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THE FINITE AUTOMATA APPROACHES
IN STRINGOLOGY

Jan Holub

We present an overview of four approaches of the finite automata use in stringology: deter-
ministic finite automaton, deterministic simulation of nondeterministic finite automaton, finite
automaton as a model of computation, and compositions of finite automata solutions. We also
show how the finite automata can process strings build over more complex alphabet than just
single symbols (degenerate symbols, strings, variables).

Keywords: exact pattern matching, approximate pattern matching, finite automata, dy-
namic programming, bitwise parallelism, suffix automaton, border array, de-
generate symbol

Classification: 93E12, 62A10

1. INTRODUCTION

Many tasks in Computer Science can be solved using finite automata. The finite au-
tomata theory is well developed formal system that is used in various areas. The original
formal study of finite state systems (neural nets) is from 1943 by McCulloch and Pitts
[38]. In 1956 Kleene [32] modeled the neural nets of McCulloch and Pitts by finite
automata. In that time similar models were presented by Huffman [29], Moore [43],
and Mealy [39]. In 1959, Rabin and Scott introduced nondeterministic finite automata
(NFAs) in [46].

Stringology1 is a part of Computer Science dealing with processing strings and se-
quences. The first tasks of stringology were exact string matching. Later on more
complicated tasks appeared like approximate string matching and spell-checking. In the
last years new and even more complicated tasks appeared arising from such application
fields like data compression, natural and formal language processing, DNA processing,
bioinformatics, image processing, musicology, etc.

The finite automata play very important role in stringology. Some algorithms solving
stringology tasks use deterministic finite automata (DFAs) and some were developed
without the knowledge they actually simulate NFAs, which can be constructed to solve
these tasks. If we construct an NFA solving a new stringology task, we can use the same
principle of NFA simulation. Thus we get an algorithm solving the new stringology

1The term stringology was for the first time used by Zvi Galil in [17].
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task. Not only the NFA simulation but also other automata approaches discussed in
this paper may be involved in designing a new algorithm for a given stringology task.

A general introduction of automata in stringology is given in [20] which is rather
focused on application in bioinformatics. This paper presents more theoretically oriented
view and adds some approaches for composition of automata and input alphabet issues.

2. FINITE AUTOMATA IN STRINGOLOGY

Let w ∈ Σ∗ be a string over alphabet Σ. The length of string w (denoted by |w|) is
the number of symbols of the string. String w can be constructed as a concatenation of
strings x, y, and z (i. e., w = xyz, x, y, z ∈ Σ∗). We say that x, y, and z are a prefix, a
factor, and a suffix of w, respectively.

A nondeterministic finite automaton (NFA) is a five-tuple M = (Q,Σ, δ, q0, F ), where
Q is a finite set of states, Σ is a finite input alphabet, δ is a mapping from Q×(Σ∪{ε}) 7→
2Q, q0 ∈ Q is an initial state, and F ⊆ Q is a set of final states. Finite automaton
M = (Q,Σ, δ, q0, F ) is deterministic (DFA) if δ(q, ε) = ∅ for all q ∈ Q, and |δ(q, a)| ≤ 1
for all q ∈ Q and a ∈ Σ. A language accepted by finite automaton M denoted by L(M),
is the set {w | w ∈ Σ∗, δ̂(q0, w) ∩ F 6= ∅} where δ̂ is the extended transition function
defined δ̂(q, ε) = {q}, δ̂(q, ua) = {p | q′ ∈ δ̂(q, u), δ(q′, a) = p, a ∈ Σ, u ∈ Σ∗}.

We have identified four kinds of finite automata use involved in efficient solutions of
various stringology tasks:

1. a direct use of deterministic finite automata (DFA),

2. a simulation of nondeterministic finite automata (NFA),

3. a use of finite automata as a model for computation,

4. a composition of various automata approaches for particular subtasks.

2.1. The direct use of DFA

The traditional finite automata as defined above are accepting automata. The accepting
automaton AA reads whole input text t ∈ Σ∗ and then text t is accepted (verified) if
the finite automaton has reached a final state (i. e., t ∈ L(AA)). In addition, pattern
matching automata have been designed in stringology. They traverse the text t and
report any location of a given pattern p (i. e., up ∈ L(APM), where up is a prefix of t
and u ∈ Σ∗). So in each step the pattern matching automaton APM checks whether any
final state is reached. The verification (accepting) automaton AA performs the check
only once at the end of the text traversal. Automaton AA can be used for answering
question if pattern p is a factor of the text t (i. e., if t = upv ∈ L(AA), u, v ∈ Σ∗) while
automaton APM can find all locations of p in t. See Figure 1.

