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k-TORSIONLESS MODULES WITH FINITE

GORENSTEIN DIMENSION

Maryam Salimi, Elham Tavasoli, Siamak Yassemi, Tehran

(Received March 7, 2011)

Abstract. Let R be a commutative Noetherian ring. It is shown that the finitely gener-
ated R-moduleM with finite Gorenstein dimension is reflexive if and only if Mp is reflexive
for p ∈ Spec(R) with depth(Rp) 6 1, and G-dimRp

(Mp) 6 depth(Rp) − 2 for p ∈ Spec(R)
with depth(Rp) > 2. This gives a generalization of Serre and Samuel’s results on reflexive
modules over a regular local ring and a generalization of a recent result due to Belshoff. In
addition, for n > 2 we give a characterization of n-Gorenstein rings via Gorenstein dimen-
sion of the dual of modules. Finally it is shown that every R-module has a k-torsionless
cover provided R is a k-Gorenstein ring.
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1. Introduction

Let R be a commutative Noetherian ring with identity and let M be a finitely

generated R-module. For an R-module M , the dual M∗ of M is the R-module

HomR(M, R). There is a natural evaluation map δM : M → M∗∗ and M is called

reflexive provided δM is an isomorphism. It is clear that every finitely generated free

module is reflexive. In 1958, Serre proved that every reflexive module is free provided

R is a regular local ring of dimension at most 2. Later, Samuel extended this result

by showing that over a regular local ring of dimension at most 3, an R-module

M is reflexive if and only if pdRM 6 1 and for every non-maximal prime ideal p,

the localization Mp is free over Rp. Recently, Belshoff considered an analogous

question for modules over Gorenstein rings of low dimension. In particular, there is

a notion of Gorenstein dimension for R-modules M , which satisfies the inequality
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G-dimR(M) 6 pdR(M). This provides a natural setting for seeking extensions of

the results of Serre and Samuel. In [3], Belshoff established the following:

(1) If R is a Gorenstein local ring of dimension at most 2, then every reflexive

module M has G-dimR(M) = 0.

(2) If R is a Gorenstein local ring of dimension 3, then an R-moduleM is reflexive if

and only if G-dimR(M) 6 1 and the localization Mp has Gorenstein dimension

0 over Rp for every non-maximal prime ideal p.

In Section 2 we give a generalization of Belshoff’s result (see Theorem 2.3). Recall

that a ring R is called n-Gorenstein if the injective dimension of R is at most n. In

Section 3, for n > 2 we give a characterization of n-Gorenstein rings via Gorenstein

dimension of the dual of modules (see Theorem 3.4).

In Section 4 we bring a characterization of k-torsionless modules with finite Goren-

stein dimension (see Theorem 4.5). Also this section concludes with a discussion of

k-torsionless covers. Recall that for a class X of modules and a module M , an R-

homomorphism ϕ : X → M is an X -cover of M provided it is left universal among

all homomorphisms Y → M with Y ∈ X and, further, any X → M factors through

ϕ via an automorphism X → X . In addition, we investigate necessary and sufficient

conditions which lead the tensor product of k-torsionless modules to be k-torsionless.

2. Reflexive modules

This section contains some general remarks about reflexive modules with finite

Gorenstein dimension. Indeed we present generalizations of the results of Belshoff [3],

Serre [12] and Samuel [11].

First, we recall some necessary definitions which will be used in this section.

Definition 2.1. Let R be a ring and letM be anR-module. The dual ofM is the

module HomR(M, R), which we usually denote by M∗, the bidual then is M∗∗, and

anologous conventions apply to homomorphisms. The bilinear map M ×M∗ −→ R,

(x, ϕ) 7−→ ϕ(x), induces a natural homomorphism δM : M −→ M∗∗.We say that M

is torsionless if δM is injective, and that M is reflexive if δM is bijective.

