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KYBERNETIKA — VOLUME 48 (2012), NUMBER 3, PAGES 478-493

SIGNIFICANCE TESTS TO IDENTIFY REGULATED
PROTEINS BASED ON A LARGE NUMBER OF SMALL
SAMPLES

FRANK KLAWONN

Modern biology is interested in better understanding mechanisms within cells. For this
purpose, products of cells like metabolites, peptides, proteins or mRNA are measured and com-
pared under different conditions, for instance healthy cells vs. infected cells. Such experiments
usually yield regulation or expression values — the abundance or absence of a cell product in one
condition compared to another one — for a large number of cell products, but with only a few
replicates. In order to distinguish random fluctuations and noise from true regulations, suitable
significance tests are needed. Here we propose a simple model which is based on the assumption
that the regulation factors follow normal distributions with different expected values, but with
the same standard deviation. Before suitable significance tests can be derived from this model,
a reliable estimation for the standard deviation in the context of many small samples is needed.
We therefore also include a discussion on the properties of the sample MAD (Median Absolute
Deviation from the median) and the sample standard deviation for small samples sizes.

Keywords: MAD, standard deviation, small samples, significance test

Classification: 93E12, 62A10

1. INTRODUCTION AND MOTIVATION

In order to better understand the mechanisms within cells, biologists analyse the genome,
the proteome and the metabolomeﬂ Typical experiments compare different conditions
or states like healthy cells with infected or cancerous cells, bacteria with and without the
presence of antibiotics or cells at different time points after a certain stimulation. Modern
high-throughput technologies like mass spectrometry for proteomics and metabolomics
or microarrays and next generation sequencing for genomics enable biologists to compare
such conditions in terms of regulation factors or expression values. Such experiments
provide data to quantify the abundance or absence of proteins, metabolites or gene prod-
ucts (for instance, in terms of mRNA) in one condition compared to another one. The
resulting data are often regulation factors or expression values specifying, for example,
that in condition B (e.g. cancerous cell) there was three times as much of protein prot;
than in condition A (e.g. healthy cell).

1The genome, the proteome and the metabolome represent the sets of all genes, proteins respectively
metabolites that can be produced or expressed within a cell
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All these experiments have in common that a larger number of “items” (gene prod-
ucts, proteins, peptides, metabolites) — from a few hundred up to tens of thousands — are
measured, but only few replicates are available, normally a number between 2 and 10.
High costs for the experiments, a limited number of available donors — e. g. specific can-
cer patients — or ethical considerations for animal experiments are the reasons for the
small number of replicates.

Uncertainty in measurement caused by the measurement technique and an often high
variation of the biological system is very common for these experiments. Therefore, it is
critical to distinguish random fluctuations from relevant or statistically significant regu-
lations. There are a variety of special data analysis models for each of these measurement
techniques: For microarrays see for instance [3], [6], [I5] for next generation sequencing
[11 10, 12] and for mass spectrometry [4, [8 [].

Although we focus on the analysis of proteomics mass spectrometry data in this paper,
our approach can in principle also be applied to other types of regulation or expression
data. Of course, methods that are specifically tailored to devices like [4, [8, [15] can lead
to more precise results. However, these special methods have also their disadvantages.

e They often require additional experiments for calibrations and estimation of model
parameters for the specific device or experimental setting [S].

e They are more difficult to understand and to apply and require more computa-
tional costs. LIMMA [I5], a very common approach to analyse microarray data
is based on Bayesian methods and is only applicable in the context of microarray
experiments.

e They usually operate on raw data or on data after simple preprocessing steps. For
published data that might be of interest for an analysis from a different perspective,
the raw data are often not available and the model parameters for the device are
unknown.

Furthermore, the method proposed here is quite general and generic and therefore com-
parisons between experiments — even if they were carried out on different devices — can
be performed easily. We do not claim that our method is better in general. It is es-
pecially suitable for proteomics experiments, but could in principle also be applied in
other contexts, although — especially for microarrays — it might be more recommendable
to apply specifically tailored techniques like LIMMA [I5].