Another approach used in stringology is to exchange text and pattern—we build an
automaton for the input text and give the pattern as an input to the finite automaton.
This is the case of indexing automata: suffix trie, suffix tree [34], suffix automata [7, 12]
(also called DAWG – Directed Acyclic Word Graph), and compact suffix automata [8].
The relation among the indexing automata is show in Figure 2. We build an indexing
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Fig. 1. Nondeterministic finite automata used for searching for

pattern p = aba.

automaton for a given text t and then in m steps we figure out if a given pattern p of
length m is a factor (substring) of text t. That is very efficient full-text searching in a
collection of documents where the documents are given in advance while the pattern is
provided at the moment when we want to know in which documents it is located.
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Fig. 2. Automata used for indexing text t = baaba.

For all above mentioned finite automata usages the DFAs are used. If we construct
NFA, we have to transform it to the equivalent DFA. Knuth-Morris-Pratt (KMP) type
automaton [33]2 is a special DFA extended by fail function. KMP automaton does not
have all outgoing transitions defined (it is called not completely defined automaton). If

2KMP automaton [33] is an optimized version of the original Morris-Pratt (MP) automaton [44].
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the automaton should use an undefined transition, the fail function is used instead to
reach another state. The fail function is used until we reach a state with the required
transition defined. In the worst case the initial state is reached where transitions are
defined for all symbols of input alphabet. KMP automaton is very memory efficient, it
needs memory linear to the length of the pattern. KMP automaton is used for exact
string matching for one pattern. Aho-Corasick (AC) automaton [2] is an extension of
KMP automaton for a finite set of patterns.

The pattern matching automata are used also in backward pattern matching like in
Boyer–Moore [9] family of algorithms. While in Boyer–Moore algorithm the pattern
matching automaton does only simple verification and can be replaced by simple for
loop, its extension [11] for a finite set of patterns the pattern matching automaton
performs more complex work.

Another approach is to use an indexing DFA as a filter. The DFA then accepts more
strings than just all factors of the text t but on the other hand the size of the DFA is
much smaller. When the DFA reports a match, the result has to be verified by an exact
method. An example of such technique is the factor oracle [3]—an automaton build over
an input text t. The factor oracle is smaller than the suffix automaton. When the factor
oracle reports an occurrence of a pattern p, it still has to be verified if p is a factor of t.
When the factor oracle reports no occurrence of p, p is for sure no factor of t.

In the approximate string matching the text t is searched not only for exact occur-
rences of some pattern p but also for occurrences of any string u within a given edit
distance bound k (i. e., d(p, u) ≤ k). The edit distance is the minimum number of edit
operations needed to convert p to a found string u. There are many edit operations like:
replace, delete, insert, transpose (two consecutive symbols be swapped; each symbol can
be involved only in one transpose), increase/decrease symbol rank in alphabet, . . . There
are many edit distances defined: Hamming (replace) [18], Levenshtein (replace, insert,
delete) [37], Damerau (replace, insert, delete, transpose) [13], indel (insert, delete), δ
(maximum of rank changes for each position) [10], γ (maximum of rank changes for
whole string) [10], (δ, γ) [10], etc.

A nondeterministic pattern matching automaton for approximate string matching
can be constructed as k + 1 copies of pattern matching automaton for exact string
matching like in Figure 1(b) (one for each allowed edit distance 0, 1, . . . , k). Then we
connect the copies using transitions representing edit operation and delete useless states.
The resulting automaton for Levenshtein distance is shown in Figure 3(a). The replace
transition reads one symbol from the input, advances position in the pattern and leads
to the next copy of automaton as the edit operation is increased by one. The insert
transition reads one symbol from the input, keeps the position in the pattern and leads
to the next copy of automaton as the edit operation is increased by one. The delete
transition reads no symbol from the input, advances the position in the pattern and
leads to the next copy of automaton as the edit operation is increased by one.

The automaton [42] used in music for γ-distance is shown in Figure 3(b). In music the
alphabet of pitches in one octave is Σ = {c, d, e, f, g, a, b}. We see that the edit operation
advances the position in the pattern while it leads to one of the copies according to the
difference of ranks of symbols (e. g., γ(e, f) = 1, γ(e, d) = 1, γ(e, g) = 2, γ(e, c) = 2).
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Fig. 3. Nondeterministic finite automata used for approximate

pattern matching.