In [1], Auslander and Bridger introduced the Gorenstein dimension, G-dimR(M),

for every finitely generated R-module as follows:

Definition 2.2. A finitely generated R-module M is said to have G-dimension

zero (G-dimR(M) = 0) if and only if M satisfies the following three properties:

(i) M is reflexive,

(ii) ExtiR(M, R) = 0 for each i > 1,

(iii) ExtiR(M∗, R) = 0 for each i > 1.
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Also we say that G-dimR(M) 6 n if there is an exact sequence

0 −→ Gn −→ . . . −→ G2 −→ G1 −→ G0 −→ M −→ 0

such that G-dimR(Gi) = 0 for each i > 0.

For every R-module M the inequality G-dimR(M) 6 pdR(M) is proved by Aus-

lander and Bridger in [1]. They showed that the equality holds if pdR(M) is finite.

Furthermore, the Gorenstein dimension of an R-module is closely related to its depth,

i.e., G-dimR(M) = depth(R) − depthR(M). This equality is called the Auslander-

Bridger formula.

The following theorem is special case of [4, Proposition 1.4.1] and gives a general-

ization of [3, Proposition 1.1, Proposition 1.7].

Theorem 2.3. Let R be a ring and letM be an R-module with G-dimR(M) < ∞.

Then the following statements hold.

(1) M is torsionless if and only if

(i) Mp is torsionless for p ∈ Ass(R), and

(ii) G-dimRp
(Mp) 6 depth(Rp) − 1 for p ∈ Spec(R) with depth(Rp) > 1.

(2) M is reflexive if and only if

(i) Mp is reflexive for p ∈ Spec(R) with depth(Rp) 6 1, and

(ii) G-dimRp
(Mp) 6 depth(Rp) − 2 for p ∈ Spec(R) with depth(Rp) > 2.

P r o o f. (1) Assume that M is torsionless. By [4, Proposition 1.4.1], we must

show that G-dimRp
(Mp) 6 depth(Rp) − 1 for p ∈ Spec(R) with depth(Rp) > 1.

Note that according to [4, Proposition 1.4.1], depthRp
(Mp) > 1 for p ∈ Spec(R) with

depth(Rp) > 1. Now by the Auslander-Bridger formula we have

G-dimRp
(Mp) = depth(Rp) − depthRp

(Mp) 6 depth(Rp) − 1.

Conversely, by [4, Proposition 1.4.1], it suffices to show that depthRp
(Mp) > 1 for

p ∈ Spec(R) with depth(Rp) > 1. By hypothesis and the Auslander-Bridger formula

we have

depth(Rp) − depthRp
(Mp) = G-dimRp

(Mp) 6 depth(Rp) − 1,

therefore, depthRp
(Mp) > 1 for p ∈ Spec(R) with depth(Rp) > 1.

(2) is proved along the same lines as (1). �

The following two results which can be found in [3], [12] and [11], follow from

Theorem 2.3.
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Corollary 2.4. Let (R, m) be a regular or Gorenstein ring with dim(R) 6 2. If

M is a reflexive R-module, then pdR(M) = 0 or G-dimR(M) = 0.

P r o o f. By [4, Theorem 2.2.7] or [6, Theorem 1.27] the projective dimension

of M is finite or the G-dimension of M is finite, since R is regular or Gorenstein,

respectively. By assumption depth(Rp) 6 2 for all p ∈ Spec(R). If depth(Rp) = 2,

then by Theorem 2.3(2), pdRp
(Mp) = 0 (G-dimRp

(Mp) = 0). Otherwise, Mp is

reflexive by Theorem 2.3(2) and by [4, Exercise 1.4.19] we have

depthRp
(Mp) = depthRp

(HomRp
(M∗

p , Rp)) > min{2, depth(Rp)}.

So pdRp
(Mp) = 0 (G-dimRp

(Mp) = 0). �

Corollary 2.5. Let (R, m) be a regular or Gorenstein ring of dimension 3. An R-

moduleM is reflexive if and only if pdR(M) 6 1 or G-dimR(M) 6 1 and pdRp
(Mp) =

0 or G-dimRp
(Mp) = 0, respectively, for every prime ideal p distinct from m.

