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A CONSTRUCTION OF LARGE GRAPHS
OF DIAMETER TWO AND GIVEN DEGREE
FROM ABELIAN LIFTS OF DIPOLES

Dávid Mesežnikov

For any d ≥ 11 we construct graphs of degree d, diameter 2, and order 8
25

d2 +O(d), obtained
as lifts of dipoles with voltages in cyclic groups. For Cayley Abelian graphs of diameter two a
slightly better result of 9

25
d2 + O(d) has been known [3] but it applies only to special values of

degrees d depending on prime powers.
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1. INTRODUCTION

Two types of restrictions that appear frequently in the design of large interconnection
networks are limitations on the number of links emanating from a node and on the length
of the shortest path between a pair of nodes. If networks are modeled by undirected
graphs, the two requirements lead to design of large graphs of a given maximum degree
and a given diameter. The search for largest such graphs is known as the degree-diameter
problem. Since we will be interested only in the case of diameter 2, we just mention that
by the Moore bound [5] the largest order (i. e., number of vertices) of a graph of diameter
2 and maximum degree d is d2+1 and that graphs of such an order exist only for degrees
d = 2, 3, 7 and possibly 57.

In the past decades a number of techniques for constructing large graphs of a given
degree and diameter have been developed. A fruitful method appears to be lifting graphs
of a small order to comparatively large graphs by means of voltage assignments in finite
groups; if the groups are Abelian one speaks about Abelian lifts. To avoid repetitiousness
we refer to the basics of the method of lifting to [5] and references therein. In particular,
Abelian lifts of dipoles (graphs of order 2) gave rise to the largest vertex-transitive and
almost vertex-transitive graphs of diameter 2 and a given degree d = (3q ± 1)/2, q an
odd prime power, whose order is 8

9d2 + O(d), cf. [4, 8]. This led to interest in largest
possible Abelian lifts of graphs of order 1 (equivalently, Cayley graphs of Abelian groups)
and 2. From [7] it follows that the largest order of a graph of diameter 2 and degree
d obtained as an Abelian lift of a dipole is ≤ 0.932d2 + O(d). In the other direction,
constructions of [3] furnish Cayley graphs of degree d and diameter 2 on Abelian groups
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of order 1
3 (d + 1)2 if d = 3q − 1 and 3

8 (d2 − 4) if d = 4q − 2, where in both cases q is an
odd prime power. Moreover, in [3] the authors gave a construction of a Cayley graph of
diameter 2 and degree d = 5p− 3, where p is a prime congruent to 2 mod 3, on a cyclic
group of order 9

25d2 + O(d).
In this note we offer a construction of graphs of degree d, diameter 2, and order

8
25d2 + O(d), obtained as lifts of dipoles with voltages in cyclic groups. This is slightly
worse than the aforementioned result of [3] but has the advantage that the construction
works for general degrees d ≥ 11.

2. RESULTS

Our graphs will be always finite but may have loops and parallel (that is, multiple)
edges. By Dr,s we denote a dipole, that is, a graph consisting of exactly two vertices
joined by r parallel edges and having s loops at each vertex. Such a dipole is a regular
graph of degree d = r + 2s; with unspecified r and s we just speak about a dipole D of
degree d.

We are now ready to present and prove our results.

Theorem 2.1. For any d ≥ 11 there exists a graph of order 8
25d2 +O(d), degree d, and

diameter 2, arising as a lift of a dipole with voltages in a cyclic group.

P r o o f . Because of the nature of the statement it is sufficient to prove it for all suffi-
ciently large d and we will do so for all d ≥ 11. We begin with degrees d ≡ 1 mod 10,
that is, we let d = 10` + 1 where ` ≥ 1. For r = 8` + 1 and s = `, consider the dipole
D = Dr,s as introduced before, of degree d = r + 2s = 10` + 1 and with vertices u and
v. Further, let G = Zn be the cyclic group of order n = 16`2 + 8` = 4

25d2 + O(d). On
the dipole D we introduce a voltage assignment α in G as follows. Letting k = 4` + 1,
the r = 2k − 1 darts from u to v will be mapped bijectively by α onto the set A =
{0,−1,−2, . . . ,−k + 1, k, 2k, . . . , (k − 1)k}, and the set of all the 2` = (k − 1)/2 loops
at both u and v are mapped bijectively by α onto the set B = {1, 2, 3, . . . , (k − 1)/2}.
The lift Dα has 2n = 2(k2 − 1) = 8

