, ∀Q ∈ Σ.

�

Lemma 4. (1) If f ∈ Bϕa.p. with ‖f‖ϕ 6= 0, then ρϕ(
f

‖f‖ϕ ) = 1.

(2) If f ∈ Bϕa.p., g ∈ Bψa.p., then f · g ∈ B1a.p. Moreover we have the
so-called Hölder’s inequality

M(|f · g|) ≤ 2‖f‖ϕ · ‖g‖ψ.

(3) If f ∈ Bϕa.p., then ‖f‖oϕ ≤ 2‖f‖ϕ.

Proof: (1) follows immediately from the property: ‖f‖ϕ = 1 iff ρϕ(f) = 1 for
f ∈ Bϕa.p. (see [10]).

(2) Let f ∈ Bϕa.p., g ∈ Bψa.p., ‖f‖ϕ 6= 0, ‖g‖ψ 6= 0. From the Young
inequality we have:

|f(t)|
‖f‖ϕ

· |g(t)|‖g‖ψ
≤ ϕ

(
t,
|f(t)|
‖f‖ϕ

)
+ ψ

(
t,
|g(t)|
‖g‖ψ

)
.

Hence

M

( |f · g|
‖f‖ϕ‖g‖ψ

)
≤ ρϕ

(
f

‖f‖ϕ

)
+ ρψ

(
g

‖g‖ψ

)
≤ 2.

Then

M(|f · g|) ≤ 2‖f‖ϕ · ‖g‖ψ.
On the other hand f · g ∈ B1a.p. Indeed, let {pn}, {qn} be two sequences in A
such that lim

n→+∞
‖pn − f‖ = 0 and lim

n→+∞
‖qn − g‖ = 0. Then

M(|f · g − pn · qn|) = M(|f · g − fqn + fqn − pn · qn|)
≤ M(|f | · |g − qn|) +M(|qn| · |f − pn|)
≤ 2 (‖f‖ϕ · ‖g − qn‖ψ + ‖qn‖ψ · ‖f − pn‖ϕ)
≤ 2(‖f‖ϕ · ‖g − qn‖ψ + (sup

n
‖qn‖ψ) · ‖f − pn‖ϕ).

Letting n tending to infinity, we get: lim
n→+∞

M(|f · g− pn · qn|) = 0. Consequently

we have: f · g ∈ B1a.p. and M(f · g) =M(f · g) ≤ 2‖f‖ϕ · ‖g‖ψ.
(3) Let f ∈ Bϕa.p., ‖f‖oϕ = sup{M(|fg|), g ∈ Bψa.p., ρψ(g) ≤ 1}.
In view of Hölder’s inequality we have:

M(|f · g|) ≤ 2‖f‖ϕ · ‖g‖ψ, ∀f ∈ Bϕa.p., ∀g ∈ Bψa.p.
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Hence

(3.4) ‖f‖oϕ ≤ 2‖f‖ϕ.

�

4. Equality between Orlicz norm and Amemiya norm

We are now ready to state the following comparison result:

Theorem 1. If f ∈ Bϕa.p., then

‖f‖oϕ = inf

{
1

k
(1 + ρϕ(kf)), k > 0

}
.

Moreover,

‖f‖oϕ =
1

k0
(1 + ρϕ(k0f)), for some k0 > 0.

Proof: I) We suppose first that ϕ is strictly convex with respect to x for all

t ∈ R and has a continuous derivative ϕ
′
(t, x) = δϕ

δx (t, x) on R×R+. In this case
the conjugate function ψ verifies the same properties as ϕ.
We prove the theorem in several steps:

Step 1. Case where f = p is a generalized trigonometric polynomial. In view of
the inequality (2.3) it suffices to show the converse inequality:

‖f‖oϕ ≥ 1

k0
(1 + ρϕ(k0f)), for some k0 > 0.