P r o o f. It is proved along the same lines as Corollary 2.4. �

3. Characterization of n-Gorenstein rings

In this section, for n > 2 we give a characterization of n-Gorenstein rings via

Gorenstein dimension of the dual of modules. Before that, we recall some definitions

and properties. We follow standard notation and terminology from [7].

Definition 3.1. A Gorenstein ring with idR(R) at most n is called n-Gorenstein.

Definition 3.2. A submodule T of an R-module N is said to be a pure sub-

module if 0 → A ⊗R T → A ⊗R N is exact for all R-modules A, or equivalently, if

HomR(A, N) → HomR(A, N/T ) → 0 is exact for all finitely presented R-modules A.

An exact sequence 0 → T → N → N/T → 0 (or 0 → T → N) is said to be pure

exact if T is a pure submodule of N . An R-module M is said to be pure injective

if for every pure exact sequence 0 → T → N of R-modules, the induced sequence

HomR(N, M) → HomR(T, M) → 0 is exact.

The following lemma and theorem improve results due to Belshoff [3], where he

studied the case n = 2. Now we generalize them for n > 2.
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Lemma 3.3. Let N be an R-module and let n > 2 be an integer. Then idR(N) 6

n provided that Extn−1

R (M∗, N) = 0 for every finitely generated R-module M .

P r o o f. Let

E• : 0 → N → E0 α1

→ E1 α2

→ E2 α3

→ . . .

be an injective resolution of N . Since the Hom evaluation morphism

θMRE• : M ⊗R HomR(R, E•) −→ HomR(HomR(M, R), E•)

is an isomorphism of complexes (see [5]) and Extn−1

R (M∗, N) = 0, so the (n − 1)-st

cohomology module of M ⊗ E• is zero. Therefore 0 → M ⊗R Im(αn) → M ⊗R En

is exact. This means that Im(αn) is a pure submodule of the injective module En,

and now by [7, Lemma 9.1.5], Im(αn) is injective and we get the assertion. �

It is straightforward that for a Gorenstein ring R, the following statements hold.

(i) If dim(R) = 0, then all R-modules are reflexive,

(ii) If dim(R) = 1, then all torsionless R-modules are reflexive.

Now we are ready to give a characterization of n-Gorenstein rings via Gorenstein

dimension of the dual of modules.

Theorem 3.4. For any integer n > 2, R is an n-Gorenstein ring if and only if for

every finitely generated R-module M , G-dimR(M∗) 6 n − 2.

P r o o f. Let R be an n-Gorenstein ring and let M be a finitely generated R-

module. By [13, Corollary 1.5], M∗ is reflexive. It is straightforward that (M∗

p )

is a reflexive Rp-module, for every prime ideal p of R. By Theorem 2.3 we have

G-dimRp
(M∗

p ) 6 n − 2, since dim(Rp) 6 n. According to [6, Proposition 1.15]

G-dimR(M∗) 6 n − 2. Conversely, let M be a finitely generated R-module. By

hypothesis G-dimR(M∗) is finite, so we have

n − 2 > G-dimR(M∗) = sup{i : ExtiR(M∗, R) 6= 0},

therefore Extn−1

R (M∗, R) = 0. Now by Lemma 3.3 we conclude that idR(R) 6 n, so

R is an n-Gorenstein ring. �

In [7, Theorem 9.1.11], Enochs and Jenda showed that the property of being n-

Gorenstein imposes nice conditions on the homological properties of modules over

such rings. In the following we improve Enochs and Jenda’s result.
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Corollary 3.5. Let n > 2 be an integer. For a ring R the following statements

are equivalent.

(1) R is n-Gorenstein.

(2) G-dimR(M∗) 6 n − 2 for all R-modules M .

(3) idR(F ) 6 n for all flat R-modules F .