2.2. The NFA simulation

DFA cannot be always used. Theoretically we can face up to exponential increase of
number of states when determinizing NFA. If the resulting DFA cannot fit into memory,
we have to search for another approach. Thus the NFA simulation is used. Instead of
determinizing the NFA we traverse the NFA in breadth-first order with a goal to reach
a final state. The Basic Simulation Method (BSM) [19] was designed for that purpose.
It was implemented using bit vectors.

For NFA with a regular structure we can use other simulation methods called bit
parallelism [5, 14, 48, 52] and dynamic programming [47, 50]. They improve time and
space complexities, however they cannot be used for general NFA. For example NFA
for pattern matching using Levenshtein distance has for each state transitions coming
from the same directions as show in Figure 4. The transition match M keeps the level
(representing edit distance), advances the depth (representing position in the pattern)
while reading one input symbol. The transitions replace R and delete D both advance
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Fig. 4. Transitions in the NFA used for approximate pattern

matching.

the level and the depth while only replace reads an input symbol. The transition insert
I advances the level, keeps the depth while reading one input symbol.

R0
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i
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D(shr)

M(shr,mask)

R(shr)
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Fig. 5. Bit-Parallelism: NFA simulation.

It was shown [22] that bit parallelism simulates NFA for approximate string matching
in such a way that it has for each level j, 0 ≤ j ≤ k, of states (one row) one bit vector
Rj as shown in Figure 5. Value 0 means the corresponding state is active. The incoming
transitions of all states accommodated in bit vector Rj

i (in step i) are computed in
parallel. The directions are the same as shown in Figure 4. Following the directions
the match transition shifts the vector (Rj

i−1) of the same level (j) in the previous step
(i−1) to the right while one have to select only the matching positions. It is done using
operation or with a mask vector for the current input symbol ti. The replace transition
shifts the vector (Rj−1

i−1 ) of the previous level in the previous step to the right. The
insert transition takes the unshifted vector (Rj−1

i−1 ) of the previous level in the previous
step. And delete transition shifts the vector (Rj−1

i ) of the previous level in the current
step (as no input symbol is read) to the right. All incoming transitions are put together
using operation AND. The definition of matrix of masking vectors is shown in Formula 1
and the resulting formula for the simulation is shown in Formula 2. The initial state is
always active so it is represented by the property of right shift which inserts 0 to the
first position of the bit vector. For more details see [22].
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Fig. 6. Dynamic Programming: NFA simulation.

It was shown [22] that dynamic programming simulates NFA for approximate string
matching in such a way that there is for each depth j, 0 ≤ j ≤ m, of automaton (one
column) one integer variable dj,i. It holds the minimum level (edit distance) of all active
states in the depth j in step i. As all incoming transition come from the same directions



The finite automata approaches in stringology 393

for each depth of automaton, we can use simple Formula 3 shown below. For more
details see [22].

dj,0 ← j, 0 ≤ j ≤ m,
d0,i ← 0, 0 ≤ i ≤ n,
dj,i ← min(if ti = pj then dj−1,i−1 else dj−1,i−1 + 1,

if j < m then dj,i−1 + 1,
dj−1,i + 1), 0 < i ≤ n,

0 < j ≤ m.

(3)

NFA simulation runs slower than DFA but it requires less memory. NFA simulation is
used also in the case when determinization would take too much time with respect to the
length of input text. A resolution system [27] was developed that for given stringology
task configuration (task, |p|, |t|, |Σ|) recommends the most suitable method (DFA or
one of simulation methods).

In order to speed up the BSM we have implemented Deterministic State Cache (DSC)
[21]. The BSM actually computes the DFA states but only those needed in each step of
simulation. It does not store them. On the other hand DFA approach computes all DFA
states at the beginning (even those never used). BSM with DSC combines advantages
of both DFA run and NFA simulation. It computes the DFA states on the fly and store
them in the DSC. If DSC contains both source and destination DFA states of required
transition it is used from DSC instead being computed. If DSC is full, the standard
cache technique to free some space in it is used.