For, consider the function F (k); k ≥ 0 defined as follows,

F (k) = ρψ(ϕ
′
(·, k|p(·)|)) = lim

T→+∞
1

2T

∫ +T

−T
ψ(t, ϕ

′
(t, k|p(t)|)) dt.

We claim that lim
k→+∞

F (k) = +∞. Indeed, from Lemma 2 there exist α > 0,

θ ∈]0, 1[ and a set G = {t ∈ R : |p(t)| ≥ α} such that µ(G) ≥ θ. Then

F (k) ≥ lim
T→+∞

1

2T

∫

[−T,+T ]∩G
ψ(t, ϕ

′
(t, kα)) dt

≥ lim
T→+∞

1

2T

∫

[−T,+T ]∩G
inf
t∈R

ψ(t, ϕ
′
(t, kα)) dt

≥ µ(G)ψ(t0, ϕ
′
(t0, kα))

≥ θψ(t0, ϕ
′
(t0, kα))

≥ θψ

(
t0,

ϕ(t0, kα)

kα

)
.
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Since lim
x→+∞

ϕ(t,x)
x = +∞, ∀t ∈ R, we get lim

k→+∞
F (k) = +∞.

We will show now that F is continuous on [0,+∞[. Let k∗ ∈ [0,+∞[ and {kn}
be a sequence in [0,+∞[ convergent to k∗. It is clear that

kn|p(·)| is µ convergent to k∗|p(·)|.

Moreover, using Lemma 1(4), we get:

ϕ
′
(·, kn|p(·)|) µ−→ ϕ

′
(·, k∗|p(·)|).

Since {kn} is bounded we have max(ϕ
′
(·, kn|p(·)|), ϕ

′
(·, k∗|p(·)|)) ≤ ϕ

′
(·,M |p(·)|)

with ϕ
′
(·,M |p(·)|) ∈ {u.a.p.} ⊂ Bψa.p. Using Lemma 1(3), we deduce that

lim
n→+∞

ρψ(ϕ
′
(·, kn|p(·)|)) = ρψ(ϕ

′
(·, k∗|p(·)|)). This proves the continuity of F .

Consequently, since F (0) = 0 and lim
k→+∞

F (k) = +∞, there exists a k0 ∈]0,+∞[

such that ρψ(ϕ
′
(·, k0|p(·)|)) = 1. Now, considering the case of equality in Young’s

inequality we get

‖p‖oϕ ≥ 1

k0
M

(
k0|p|ϕ

′
(·, k0|p(·)|)

)

≥ 1

k0

(
ρϕ(k0|p|) + ρψ(ϕ

′
(·, k0|p(·)|))

)
(4.1)

≥ 1

k0
(ρϕ(k0|p|) + 1) .

Combining inequalities (4.1) and (2.3) we get

‖p‖oϕ = inf

{
1

k
(1 + ρϕ(k|p|))

}
=

1

k0
(ρϕ(k0|p|) + 1) .

Note also that we have

(4.2) ‖p‖oϕ =M(|p(·)|ϕ′
(·, k0|p(·)|)).

Step 2. Now we will prove that the result remains true for f ∈ Bϕa.p.
Let {pn} ⊂ A be such that lim

n→+∞
‖pn − f‖ϕ = 0.

From Step 1, for all n ∈ N, there exists kn ∈]0,+∞[ such that

(4.3) ‖pn‖oϕ =
1

kn
(ρϕ(knp) + 1) .

Using the inequality (3.4), we get

1

kn
≤ ‖pn‖oϕ ≤ 2‖pn‖ϕ ≤ 2 sup

n
‖pn‖ϕ,
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hence

kn ≥ 1

2 supn ‖pn‖ϕ
= C1 > 0, ∀n ∈ N.