The remainder of the paper is organised as follows. In the next section, the data
analysis problem is presented in a more formal way. Section [3] describes the general
approach to estimate the variance in the data which will be needed for defining statistical
tests for significant regulation later on. Section {4 reviews some properties of measures
of spread that can be used to estimate the standard deviation of our model distribution.
Two significance tests for regulation are then proposed in Section [5| and are evaluated
empirically in Section [f] before the final concluding remarks.

2. PROBLEM FORMULATION

In this section, we describe the problem in a more formal way. The data sets, we have to
deal with, usually have the form as shown in Table[l] As mentioned before, the number
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Protein || Replicate Ry | ... | Replicate R,
Prot, 71,1 - "1,n
PI"Otk- Tk,1 SR Tk,n

Tab. 1. Structure of a typical data table of regulation factors.

n of replicates is usually very small, often in the range between 2 and 10, whereas the
number n of proteins is often a few thousand. We only consider two conditions at a
time, so that the entries in the table correspond to the log2-regulation factors between
the first condition A and the second condition B. If the measured intensity for protein
Prot; in condition A was 1000 and in condition B 2000 in replicate R;, then we would
have r; ; = 1 = log, (%). The logarithmic regulation is considered in order to treat
up-regulation — a higher value for a protein in condition B than in condition A — and
down-regulation — a lower value for a protein in condition B than in condition A — in
a symmetric manner. Otherwise, without the logarithm up-regulation would be in the
range (1,00), whereas down-regulation would be squeezed into the interval (0, 1).

We restrict our considerations to the comparison between two conditions. If there are
more than two conditions — for instance more than two time points or different kinds of
infections — our methods can be applied to each pair of conditions separately.

It should be noted that we usually cannot avoid that the table contains a certain frac-
tion of missing values, since sometimes single proteins cannot be identified or measured
properly in one or some of the replicates.

The goal is to distinguish significant regulations of a protein from random fluctu-
ations. If we consider the information that we have from the few replicates for each
protein separately, it is more or less impossible to identify significant deviations from 0,
i.e. from no regulation. We would need a reliable estimation of the random variation
for each protein which cannot be obtained from a very small sample. However, we can
assume a certain common characteristic for all proteins and in this way derive more
reliable estimations for the variance and deviations from no regulation. The underlying
model will be discussed in the following section.

3. MODEL ASSUMPTIONS

In order to identify protein regulations that are not due to random fluctuations, it is
necessary to estimate the noise or variation of regulation factors for each protein. Due
to the very limited number of replicates, it is impossible to provide a reliable estimation
of the variation for each protein individually. However, based on the assumptions

e that the (random) variation of the regulation factors within replicates for a protein
is independent of the (true) regulation factor and

e that the regulation factors of the replicates follow a normal distribution,

a very reliable estimation of the standard deviation of these normal distributions can be
provided.
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From a statistical point of view, we have for each a protein a small sample of regulation
factors. The sample size for each protein corresponds to the number of replicates n, at
least if there are no missing values. Under the above assumptions, all these small samples
originate from normal distributions with different expected values (the “true” regulation
factors), but with the same standard deviation.

Therefore, for each protein we can obtain an unreliable estimation of this standard
deviation. Since the number of (observed) proteins is quite large, we obtain a large
number of unreliable estimations for the same standard deviation. Aggregating these
unreliable estimations together (by the mean value, median or trimmed mean), we obtain
a reliable estimation of the standard deviation.