(4) idR(P ) 6 n for all projective R-modules P .

(5) fdR(E) 6 n for all injective R-modules E.

(6) pdR(E) 6 n for all injective R-modules E.

P r o o f. By Theorem 3.4, (1) and (2) are equivalent and by [7, Theorem 9.1.11],

(1), (3), (4), (5) and (6) are equivalent. �

4. k-Torsionless Modules

In [10], Maşek defined the k-torsionless modules for k > 0. Indeed he gave a gen-

eralization of the torsionless and reflexive modules, i.e., torsionless modules are 1-

torsionless and reflexive modules are 2-torsionless. The first result of this section is

to give a generalization of [4, Proposition 1.4.1] for k-torsionless modules. As an ap-

plication we show that the class of maximal Cohen-Macaulay modules and the class

of k-torsionless modules are equivalent over Gorenstein local ring with dimension

k. Finally, we show that every module over a k-Gorenstein ring has a k-torsionless

cover.

Definition 4.1. Let M be a module, and let

(π) : P1

u
−→ P0

f
−→ M −→ 0

be a projective presentation of M . The Auslander dual, D(M), of M is defined as

D(M) = coker(u∗ : P ∗

0
−→ P ∗

1
),

in other words, dualizing (π) we get an exact sequence

(π∗) : 0 −→ M∗
f∗

−→ P ∗

0

u∗

−→ P ∗

1
−→ D(M) −→ 0.

Clearly, D(M) depends on which projective presentation (π) is used in the defi-

nition. In [10], Maşek proved the uniqueness of D(M) up to projective equivalence.

Moreover, Maşek proved that for an R-module M and natural R-homomorphism

δM : M → M∗∗ we have

ker(δM ) ∼= Ext1R(D(M), R), coker(δM ) ∼= Ext2R(D(M), R).
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In addition, ExtiR(D(M), R) ∼= Exti−2

R (M∗, R), ∀i > 3. The following definition is

from [10].

Definition 4.2. A module M is k-torsionless if ExtiR(D(M), R) = 0, ∀i =

1, . . . , k. So 1-torsionless is torsionless, and 2-torsionless is reflexive. For k > 3,

M is k-torsionless if M is reflexive and ExtiR(M∗, R), ∀i = 1, . . . , k − 2.

Note that M is k-torsionless if and only if Mp is k-torsionless over Rp for all

p ∈ Spec(R).

Definition 4.3. An R-module M possesses property (S̃k) if

depthRp
(Mp) > min{k, depth(Rp)}, ∀p ∈ Spec(R).

Proposition 4.4. Let M be an R-module such that G-dimR(M) < ∞ and let

k > 0 be an integer. Then the following statements are equivalent.

(i) M is k-torsionless.

(ii) M possesses property (S̃k).

P r o o f. By [10, Theorem 42], (i) and (ii) are equivalent if G-dimension of M

is locally finite. On the other hand, by [2, Corollary 6.3.4] “G-dimension of M is

finite” is equivalent to “G-dimension of M is locally finite”. �

The following theorem is one of the main results of this section. It gives a gener-

alization of [4, Proposition 1.4.1] for k-torsionless modules.

Theorem 4.5. Let R be a ring and letM be an R-module with G-dimR(M) < ∞.

Then M is k-torsionless if and only if

(i) Mp is k-torsionless for p ∈ Spec(R) with depth(Rp) 6 k − 1, and

(ii) depthRp
(Mp) > k for p ∈ Spec(R) with depth(Rp) > k.

Furthermore, by the Auslander-Bridger formula, M is k-torsionless if and only if

Mp is k-torsionless for p ∈ Spec(R) with depth(Rp) 6 k − 1, and G-dimRp
(Mp) 6

depth(Rp) − k for p ∈ Spec(R) with depth(Rp) > k.

P r o o f. Assume that M is a k-torsionless R-module, then (i) is straightforward

and by Proposition 4.4, M possesses property (S̃k). So (ii) holds.