On the other hand {kn} is bounded from above. Indeed, in the opposite case, there
will exist a subsequence still denoted by {kn} such that lim

n→+∞
kn = +∞. Then,

again from Lemma 2, there exist α > 0, θ ∈]0, 1[ and Gn = {t ∈ R : |pn(t)| ≥ α},
such that µ(Gn) ≥ θ. Thus,

1 = ρψ

(
ϕ

′
(·, kn|pn(·)|)

)
≥ lim

T→+∞
1

2T

∫

[−T,+T ]∩Gn
ψ(t, ϕ

′
(t, knα)) dt

≥ lim
T→+∞

1

2T

∫

[−T,+T ]∩Gn
inf
t∈R

ψ(t, ϕ
′
(t, knα)) dt

≥ µ(G)ψ(t0, ϕ
′
(t0, kα))

≥ θψ(t0, ϕ
′
(t0, knα))

≥ θψ

(
t0,

ϕ(t0, knα)

knα

)
,

and then lim
n→+∞

ρψ(ϕ
′
(·, kn|pn(·)|)) = +∞, a contradiction.

Now {kn} being bounded, there exists a subsequence denoted again by {kn}
that converges to some k0 > 0. We have lim

n→+∞
‖knpn − k0f‖ϕ = 0 and by

Corollary 1 we deduce that

lim
n→+∞

ρϕ(knpn) = ρϕ(k0f).

Finally, using inequality (3.4) and letting n tending to infinity in (4.3) we get:

‖f‖oϕ = lim
n→+∞

‖pn‖oϕ = lim
n→+∞

(
1

kn
(ρϕ(knpn + 1))

)
=

1

k0
(ρϕ(k0f) + 1) .

II) To complete the proof of the theorem, we will prove that the result remains
true for a general Musielak-Orlicz function ϕ.

Indeed, for all ε > 0, we can find a Musielak-Orlicz function ϕε with a contin-
uous derivative ϕ

′
ε =

δϕε
δx (t, x) on R× R+ verifying the inequality

ϕ(t, x) ≤ ϕε(t, x) ≤ ϕ(t, (1 + ε)x), ∀t ∈ R, ∀x ∈ R+.

An example of such a function ϕε is the following (see [3], [7]),

ϕε(t, x)
∗ =

1

ln(1 + ε)

∫ (1+ε)x

x

ϕ(t, s)

s
ds, ∀t ∈ R, ∀x ∈ R+.

∗ϕε(t, x) verifies ϕε(t, x) = 0 iff x = 0 for all t ∈ R.
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Moreover, defining the new function

ϕε(t, x)† = ϕ(t, (1 + ε)x− ε ln(x+ 1)),

we can easily check that ϕε is strictly convex with respect to x ∈ R+ for all t ∈ R
and satisfies the inequality

ϕ(t, x) ≤ ϕε(t, x) ≤ ϕ(t, (1 + ε)x), ∀t ∈ R, ∀x ∈ R+.

Summing up, we claim that for all ε > 0, there exists a strictly convexMusielak-
Orlicz function ϕε with a continuous derivative ϕ

′
ε(t, x) = δϕε

δx (t, x) on R × R+

satisfying:

(4.4) ϕ(t, x) ≤ ϕε(t, x) ≤ ϕ(t, (1 + ε)x).

From this, it follows immediately (see [3], [7]) that:

Bϕa.p. = Bϕεa.p.

and

(4.5) ‖f‖Aϕ ≤ ‖f‖Aϕε ≤ (1 + ε)‖f‖Aϕ ; ‖f‖oϕ ≤ ‖f‖oϕε ≤ (1 + ε)‖f‖oϕ.

Recall that it was proved in Step 1 that,

(4.6) ‖f‖oϕε = ‖f‖Aϕε.

This equality remains true for ϕ. Indeed, we already know that ‖f‖oϕ ≤ ‖f‖Aϕ .
Then using (4.6) and (4.4) we can write

‖f‖oϕ ≤ ‖f‖Aϕ ≤ ‖f‖Aϕε = ‖f‖oϕε ≤ (1 + ε)‖f‖oϕ.

Finally, since ε is arbitrarily small, we deduce that

‖f‖oϕ = ‖f‖Aϕ .