Our main interest is specifically the characterisation of the distribution of measured
regulation factors of unregulated proteins. This means that we are primarily interested
in the standard deviation of the (assumed) normal distribution with expected value 0,
representing no regulation. Our assumption that the standard deviation is independent
of the underlying “true” regulation factor might not be correct. Typically, the regulation
factors of proteins with higher regulations also show a higher variance. Since we will use
the single estimates of the standard deviation for all proteins, this means that we tend
to overestimate the standard deviation at 0. Therefore, the tests that we will develop
and which rely on the estimation of the standard deviation of the normal distribution
at 0 will tend to be more conservative in the sense that we might not find all regulated
proteins.

Figure [1] illustrates our simple model and the principle of obtaining a reliable esti-
mation of the standard deviation from a larger number of small samples. There are
n = 3 replicates and k = 4 proteins in Figure The number of replicates is realistic
although it might sometimes be a little bit higher. The number of proteins is kept small
for illustration purposes. In reality, this number can easily exceed 1000. An estimation
of a standard deviation based on a sample of size n = 3 is not reliable at all. Any
estimator of this standard deviation will have a high variance. If we, however, combine
all these unreliable estimators, for instance by taking the mean, this new estimator will
have a much smaller variance. The variance of this estimator would be decreased by
the factor 1/v/k. Since k will be a larger number in our case, we do not need to worry
too much about the variance of the unreliable estimator. But we require an unbiased
estimator. Only in this way, we can guarantee consistency of the aggregated estimator
where consistency here refers to k — oo.

We will discuss two estimators for the standard deviation of the normal distribution
here: the sample standard deviation and the sample MAD (Median Absolute Deviation
from the median). The sample standard deviation is a consistent, but biased estimator
for the standard deviation. And the sample MAD is a consistent, but biased estimator for
the MAD and can be turned into an estimator for the standard deviation by multiplying
it with a suitable constant. Since we have to deal with small samples sizes — although we
will aggregate many of them — a correction is necessary to obtain unbiased estimators.
Note that an increase in the number k of proteins will not contribute to a correction of
the bias of these estimators.

We restrict our discussion here to the standard deviation as an efficient estimator in
the context of a normal distribution and the MAD as a very robust estimator, especially
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Fig. 1. Principle of the estimation of the standard deviation o with a
(larger) number of small samples.

since our assumption of normal distribution might be violated for larger regulation
factors. Of course, there are also alternatives that are discussed in detail as estimators
for the standard deviation in [I3] based on a sample z1,...,z,. These estimators are

S = a,, - med; {med,|z; — z,|}
and the /th order statistic of the absolute differences between the sample values i.e.
Qn = by - {|zi — 7551 < j}t

where { = (["/ ?H). In both cases, a suitable constant a,, respectively b,, is introduced
to obtain an unbiased estimator for the standard deviation. A detailed discussion of
these estimators for our purposes would be out of the scope of this paper.

In the following section we take a closer look at the bias of the standard deviation
and the MAD for normal distributions.

4. MAD VS. STANDARD DEVIATION

At least for continuous distributions, sample quantiles are consistent estimators for the
true quantiles and therefore the sample MAD is also a consistent estimator for the true
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MAD. For a normal distribution we have

o=0¢"! (i) “MAD =~ 1.4826-MAD (1)

where ® denotes the cumulative distribution function of the standard normal distribu-
tion. However, because the sample MAD is a biased estimator, the constant ®~! (%)
in Eq. can only be used for large sample sizes. Since we have to deal with small
samples, although many of them, we cannot simply use this constant.

We denote the sample MAD and the sample standard deviation for a sample of size
n by MAD,, and S,,, respectively.

We now take a closer look at the sample MAD and the sample standard deviation
for normal distributions, first on a purely theoretical basis for the very small sample size
n = 2 and then for n > 2 based on a simulation study.

4.1. The case n =2

In order to examine the properties of MADs and So, we need the following lemmata.

Lemma 4.1. Let Y ~ N(0,02%) where N(p,0?) denotes a normal distribution with
expected value p and variance o2. Then the following equations hold.

(a) B(Y]) = /2 0.
(b) E(Y[2) = o2.