Once we know how to simulate NFA efficiently we can use this approach for other
stringology tasks. The bit parallel simulation applies in one of the fastest exact string
matching algorithms called BNDM (Backward Nondeterministic DAWG Matching) [45]
working on the principle of backward pattern matching. While DFA directly used cannot
bring sublinear solution, BNDM runs in sublinear time. The bit parallelism is used also
for factor oracle in BOM (Backward Oracle Matching) algorithm [3] working in sublinear
time.

2.3. The use of finite automata as a model for computation

The finite automaton does not need to be run to solve some task. Even the construction
of DFA can give us an answer. In [40] it is shown how to find all repetitions in the
given string using finite automata. First a nondeterministic suffix automaton (see Fig-
ure 7(a)), where each state represents one position in the input text (the position would
be a number of the state), is constructed. Then a deterministic suffix automaton (see
Figure 7(b)) is constructed by eliminating ε-transitions and determinizing it by the stan-
dard subset construction [28] with preserving these positions in d-subsets3. Traversing
the resulting deterministic suffix automaton in breadth-first search following only the
states with d-subsets of cardinality greater than 1, we identify the following repetitions.
Factor a is repeated 3-times (at positions 1, 4, and 6), factor b is repeated 3-times (at

3d-subset is a set of nondeterministic states composing deterministic states. It is a product of the
standard subset construction.
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positions 2, 3, and 5), factor ab is repeated twice (at positions4 2 and 5), and factor ba
is repeated twice (at positions 4 and 6).

a b b a b a

ε ε ε ε ε ε

0 3 4 5 61 2

(a) Nondeterministic suffix automaton

a b b a b a
0 146 25 3 4 5 6

235 46
b

b b

a

(b) Deterministic suffix automaton

Fig. 7. Suffix automaton used for searching for repetitions in text

t = abbaba.

Another example is searching for all borders of the text by a construction of inter-
section of prefix and suffix automata as shown in [49]. The border of the text is a prefix
which is simultaneously a suffix of the text. As we know the automaton model behind
the computation we can easily extend into searching for the approximate borders as also
shown in [49].

2.4. The composition of various automata approaches for particular sub-
tasks

A solution of a complex stringology task can be decomposed into several subtasks. If
we find particular solutions of the individual subtasks using some of above-mentioned
automata approaches, we can compose these particular solutions to get the solution of
the original task.

Parallel composition In the approximate string matching task, we search for all
exact and approximate occurrences of a given pattern p in a given text t. Both text t
and pattern p are preprocessed. We build a suffix automaton AS for the text t and an
approximate string matching automaton AASM for the pattern p with given maximum
edit distance k. The solution is then the composition of these two automata—we build
an automaton AASM∩S for intersection of languages accepted by the original automata.
L(AS) contains all factors of t and L(AASM) contains all words within a given edit
distance from string p. If the resulting automaton AASM∩S has a final state (i. e., a state
composed of final state q of AASM and a final state q′ of AS), then text t contains pattern
p with the edit distance given by the final state q. It is not necessary to build whole
automaton AASM∩S. We have to follow the directions leading to final states (starting
from those representing edit distance 0 towards k). For more details see [23].

4Positions where the string ends.
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Serial composition A task to find a sequence of patterns each of different kind like
(p1, exact string matching), (p2, approximate string matching, Levenshtein distance),
(p3, regular expression matching) is an example of serial composition. One has to
construct NFA for each part (i. e., for each pattern p1, p2, and p3) and connect final
states of the previous NFA to the initial state of the following NFA as shown in Figure 8.
Only the final state (3′′) of the last NFA became final. The final states (3, 3′, 6′) of the
other NFAs became nonfinal in the resulting automaton.

a b b
0 31 2

a b b
0

′
3

′
1

′
2

′

b b
6

′
4

′
5

′

a b a
0

′′
3

′′
1

′′
2

′′

b

p1:

p2:

p3:

ε

ε

ε

Σ

Fig. 8. Serial composition: Connecting NFA for exact string

matching (p1 = abb), NFA for approximate string matching (p2 = abb,

Hamming distance up to 1), and NFA for regular expression

(ab(bb)∗a).