25d2 + O(d) vertices and has degree d.
We proceed by showing that the lift Dα has diameter 2. It suffices to show that for

any g ∈ Zn there exists a walk W in D of length at most two starting and ending at
any of the two vertices u, v of D and such that α(W ) = g. First we examine the u → v
walks. If g = kt ∈ A for some t such that 0 ≤ t ≤ k − 1, then W consists of the dart
from u to v carrying the voltage kt ∈ A. For g = ik+j, where i ∈ {0, 1, 2, . . . , k−1} and
j ∈ B ∪ −B, we can take W of length 2 composed of the dart from u to v with voltage
ik and a suitable loop at u or at v carrying the voltage j. Considering u → u walks, for
g ∈ A ∪−A the walk W consists of the dart from u to v with voltage g followed by the
v to u dart with voltage 0. If g = ik + h, where i, h ∈ {1, 2, . . . k − 1}, then we choose
W consisting of the u → v dart with voltage ik and the v → u dart with voltage h. The
cases of v → v and v → u walks can be dealt with in a similar way. This implies that
the lift Dα has diameter two.

We have thus proved the statement for all d ≥ 11 such that d ≡ 1 mod 10. For the
remaining d = 10` + 1 + δ, where ` ≥ 1 and 1 ≤ δ ≤ 9 we modify the dipole D by
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inserting extra bδ/2c loops at both u and v that carry arbitrary distinct voltages in the
set {2` + 1, . . . , 2` + bδ/2c} ⊂ Zn; if δ is odd we also insert an extra dart from u to
v carrying the voltage 1 ∈ Zn. By the above argument, the lift will have diameter 2,
degree d, and order 8

25d2 + O(d). �

The natural question of possible vertex-transitivity of the graphs constructed above
is answered in the negative by our next result.

Theorem 2.2. The graphs constructed in the proof of Theorem 2.1 are not vertex-
transitive if d ≥ 21.

P r o o f . We keep to the notation introduced in the proof of Theorem 2.1. Let Fu =
{ui; i ∈ Zn} and Fv = {vi; i ∈ Zn} be the fibres above u and v, respectively, in the
covering Dα → D induced by the voltage assignment α in Zn. Since k is relatively prime
to n = k2− 1, the element k ∈ Zn has order n. Let k0 = k(k− 1)/2 and k1 = k(k +1)/2
be elements of Zn. If k ≥ 9, which is the case if d ≥ 21, the dart of D from u to v that
carries the voltage k0 is contained in no walk of length 3 of zero voltage, and the same
is true for the dart from u to v of voltage k1. (The condition k ≥ 9 is needed because
of the additional loops in the construction for d 6≡ 1 mod 10.) It follows that no edge of
the form uivi+m for m ∈ {k0, k1} in the lift Dα lies in a triangle for any i ∈ Zn. But as
k1 − k0 = k, the cycle C of the form

u0 → vk1 → uk → vk+k1 . . . → ujk → vjk+k1 → u(j+1)k → v(j+1)k+k1 → ...

is a Hamilton cycle of Dα consisting of edges belonging to no triangle. Note also that
every edge of Dα with both ends in Fu lies in a triangle, with a similar conclusion for
any edge with both ends in Fv.

Suppose now that Dα was a vertex-transitive graph and let f be an automorphism
that takes a vertex from Fu onto a vertex from Fv. Since f(C) is a Hamilton cycle again,
with edges contained in no triangles, it follows that f must interchange the sets Fu and
Fv. In other words, the fibres Fu and Fv form a block system for the automorphism
group of Dα. By the construction of Dα it is obvious that any edge of Dα that is a
lift of a loop lies in a triangle containing vertices from both fibres, and such an edge
lies in a largest number of such triangles if and only if the edge is a lift of the loop
carrying the voltage 1. But such edges are either all in Fu or all in Fv. Consequently,
no automorphism f as above exists, and we conclude that Dα is not a vertex-transitive
graph. �

Let us remark that there is a lot of flexibility regarding the voltage assignment α
in the proof of Theorem 2.1. It might be possible that a better choice of a voltage
assignment could give vertex-transitive graphs but we have not been able to identify
such assignments for general degrees d, and not even for small d by computer [1].
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