(c) Var|Y| = ==2.52

T

Proof.
. o T ) o T 5
E Y = _20'2- d = / _202- d = — 0.
(a) E(Y]) %-a/,me plde = —=— [ ¢ 307 war =20

(b) B(YP?) = E(Y?) = Var(Y) - (B(Y))? = 0%
(c¢) Using (a) and (b), we obtain

T—2
-o2.

VarlY| = E(|Y ") — (B()Y])* =

Lemma 4.2. Let X1, Xy ~ N(y1,0?) i.i.d. Then

Xl—XQ 0'2
- "~ ~ N i
v (0g)

holds.
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Proof. The sum of independent normal distributions follows again a normal distribu-
tion. Also the multiplication with a constant factor will lead to a normal distribution.
Therefore, X1-X2 X2 follows a normal distribution.

B (X;X) — L (B(X) - B(X2) =0,

Var (X1;X2) _ i - (Var(Xy) + Var(Xa)) = =

Proposition 4.3. Let X1, Xo ~ N(u,03) i.i.d. Then the following equations hold.
(a) E(MAD,) = 2

%
(b) Var (MAD;) = T=2 - o2.
Proof.

(a) The median of X; and X is in this case the same as the mean % The
absolute deviation of X; and X5 from the median is in both cases

X1+ Xo X1+ Xo _‘Xl_X2
2 2 B '

-

:’X2—

From Lemma[4.2| we know that % ~ N (O, %‘2)) holds. Applying Lemma a)

yields E (MADy) = %

(b) According to Lemma H we have 212%2 ~ N (0, %[‘3) From Lemma c) we
obtain immediately Var (MAD,) = Z=2 - 53.

a
Since we know from Eq. that MAD = W ~ Tig5g holds for the true MAD,
Proposition shows that MAD> is a biased estimator for the true MAD of a normal
distribution.
There is a simple connection between MADy and Ss as the following proposition
shows.

Proposition 4.4. Let X1, X5 ~ N(p,0?) i.i.d. Then
=+/2-MAD,
holds.
Proof. It is obvious that S5 = 2- MAD3 holds. O

The following corollary shows that Ss is a biased estimator for the standard deviation
of a normal distribution.
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Corollary 4.5. Let X, Xo ~ N(u,08) i.i.d. Then the following equations hold.

(a) E(S2) = \/g'Uo-

(b) Var(Sy) = =2 . o2,

Proof. This corollary is an immediate consequence of Propositions [£.4] and O

We can now turn MAD, and S, into unbiased estimators for the standard deviation
of a normal distribution by multiplying them with suitable constants. Both estimators
have the same efficiency.

Corollary 4.6. Let X, Xo ~ N(u,03) i.i.d. Then
(a) MADS™ = /7 -MAD,  and
(b) S5 = /5 - S2

are unbiased estimators for oy. Both estimators have the variance

T—2
= ot

Var (MAD§™) = Var (S5) =

Proof. This corollary is an immediate consequence of Proposition and Corol-

lary |

It should be noted that even the sample standard deviation needs a correction of
more than 25% for this extremely small sample size in order to become an unbiased
estimator.

Unfortunately, these theoretical considerations cannot be easily extended to n > 2.
Therefore, we will consider sample sizes larger than two based on simulation studies.