There is also more complex serial composition of automata solutions, where the so-
lution of one subtask is built on top of the solution of the previous subtask. In [4] an
algorithm that uses finite automata to find the common motifs with gaps occurring in
all strings belonging to a finite set S = {S1, S2, . . . , Sr} is presented. First the factors
that exist in each string should be identified. Therefore the algorithm begins with con-
structing a suffix automaton ASi for each string Si. An automaton that accepts the
union of the above-mentioned automata is computed. Thus we get an automaton that
can identify all factors of all strings and for each factor a list of strings it is located in. A
factor alphabet Σfac is created that contains only those factors located in all strings of S
together. Using Σfac a finite automaton is created for each string Si that accepts all non
overlapping sequences of strings of Σfac in Si. The intersection of the latter automata
produces the finite automaton which accepts all the common subsequences with gaps
over the factor alphabet that are present in all the strings of the set S = {S1, S2, . . . , Sr}.
These common subsequences are the common motifs of the strings.

There has been an attempt [41] to describe pattern matching tasks according to 6
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dimensions (nature of pattern, integrity of pattern, number of patterns, edit distance,
importance of symbols, number of pattern instances). The idea was to have a method for
each dimension modifying a pattern matching algorithm as we move along the dimension.
Given a pattern matching task one starts with the simplest task algorithm (exact string
matching) and modifies the algorithm by a method for each dimension. The system
is based on NFA. The resulting NFA was then determinized in order to obtain the
resulting deterministic solution. However, there appeared too many new different tasks
so the system cannot be kept up to date.

0/ε

1/s

0/i

0/m

0/ 

1/ε

1/ε

1/w

(a) A finite transducer translating codewords over
{0, 1} to original alphabet { , i, m, s, w}

i
0 1 2

Σ \ {i}

s

Σ \ {i}

iΣ \ {i, s}

i

(b) Pattern matching DFA for pattern
p = is

Fig. 9. Cascade composition: Pattern matching in compressed text

using Huffman coding.

Cascade composition. In the pattern matching in compressed text the cascade com-
position may be applied. Given string t′ ∈ {0, 1}∗ which is the result of compressing a
string t ∈ Σ∗ using Huffman Coding [30]. The task is to find all occurrences of a given
pattern p ∈ Σ∗ in t. We can have a finite transducer (see Figure 9(a)) reading com-
pressed text t′ and outputting t. Then the exact string matching DFA (see Figure 9(b))
can read output of the transducer and performs pattern matching. In [35] each transition
in the DFA labeled by an alphabet symbol ({ , i,m, s, w}) is replaced by a sequence of
transitions labeled by bits according to the Huffman Code used. The resulting pattern
matching DFA then runs over the compressed text and reports all occurrences of the
pattern without the need of decompression. Note that we cannot simply search for the
Huffman code of p in t′ as there may be false reports due to wrong alignment. Huffman
codes are in general variable length codes.

2.5. Complex Input Alphabet

The finite automata can easily handle more complex input alphabet than just single
symbols.
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Symbol matching a set of symbols. The input alphabet for the pattern and/or the
text is not always a finite set of solid symbols Σ. Sometimes a don’t care symbol (denoted
‘∗’) [15] is used that matches any symbol of Σ. A generalisation is a degenerate symbol
[31, 51] (also called generalized [1] or indeterminate [24, 25, 26]) which matches some
subset of Σ. The finite automata can process these symbols very easily. The transition
representing a degenerate symbol µ is implemented by multiple transition labeled by
all symbols matching µ. The NFA simulation methods discussed in Section 2.2 need
only small modifications. BSM should be built over the NFA with multiple transitions.
Bit Parallelism needs just an extra preprocessing of the mask table. Only Dynamic
Programming needs a slightly higher time and space complexity as we need to use a
table for degenerate symbol matching relation. The finite automata can also efficiently
describe amino acids that may be encoded by various triplets of nucleobases where the
strings over degenerate symbols are not sufficient [20].

Symbol as variable. In parametrized string matching [6] the alphabet Σ of fixed
symbols is extended by an alphabet Λ of parameter symbols. The symbols of Σ must
match exactly while the parameter symbols may be renamed. If we have Σ = {a, b}, Λ =
{x, y, z} then axbaxbybbya matches aybaybzbbza with parameter mapping x 7→ y and
y 7→ z. The automata solution in [16] uses the suffix automaton [7] and bit parallelism.

Class members
ε ε
a a, aa, ca, . . .
b b
c c, ac, cb, cc, . . .
ab ab, abab, aab, bab, . . .
ba ba, baa, bba, . . .
bb bb, bc, bac, bbb, bbc, . . .
aba aba, abaa, abba, . . .
abb abb, abc, abac, aabb, abbb, abbc, . . .