To end the proof, let us show that

‖f‖oϕ =
1

k0
(ρϕ(k0f) + 1) for some k0 > 0.

For all ε > 0 we have

‖f‖0ϕε =
1

kε
(ρϕε(kεf) + 1) ,

for some kε > 0 such that

ρψε(ϕ
′
ε(·, kεf)) = 1.

†Since the function (1 + ε)x − ε ln(1 + x) is s.c. and ϕ(t, x) = 0 iff x = 0 then ϕε(t, x) is
strictly convex (see [5]).
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Using the same reasoning as in the previous part, we can deduce that the se-
quence {kε} is bounded. Then we can extract a subsequence also denoted by
{kε} convergent to some k0 > 0.

Now, we have from (4.5) that

‖f‖oϕ = lim
ε→0

1

kε
(ρϕε(kεf) + 1) .

On the other hand

1

kε
(ρϕ(kεf) + 1) ≤ 1

kε
(ρϕε(kεf) + 1) ≤ 1

kε
(ρϕ(kε(1 + ε)f) + 1) .

Letting ε tending to zero together with the continuity of the function α −→
ρϕ(αf) we deduce that:

lim
ε→0

1

kε
(ρϕε(kεf) + 1) =

1

k0
(ρϕ(k0f) + 1) = ‖f‖oϕ.

This completes the proof of Theorem 1. �
Lemma 5. The Orlicz norm is equivalent to the Luxemburg norm in Bϕa.p.

‖f‖ϕ ≤ ‖f‖oϕ ≤ 2‖f‖ϕ, f ∈ Bϕa.p.

Proof: This is an immediate consequence of (2.1) and Theorem 1. We give here
another and direct proof of this result. It remains only to prove the left inequality,
or equivalently that ρϕ(

f
‖f‖oϕ ) ≤ 1.

First let p ∈ A, p 6= 0 and let g ∈ Bψa.p.; then we have to consider two cases:

• ρψ(g) ≤ 1, in this case we have M(|p · g|) ≤ ‖p‖oϕ;
• ρψ(g) > 1, in this case we have ρψ(

g
ρψ(g)

) ≤ 1
ρψ(g)

· ρψ(g) ≤ 1, hence

M(|p · g
ρψ(g)

|) ≤ ‖p‖oϕ.
It follows that in each case we have

M(|p · g|) ≤ max(1, ρψ(g))‖p‖oϕ.

Using the case of equality in Young’s inequality we get for a suitable g,

ρϕ

(
p

‖p‖oϕ

)
+ ρψ(g) =M

(∣∣∣∣
p

‖p‖oϕ
· g

∣∣∣∣
)

≤ max(1, ρψ(g)),

and then ρϕ(
p

‖p‖oϕ
) ≤ 1.

Let now f ∈ Bϕa.p. satisfy ‖f‖ 6= 0 and take {pn} in A such that lim
n→+∞

‖pn−
f‖ϕ = 0.

Let kn = 1
‖pn‖oϕ . From inequality (3.4) we have lim

n→+∞
kn = k0 = 1

‖f‖oϕ . Then

lim
n→+∞

‖knpn − k0f‖ϕ = 0,
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and using Corollary 1 we deduce that

ρϕ

(
pn

‖pn‖oϕ

)
−→

n→+∞
ρϕ

(
f

‖f‖oϕ

)
.

Now since ρϕ(
pn

‖pn‖oϕ ) ≤ 1, for all n ∈ N, it follows that ρϕ( f
‖f‖oϕ ) ≤ 1. Finally, we

have

‖f‖ϕ ≤ ‖f‖oϕ ≤ 2‖f‖ϕ.
�

5. Duality in Bϕa.p.

5.1 Reflexivity of the space B̃ϕa.p.

Definition 2. We say that ϕ satisfies the ∆B1

2 condition if there exist a constant
k > 0 and a positive function h with ρ1(h) < +∞ such that,

ϕ(t, 2x) ≤ kϕ(t, x) + h(t), for almost all t ∈ R, and all x ∈ R+.