4.2. Arbitrary sample sizes

In order to determine the correction factors to turn MAD,, into an unbiased estimator for
n > 2 in our context, we will carry out a simulation study. Croux and Rousseuw [5] have
already carried out a similar simulation study on the bias of MAD,, and the estimators?|
SRC and @, mentioned in the previous section. The differences between the simulation
study of Croux and Rousseuw and ours are that we include the sample standard deviation
and that we take a slightly different view on the variance of the estimators. The latter
difference arises from the fact that we consider a larger number of small samples.
Table 2| shows the result of our simulation study based on a standard normal distribu-
tion. We have chosen k& = 1000, so that we obtain 1000 different estimations for MAD,,
and S,, for different values of n. We then take the mean value of these 1000 estimations.
We repeat this procedure 100 times, so that we finally have 100 estimations of MAD,,
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’ n \ MAD \ MAD variance \ SD \ SD variance ‘
2 | 0.5636 1.65E-05 0.7978 3.68E-05
3| 0.4535 1.33E-05 0.8868 2.30E-05
4 | 0.4959 7.17TE-06 0.9210 1.74E-05
51 0.5538 1.09E-05 0.9400 1.13E-05
6 | 0.5673 7.66E-06 0.9514 1.04E-05
7 1 0.5925 8.82E-06 0.9593 8.09E-06
8 | 0.5982 4.81E-06 0.9653 5.82E-06
9 | 0.6125 6.15E-06 0.9692 4.92E-06
10 | 0.6152 4.27E-06 0.9728 4.88E-06
20 | 0.6471 2.75E-06 0.9871 2.67E-06
30 | 0.6567 1.90E-06 0.9914 1.39E-06
40 | 0.6610 1.37E-06 0.9935 1.39E-06
60 | 0.6659 9.16E-07 0.9957 8.01E-07
80 | 0.6680 6.76E-07 0.9968 7.33E-07
100 | 0.6692 4.52E-07 0.9975 4.87E-07
120 | 0.6701 4.65E-07 0.9980 4.70E-07
150 | 0.6710 4.33E-07 0.9983 3.09E-07
200 | 0.6719 2.71E-07 0.9988 1.66E-07
300 | 0.6727 2.30E-07 0.9991 1.57E-07
500 | 0.6735 1.03E-07 0.9995 8.71E-08
1000 | 0.6740 6.22E-08 0.9997 4.84E-08
oo | 0.6745 0 1 0

Tab. 2. Estimated correction factors and their variance.

and S,, in the setting of n replicates and k£ = 1000 proteins. The sample variance of
these 100 estimates is also included in the table.

Figure [2| illustrates the bias of MAD,, and S,, for n € {2,...,10}. The horizontal
lines indicate the true values for the MAD and the standard deviation, respectively. It
is remarkable that the bias for MAD, is smaller than for MAD3, MAD4 and MADs5.
This figure also shows that the bias of MAD,, decreases slower than the bias of S,,.

Figure [2| just magnifies the range for smaller sample sizes n which are of special
interest for us. Figure [3| extends Figure [ to n = 100.

Table[3]is directly derived from Table[2land shows the correction factors to turn MAD,,
and S,, into unbiased estimators for the standard deviation of a normal distribution.
Note that the correction factor for the sample size n = 3 is almost 50 % larger than the
correction for large sample sizes for MAD,,. Even for Sz a correction of more than 10 %
is needed. The table shows also that S,, is a more efficient estimator than MAD,, in the
case of a normal distribution. Nevertheless, we prefer to use MAD,, in our context, since

2Note the difference between the sample standard deviation S,, and the estimator S;R‘C). Croux and

Rousseuw use the notation S, instead of 57(ch) in their study. We deviate from this notation in order
to avoid confusion with the sample standard deviation.
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Fig. 2. MAD and standard deviation estimators depending on the
sample size.

our assumption of normal distribution might be violated for larger regulation factors and
can lead to extreme outliers for S,, for small n.

5. COMPUTATION OF p-VALUES FOR SIGNIFICANT REGULATION

Based on the assumption that the regulation factors for each protein follow normal
distributions with the same standard deviation o, but different expected values, we can
construct a hypothesis test for the identification of proteins with significant regulation,
for which we use the estimate og computed as described in the previous section. The null
hypothesis for this hypothesis test will be that the considered protein is not regulated, so
that its log2-regulation factors are assumed to follow a normal distribution with expected
value 0 and variance o3. Note that for this null hypothesis we actually only require that
the regulation factors of unregulated proteins follow a normal distribution and that we
have a good or at least a conservative estimate of the standard deviation given the null
hypothesis. In the following, we propose two tests for the identification of significantly
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Fig. 3. MAD and standard deviation estimators depending on the
sample size.

regulated proteins.

