
Czechoslovak Mathematical Journal

Hyunjin Lee; Seonhui Kim; Young Jin Suh
Real hypersurfaces in complex two-plane Grassmannians with certain commuting
condition

Czechoslovak Mathematical Journal, Vol. 62 (2012), No. 3, 849–861

Persistent URL: http://dml.cz/dmlcz/143029

Terms of use:
© Institute of Mathematics AS CR, 2012

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/143029
http://dml.cz


Czechoslovak Mathematical Journal, 62 (137) (2012), 849–861

REAL HYPERSURFACES IN COMPLEX TWO-PLANE

GRASSMANNIANS WITH CERTAIN COMMUTING CONDITION

Hyunjin Lee, Seonhui Kim, Young Jin Suh, Daegu

(Received August 8, 2011)

Abstract. In this paper, first we introduce a new notion of commuting condition that
ϕϕ1A = Aϕ1ϕ between the shape operator A and the structure tensors ϕ and ϕ1 for real
hypersurfaces in G2(C

m+2). Suprisingly, real hypersurfaces of type (A), that is, a tube
over a totally geodesic G2(C

m+1) in complex two plane Grassmannians G2(C
m+2) satisfy

this commuting condition. Next we consider a complete classification of Hopf hypersurfaces
in G2(C

m+2) satisfying the commuting condition. Finally we get a characterization of
Type (A) in terms of such commuting condition ϕϕ1A = Aϕ1ϕ.

Keywords: real hypersurface, complex two-plane Grassmannians, Hopf hypersurface,
commuting shape operator
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Introduction

We denote by G2(C
m+2) the set of all complex two-dimensional linear subspaces

in C
m+2. This Riemannian symmetric space G2(C

m+2) has a remarkable geomet-

ric structure. It is the unique compact irreducible Riemannian manifold with both

a Kähler structure J and a quaternionic Kähler structure J not containing J . Namely,

G2(C
m+2) is a unique compact, irreducible, Kähler, quaternionic Kähler manifold

which is not a hyper-Kähler manifold. Accordingly, in G2(C
m+2) we have the two

natural geometric conditions for real hypersurfacesM that the 1-dimensional distri-

bution [ξ] = Span{ξ} and the 3-dimensional distribution D⊥ = Span{ξ1, ξ2, ξ3} are
invariant under the shape operator A of M (see [2], [3] and [4]).

This work was supported by grant Proj. No. NRF-2011-220-C00002 from National Re-
search Foundation of Korea. The first author by grant Proj. No. BSRP-2012-002031 and
the third by BSRP-2012-0007402 and KNU 2012.
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The almost contact structure vector field ξ defined by ξ = −JN is said to be a Reeb

vector field, where N denotes a local unit normal vector field ofM in G2(C
m+2). The

almost contact 3-structure vector fields {ξ1, ξ2, ξ3} for the 3-dimensional distribution
D⊥ of M in G2(C

m+2) are defined by ξν = −JνN (ν = 1, 2, 3), where Jν denotes

a canonical local basis of a quaternionic Kähler structure J and TxM = D ⊕ D⊥,

x ∈ M .

By using the two invariant conditions mentioned above and the result in Alek-

seevskii [1], Berndt and Suh [3] proved the following:

Theorem A. Let M be a connected orientable real hypersurface in G2(C
m+2),

m > 3. Then both [ξ] and D⊥ are invariant under the shape operator of M if and

only if

(A) M is an open part of a tube around a totally geodesic G2(C
m+1) in G2(C

m+2),

or

(B) m is even, say m = 2n, and M is an open part of a tube around a totally

geodesic HPn in G2(C
m+2).

The Reeb vector field ξ is said to be Hopf if it is invariant under the shape opera-

tor A. The 1-dimensional foliation ofM by the integral manifolds of the Reeb vector

field ξ is said to be a Hopf foliation of M . We say that M is a Hopf hypersurface in

G2(C
m+2) if and only if the Hopf foliation ofM is totally geodesic. By the formulas

in Section 2 it can be easily checked that M is Hopf if and only if the Reeb vector

field ξ is Hopf.

On the other hand, we say that the Reeb flow onM in G2(C
m+2) is isometric, when

the Reeb vector field ξ onM is Killing. In [4], Berndt and Suh gave some equivalent

conditions for isometric Reeb flow. Among them, we want to introduce a commuting

condition between the shape operator A and the structure tensor ϕ, that is, Aϕ =

ϕA. By such a commuting condition, a characterization of real hypersurfaces of

Type (A) in Theorem A was given in terms of the Reeb flow on M as follows:

Theorem B. Let M be a connected orientable real hypersurface in G2(C
m+2),

m > 3. Then the Reeb flow on M is isometric if and only if M is an open part of

a tube around a totally geodesic G2(C
m+1) in G2(C

m+2).

In [7], Suh considered a condition that the almost contact 3-structure ten-

sors {ϕ1, ϕ2, ϕ3} commute with the shape operator A of real hypersurface M in

G2(C
m+2), and he proved that there does not exist any real hypersurface M in

G2(C
m+2) with AϕνX = ϕνAX , ν = 1, 2, 3, for any tangent vector field X on

M . In addition, he gave a characterization of real hypersurface of Type (B) under

assumption that M is a Hopf hypersurface in G2(C
m+2) with AϕνX = ϕνAX ,
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ν = 1, 2, 3, for any tangent vector field X on T0. Here, the distribution T0 is defined

by T0 = {X ∈ TpM | ξ⊥X} (see [7]).
Summing up these statements, naturally we ask what can we say about the com-

muting condition between the shape operator A and the two structure tensors ϕ and

ϕ1. According to such a problem, in this paper we consider a new condition that the

shape operator A commutes with two kinds of structure tensors ϕ and ϕ1 for a real

hypersurface M in G2(C
m+2) as follows:

(∗) ϕϕ1AX = Aϕ1ϕX

for any tangent vector field X on M .