Conversely, by Proposition 4.4, it suffices to show that M satisfies property (S̃k),

since G-dimR(M) < ∞. If depth(Rp) > k, then by (ii), depthRp
(Mp) > k and

so depthRp
(Mp) > min{k, depth(Rp)}. Otherwise by (i), Mp is a k-torsionless Rp-

module, hence Mp possesses property (S̃k). So M is k-torsionless. �
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Corollary 4.6. Let R be a Gorenstein local ring of dimension k and let M be

a nonzero R-module. Then the following statements are equivalent.

(i) M is k-torsionless.

(ii) G-dimR(M) = 0.

(iii) M is maximal Cohen-Macaulay.

P r o o f. (i) implies (ii) by Theorem 4.5.

(ii) ⇒ (iii): Assume that G-dimR(M) = 0, so by the Auslander-Bridger formula

the assertion holds.

(iii) ⇒ (i): Suppose that M is a maximal Cohen-Macaulay R-module, so Mp is

a maximal Cohen-Macaulay Rp-module for all p ∈ Supp(M). ThereforeM possesses

property (S̃k) and hence by Proposition 4.4, M is k-torsionless. �

In the following we study the covering properties of the class of k-torsionless

modules. This result improves [3, Theorem 2.2].

Definition 4.7. Let X be the class of finitely generated k-torsionless R-

modules. An X -precover (it will be called a k-torsionless precover) of a finitely

generated R-module M is defined to be an R-homomorphism ϕ : C → M , for some

C ∈ X such that for any R-homomorphism f : D → M where D ∈ X , there is

a homomorphism g : D → C such that ϕg = f . An X -precover ϕ : C → M is called

an X -cover (it will be called a k-torsionless cover) if whenever g : C → C is such

that ϕg = f , then g is an automorphism of C.

It is known that a projective precover of a module M always exists and when the

ring R has the property that the direct limit of projective modules is projective,

then M has a projective cover [7, Corollary 5.2.7]. Flat covers exist for all modules

over any ring [7, Theorem 7.4.4]. In [3, Theorem 2.2], Belshoff proved that over

a Gorenstein local ring of dimension at most 2, every finitely generated module has

a reflexive cover. The next theorem gives a generalization of this result.

Theorem 4.8. Let R be a k-Gorenstein ring, and let M be an R-module. Then

M has a k-torsionless cover C → M .

P r o o f. By [7, Theorem 11.6.9], M has a Gorenstein projective cover C → M

and C is finitely generated. It follows from Corollary 4.6 that C → M is the k-

torsionless cover of M . �

In [8, Corollary 2.6] and [9], Huneke and Wiegand proved the following result: Let

R be a complete intersection ring and let M and N be nonzero R-modules such that

TorRi (M, N) = 0 for all i > 1. If M ⊗R N is maximal Cohen-Macaulay, then so are

M and N .
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In the following, we provide necessary and sufficient conditions which lead the

tensor product of k-torsionless modules to be k-torsionless.

Theorem 4.9. Let R be a complete intersection ring with dim(R) = k and let

M and N be nonzero R-modules such that TorRi (M, N) = 0 for all i > 1. Then

M ⊗R N is k-torsionless if and only if M and N are k-torsionless.

P r o o f. “⇒” Assume that M ⊗R N is k-torsionless. By Corollary 4.6, we get

that M ⊗R N is maximal Cohen-Macaulay. Now by [8, Corollary 2.6], M and N are

maximal Cohen-Macaulay, so by Corollary 4.6, M and N are k-torsionless.

“⇐” Let p ∈ Spec(R). Then M possesses property (S̃k), since M is k-torsionless.

So we have

depthRp
(Mp ⊗Rp

Np) = depthRp
(Mp) + depthRp

(Np/(pRp)Np)

> depthRp
(Mp)

> min{k, depth(Rp)}.

ThereforeM⊗RN possesses property (S̃k) and then by Proposition 4.4, the assertion

is proved. �
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