5.1. p-values based on a simple Z-test

When we focus on a single protein prot; and are only interested whether this specific
protein shows a significant regulation, we can apply a simple Z-test, i.e. a simplified
Student’s t-test with known variance where we use the estimate o3 for the variance from
the previous section. Under the null hypothesis that the protein is not regulated and
thus its log2-regulation factors should follow a normal distribution with expected value
0 and variance o3, the test statistic

X

Uo/\/z

T =
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’ n \ MAD factor \ MAD variance \ SD factor \ SD variance ‘
2 1.7744 5.19E-05 1.2535 5.79E-05
3 2.2053 6.48E-05 1.1276 2.92E-05
4 2.0164 2.91E-05 1.0857 2.05E-05
5 1.8056 3.55E-05 1.0638 1.28E-05
6 1.7628 2.38E-05 1.0511 1.15E-05
7 1.6876 2.51E-05 1.0424 8.79E-06
8 1.6717 1.34E-05 1.0359 6.25E-06
9 1.6326 1.64E-05 1.0318 5.24E-06

10 1.6254 1.13E-05 1.0280 5.15E-06
20 1.5454 6.57E-06 1.0130 2.74E-06
30 1.5228 4.41E-06 1.0087 1.41E-06
40 1.5129 3.14E-06 1.0065 1.41E-06
60 1.5017 2.07E-06 1.0043 8.08E-07
80 1.4970 1.51E-06 1.0032 7.38E-07
100 1.4942 1.01E-06 1.0026 4.89E-07
120 1.4922 1.03E-06 1.0020 4.72E-07
150 1.4903 9.62E-07 1.0017 3.10E-07
200 1.4884 6.00E-07 1.0012 1.67E-07
300 1.4864 5.07E-07 1.0009 1.58E-07
500 1.4849 2.27E-07 1.0005 8.72E-08
1000 1.4836 1.37E-07 1.0003 4.84E-08
0 1.4826 0 1 0

Tab. 3. Estimated correction factors and their variance.

489

yields a standard normal distribution with expected value 0 and variance 1. X is the
mean value of the measured log2-regulation factors of protein prot;, and k < k is the
number of replicates in which log2-regulation factors have been measured for protein
prot;. Therefore, the p-value for a two-sided test with the alternative hypothesis that
the log2-regulation factors of the considered protein do not follow a normal distribution
with expected value 0 can be computed as follows.

Pi

PT>tvT<-t)

P(T]> 1)

2-(1—@(|t)

2.<1<p<

)

(2)

Since we are usually not concentrating on a specific protein, but are searching for
proteins with significant regulation, we apply the test to all proteins, i.e. we apply the
test n times. Therefore, we should take a correction for multiple testing into account.
There are various ways to treat the problem of multiple testing, for example Bonferroni
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(see for instance [14]), Bonferroni-Holm [7] or false discovery rate (FDR) correction [2].
It is out of the scope of this paper to discuss the correction methods for multiple testing.
Here we simply use FDR correction, so that the corrected p-value is simply the one
obtained from Eq. multiplied by the number of applied tests, i.e. by the number of
proteins measured in the experiment.

FDR . : |j|
PR — min{n - p;, 1} =min{2-n- |1 - & Lo
" vt} {2 (1 <00/\/z>> 1} @

5.2. p-values based on a minimum number of significant regulations

The simple Z-test proposed in the previous subsection is sensitive to outliers and would
yield a small p-value if a protein shows very high regulation in one replicate, even though
there is more or less no regulation in the other replicates. Therefore, we propose also a
stricter test that requires that the absolute value of the log2-regulation exceeds a given
threshold ¢, in at least m out of the k replicates. The threshold depends on the choice
of the significance level « for the test. We first consider the test only for a single protein.