(a) String equivalence classes with respect to
APM.

a, ba, aba
0 1 2

ε, b, c, bb, abb

b, ab

b, c, bb, abb

a, ba, aba

ε, a, ba, aba

c, bb, abb

ε, ab

ab

(b) DFA for matching in compressed
text (p = ab.)

Fig. 10. Pattern matching in LZ78 compressed text.

Symbol matching whole strings. More complex input alphabet preprocessing for
exact string matching in LZ78 [53] compressed text is presented in [36]. The exact string
matching DFA APM is constructed for given pattern p over alphabet Σ. A system of
equivalence classes (see Figure 10(a)) of all strings over Σ with respect to APM is built.
APM is extended so that each state has outgoing transitions for all equivalence classes
(see Figure 10(b)). An LZ78 compressed text is read. Each LZ78 token represents a
string which is classified into one of equivalence classes. APM then performs a transition
labeled by the equivalence class. Given an LZ78 compressed text (0, a), (1, a), (2, b), (3, b)
representing a sequence of strings a, aa, aab, aabb. APM performs the following sequence
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of transitions 0 a→ 1 a→ 1 ab→ 2 abb→ 0. Thus the text is searched in time linear with the
length of the compressed text and not with the length of the original text.

3. CONCLUSION

We have identified several finite automata approaches and shown their applications
in various stringology algorithms. Very important technique is to decompose a given
task into several subtasks (in parallel, serial, or cascade way), to find solutions for the
subtasks, and to construct the resulting solution form the particular solutions. Complex
alphabet symbols (degenerate, variables, strings) can be processed just by modifications
of transitions in finite automata.
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eds.), Institut Jožef Stefan, Ljubljana 2004, pp. 212–214.

[36] J. Lahoda and B. Melichar: General pattern matching on regular collage system. In:
Proc. Prague Stringology Conference’05 (J. Holub and M. Šimánek, eds.), Czech Technical
University in Prague 2005, pp. 153–162.

[37] V. I. Levenshtein: Binary codes capable of correcting deletions, insertions and reversals.
Sov. Phys. Dokl. 6 (1966), 707–710.

[38] W. S. McCulloch and W. Pitts: A logical calculus of the ideas immanent in nervous
activity. Bull. Math. Biophys. 5 (1943), 115–133.

[39] G. H. Mealy: A method for synthetizing sequential circuits. Bell System Techn. J. 34
(1955), 5, 1045–1079.

[40] B. Melichar: Repetitions in text and finite automata. In: Proc. Eindhoven FASTAR Days
2004 (L. Cleophas and B. W. Watson, eds.), TU Eindhoven 2004, pp. 1–46.

[41] B. Melichar and J. Holub: 6D classification of pattern matching problems. In: Proceedings
of the Prague Stringology Club Workshop’97 (J. Holub, ed.), Czech Technical University
in Prague, 1997, pp. 24–32. Collaborative Report DC-97-03.

[42] B. Melichar, J. Holub, and T. Polcar: Text searching algorithms. Vol. I: Forward string
matching. Textbook for course Text Searching Algorithms, 2005.

[43] E. F. Moore: Gedanken experiments on sequential machines. Automata Studies (1965),
129–153.

[44] J. H. Morris, Jr and V. R. Pratt: A Linear Pattern-Matching Algorithm. Report 40,
University of California, Berkeley 1970.

[45] G. Navarro and M. Raffinot: A bit-parallel approach to suffix automata: Fast extended
string matching. In: Proc. 9th Annual Symposium on Combinatorial Pattern Matching
(M. Farach-Colton, ed.), Lect. Notes in Comput. Sci. 1448, Piscataway, NJ, 1998. Springer-
Verlag, Berlin, pp. 14–33.



The finite automata approaches in stringology 401

[46] M. O. Rabin and D. Scott: Finite automata and their decision problems. IBM J. Res.
Dev. 3 (1959) 114–125.

[47] P. H. Sellers: The theory and computation of evolutionary distances: Pattern recognition.
J. Algorithms 1 (1980), 4, 359–373.

[48] R. K. Shyamasundar: A Simple String Matching Algorithm. Technical Report, Tata
Institute of Fundamental Research 1976.
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[51] M. Voráček, L. Vagner, S. Rahman, and C. S. Iliopoulos: The constrained longest com-
mon subsequence problem for degenerate strings. In: Implementation and Application of
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