We say that ϕ is ∇B1

2 if ψ is ∆B
1

2 .

Definition 3. The function ϕ is uniformly convex on R+ (see [6]) when, ∀a ∈
]0, 1[, ∃δ(a) ∈]0, 1[, ∀b ∈ [0, a]:

ϕ(t,
x+ by

2
) ≤ (1− δ(a))

ϕ(t, x) + ϕ(t, by)

2
,

for almost all t ∈ R and all x ∈ R+.

Theorem 2. The space B̃ϕa.p. is reflexive iff ϕ ∈ △B1

2 ∩∇B1

2 .

Proof: Necessity: suppose that B̃ϕa.p. is reflexive. From [10] we know that

B̃ϕa.p. contains an isometric copy of the Musielak-Orlicz space Lϕ[0, 1]. From [6]
a necessary and sufficient condition for the reflexivity of Lϕ[0, 1] is that ϕ satisfies

the △L1

2 ∩∇L1

2 condition‡. In this case ϕ satisfies also the △B1

2 ∩∇B1

2 conditions
(see the proof of Theorem 1 in [10, p. 457]).

Sufficiency: Suppose that ϕ ∈ ∆B1

2 ∩ ∇B1

2 . One can see directly that ϕ ∈
∆L1

2 ∩ ∇L1

2 . Then from [6] there exists a Musielak-Orlicz function ϕ1 defined on
[0, 1]×R+ uniformly convex and equivalent to the restriction of ϕ on [0, 1]×R+.
Now the 1-periodic extension of ϕ1 denoted by ϕ̃1

§, defined on R × R+ is also
uniformly convex and equivalent to ϕ. We deduce that (Bϕ̃1a.p., ‖ · ‖ϕ̃1

) is
uniformly convex (see [9]) and so reflexive. Hence Bϕa.p. is reflexive. �

‡We say that ϕ is ∆L1

2 if there exist a constant k > 0 and a positive function h with∫ 1
0 h(t) dt < +∞ s.t. ϕ(t, 2x) ≤ kϕ(t, x) + h(t), for almost all t ∈ [0, 1] and all x ≥ 0.

§From the construction of ϕ1 made in [6] page 61, we remark that ϕ̃1 inherits the continuity
of ϕ on R× R+.
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5.2 Riesz representation theorem in Bϕa.p.. In view of (4.4), we may sup-

pose in the following that ϕ has a continuous derivative ϕ
′
and is strictly convex

(or equivalently that ϕ
′
(t, x) is strictly increasing with respect to x ∈ R+ and all

t ∈ R).

Lemma 6. If f ∈ Bψa.p. then

‖f‖oψ = sup{|M(f · g)|, g ∈ Bϕa.p., ρϕ(g) ≤ 1}
= sup{|M(f · g)|, g ∈ {u.a.p.}, ρϕ(g) ≤ 1}.

Proof: Consider the case f = p ∈ A. From the Hölder’s inequality we have:

|M(p · q)| ≤M(|p · q|) ≤ ‖p‖oψ, ∀q ∈ {u.a.p.}, ρϕ(q) ≤ 1.

From the proof of Theorem 1, we know that there exists k0 > 0 such that
ρϕ(ψ

′
(·, k0|p(·)|)) = 1, and

‖p‖oψ =M
(
|p(·)ψ′

(·, k0|p(·)|)|
)
=M

(
p(·) sign p(·)ψ′

(·, k0|p(·)|)
)
.

Note that sign p(·)ψ′
(·, k0|p(·)|) ∈ {u.a.p.}. Indeed, let

F (t, u) =





u

|u| · ψ
′
(t, k0|u|) if u 6= 0,

0 else.