() (- (2))

is the probability that the value of its log2-regulation exceeds c, in at least m out of
the k replicates given the null hypothesis is true, i.e. the log2-regulation factors follow
a normal distribution with expected value 0 and variance 2. Since we are interested in
up- and down regulations, we also need to consider the case that m out of the k log2-
regulation factors are below the negative threshold —c, which has the same probability
. Therefore we should choose the threshold ¢, such that

e () ((E)
holds.

When we apply this test to all proteins, we need to take a correction for multiple
testing into account. As already in the case for the simplified Z-test, we use FDR
correction. Therefore, the threshold ¢, should be chosen such that

e (2) (o(3)

holds. n,, is the number of proteins which have been measured in at least m replicates.
We use this value for the FDR correction, since we cannot apply the test to proteins
that have been measured in less than m replicates.

From Eq. @ we obtain the value for the threshold

R Sl [ v
Cq = 00 (0] 1 <2nm(:;)> . (7)
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6. EMPIRICAL EVALUATION

We have applied the above described analysis successfully in various experiments. A
detailed introduction to the biological background of these experiments and the resulting
data would be out of the scope this paper. Therefore, we provide results from simulated
data. We assume to have n = 5 replicates and to measure k£ = 1000 proteins. For
each protein we generate a log2-regulation factor randomly from a standard normal
distribution. Then this log2-regulation factor is used as the expected value for the
normal distribution for the 5 replicate measurements of the protein. The standard
deviation of the normal distribution for the 5 replicates is chosen as o9 = 0.4. 10% of
the log2-regulation factors were deleted randomly from the table and marked as missing
values.

Threshold for significant No. of significantly
regulation in at least regulated proteins
k replicates
o) k=5 \ k=4 k:5\k::4\Z-test
MAD || 0.4139 1.7775 1.9419 17 29 411
S 0.4053 1.7407 1.9017 18 31 421

Tab. 4. Results for simulated data.

Table [ shows the results for the simulated data. The estimations for the standard
deviation based on MADj5 and Sy are close to the true value og = 0.4. Since we strictly
follow the ideal model of normal distributions with the same standard deviation, Ss
yields a slightly better and smaller estimate of o(, so that also for the hypothesis tests
more proteins will be considered as significantly regulated. When we assume an a-error
of 5% and apply FDR correction for multiple testing, the simple Z-test will identify a
much larger number of proteins as significantly regulated proteins than the much stricter
tests in which all 5 or at least 4 replicates must show a significant regulation. For the
Z-test, a single outlier in one replicate will lead to a large absolute mean value of the
log2-regulation factors of the corresponding protein and will suffice to yield a significant
p-value for the Z-test. This does not apply to the tests in which the regulation of a
protein must exceed a threshold in at least a certain number of replicates.

7. CONCLUSIONS AND FUTURE WORK

We have proposed a statistical approach to identify proteins that show significant regu-
lation in mass spectrometry experiments. Our approach is not restricted to proteomics
experiments, since the main characteristics — a small number of replicates and a large
number of “molecular items” of interest — are typical for high-throughput experiments
that yield regulation factors. An important difference between data from proteomics
experiments and microarray experiments is that one often does not have a specific list of
target proteins to be measured, whereas for microarrays there is fixed set of mRNA to
be measured on a chip. Therefore, there are usually more missing values in proteomics
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than in microarray experiments. The method proposed in Section [5.2]is suitable to cope
with such larger numbers of misssing values.

Results obtained from our approach with real data will be published in biological
journals. Our future work will also focus on applying our approach in the context of
metabolomics and genomics data.

8. SOFTWARE

The methods described in Section [5] were implemented in R, a free software environ-
ment for statistical computing and graphics [T1] (see http://www.r-project.org/)).
The simple R code can be downloaded at

http://public.ostfalia.de/~klawonn/pvalues_kybernetika.R
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