Then F is continuous on R × R+ and periodic in t uniformly with respect to u.
Since

sign p(t)ψ
′
(t, k0|p(t)|) = F (t, p(t))

the conclusion follows from Theorem 2.8 in ([2]). Summarizing all these, we have

‖p‖oψ =M(p · q), where q(·) = sign p(·)ψ′
(·, k0|p(·)|). Then we can assert that:

(5.1) ‖p‖oψ = sup{|M(p · q)|, q ∈ {u.a.p.}, ρϕ(q) ≤ 1}.

Now let us show that (5.1) remains true for f ∈ Bψa.p. Let {pn} ⊂ A be a
sequence such that: lim

n→+∞
‖pn − f‖ψ = 0 and consider the quantity

I(f) = sup{|M(f · q)|, q ∈ {u.a.p.}, ρϕ(q) ≤ 1}.

It is clear that we have

I(f) ≤ ‖f‖oψ.
Moreover, for a fixed ε > 0, we have ‖f‖oψ ≤ ‖pn‖oψ+ε, ∀n ≥ n0, for some n0 > 0.
Hence

‖f‖oψ − ε ≤ ‖pn‖oψ = sup{|M(pn · q)|, q ∈ {u.a.p.}, ρϕ(q) ≤ 1}.
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Using Hölder’s inequality we assert that:

‖pn‖oψ ≤ sup{‖pn − f‖ψ · ‖q‖ϕ, q ∈ {u.a.p.}, ρϕ(q) ≤ 1}
+sup{|M(fq)|, q ∈ {u.a.p.}, ρϕ(q) ≤ 1}

≤ ε+ I(f), ∀n ≥ n0.

Then

‖f‖oψ ≤ I(f) + 2ε.

Finally, since ε is arbitrary, we conclude that

‖f‖oψ ≤ I(f).

Consequently,

‖f‖oψ = I(f).

This completes the proof. �

Theorem 3. If ϕ ∈ ∆B1
2 ∩∇B1

2 , then (B̃ϕa.p., ‖·‖ϕ)∗ is isomorphically isometric

to (B̃ψa.p., ‖·‖oψ). More precisely: if G is a linear continuous functional on B̃ϕa.p.

then there exists a unique g ∈ B̃ψa.p. such that:

• G(f) =M(fg), ∀f ∈ B̃ϕa.p. and
• ‖G‖ = ‖g‖oψ.

Conversely, the condition ϕ ∈ ∆B1
2 ∩∇B1

2 is necessary for this identification.

Proof: Consider the linear mapping

A : (Bψa.p., ‖ · ‖oψ) −→ (Bϕa.p., ‖ · ‖ϕ)∗

g −→ A(g), A(g)(f) =M(f · g).

A is well defined. Moreover, using Lemma 6 we have:

‖A(g)‖ = sup
‖f‖ϕ≤1

|A(g)(f)| = sup
ρϕ(f)≤1

|A(g)(f)| = ‖g‖oψ.

A is then an isometry.
It remains to show that A is surjective. Let E = A(Bψa.p.). Then E is a

complete subspace of (Bϕa.p.)∗. From Banach’s classical results, it is sufficient to
show that for each F ∈ (Bϕa.p.)∗∗ such that F (A(g)) = 0, ∀g ∈ Bψa.p., we have
F (h) = 0, ∀h ∈ (Bϕa.p.)∗.

Let then F ∈ (Bϕa.p.)∗∗ be such that F (A(g)) = 0, ∀g ∈ Bψa.p. Since Bϕa.p.
is reflexive, there exists f ∈ Bϕa.p. such that π(f) = F , i.e.

π(f)(A(g)) = A(g)(f) =M(f · g) = 0, ∀g ∈ Bψa.p.

Using Lemma 6 we deduce that ‖f‖oϕ = 0 and so ‖F‖ = 0.
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Conversely, if the identification (B̃ϕa.p.)∗ = B̃ψa.p. holds, we will also have

(B̃ϕa.p.)∗∗ = (B̃ψa.p.)∗ = B̃ϕa.p.

So B̃ϕa.p. is reflexive and, consequently, ϕ ∈ ∆B1
2 ∩∇B1

2 . �
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