Suprisingly, by Proposition A in Section 3, we know that real hypersurfaces of

Type (A) in G2(C
m+2) in Theorem A satisfy the formula (∗). From such a point of

view, we give another characterization of real hypersurface of Type (A) in G2(C
m+2)

as follows:

Main Theorem. Let M be a connected orientable Hopf hypersurface in

G2(C
m+2), m > 3. Then the shape operator satisfies the commuting condition

(∗) if and only if M is an open part of a tube around a totally geodesic G2(C
m+1)

in G2(C
m+2).

1. Riemannian geometry of G2(C
m+2)

In this section we summarize basic material aboutG2(C
m+2), for details we refer to

[2], [3] and [4]. By G2(C
m+2) we denote the set of all complex two-dimensional linear

subspaces in C
m+2. The special unitary group G = SU(m + 2) acts transitively on

G2(C
m+2) with stabilizer isomorphic to K = S(U(2)×U(m)) ⊂ G. Then G2(C

m+2)

can be identified with the homogeneous space G/K, which we equip with the unique

analytic structure for which the natural action of G on G2(C
m+2) becomes analytic.

Denote by g and k the Lie algebra of G and K, respectively, and by m the orthogonal

complement of k in g with respect to the Cartan-Killing form B of g. Then g = k⊕m

is an Ad(K)-invariant reductive decomposition of g. We put o = eK and identify

ToG2(C
m+2) with m in the usual manner. Since B is negative definite on g, its

negative restricted to m×m yields a positive definite inner product on m. By Ad(K)-

invariance of B this inner product can be extended to a G-invariant Riemannian

metric g on G2(C
m+2). In this way G2(C

m+2) becomes a Riemannian homogeneous

space, even a Riemannian symmetric space. For computational reasons we normalize

g such that the maximal sectional curvature of (G2(C
m+2), g) is eight.
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Whenm = 1, G2(C
3) is isometric to the two-dimensional complex projective space

CP 2 with constant holomorphic sectional curvature eight.

When m = 2, we note that the isomorphism Spin(6) ≃ SU(4) yields an isom-

etry between G2(C
4) and the real Grassmann manifold G+

2 (R6) of oriented two-

dimensional linear subspaces in R
6. In this paper, we will assume m > 3.

The Lie algebra k has the direct sum decomposition k = su(m)⊕su(2)⊕R, whereR

denotes the center of k. Viewing k as the holonomy algebra of G2(C
m+2), the center

R induces a Kähler structure J and the su(2)-part a quaternionic Kähler structure

J on G2(C
m+2). If Jν is any almost Hermitian structure in J, then JJν = JνJ , and

JJν is a symmetric endomorphism with (JJν)2 = I and tr(JJν) = 0 for ν = 1, 2, 3.

A canonical local basis {J1, J2, J3} of J consists of three local almost Hermitian

structures Jν in J such that JνJν+1 = Jν+2 = −Jν+1Jν , where the index ν is taken

modulo three. Since J is parallel with respect to the Riemannian connection ∇̃ of
(G2(C

m+2), g), there exist for any canonical local basis {J1, J2, J3} of J three local
one-forms q1, q2, q3 such that

(1.1) ∇̃XJν = qν+2(X)Jν+1 − qν+1(X)Jν+2

for all vector fields X on G2(C
m+2).

The Riemannian curvature tensor R̃ of G2(C
m+2) is locally given by

(1.2) R̃(X, Y )Z = g(Y, Z)X − g(X, Z)Y + g(JY, Z)JX

− g(JX, Z)JY − 2g(JX, Y )JZ

+

3∑

ν=1

{
g(JνY, Z)JνX − g(JνX, Z)JνY − 2g(JνX, Y )JνZ

}

+

3∑

ν=1

{
g(JνJY, Z)JνJX − g(JνJX, Z)JνJY

}
,

where {J1, J2, J3} denotes a canonical local basis of J.

2. Some fundamental formulas

In this section we derive some basic formulas and the Codazzi equation for a real

hypersurface in G2(C
m+2) (see [5], [6] and [7]).

Let M be a real hypersurface of G2(C
m+2), that is, a hypersurface of G2(C

m+2)

with real codimension one. The induced Riemannian metric on M will also be

denoted by g, and ∇ denotes the Riemannian connection of (M, g). Let N be a local

unit normal vector field of M and A the shape operator of M with respect to N .

852



Now let us put

(2.1) JX = ϕX + η(X)N, JνX = ϕνX + ην(X)N

for any tangent vector field X of a real hypersurface M in G2(C
m+2), where N

denotes a unit normal vector field of M in G2(C
m+2). From the Kähler structure J

of G2(C
m+2) there exists an almost contact metric structure (ϕ, ξ, η, g) induced on

M in such a way that

(2.2) ϕ2X = −X + η(X)ξ, η(ξ) = 1, ϕξ = 0, η(X) = g(X, ξ)

for any vector field X on M . Furthermore, let {J1, J2, J3} be a canonical local basis
of J. Then the quaternionic Kähler structure Jν of G2(C

m+2), together with the

condition JνJν+1 = Jν+2 = −Jν+1Jν in Section 1, induces an almost contact metric

3-structure (ϕν , ξν , ην , g) on M as follows:

(2.3)





ϕ2
νX = −X + ην(X)ξν , ην(ξν) = 1, ϕνξν = 0,

ϕν+1ξν = −ξν+2, ϕνξν+1 = ξν+2,

ϕνϕν+1X = ϕν+2X + ην+1(X)ξν ,

ϕν+1ϕνX = −ϕν+2X + ην(X)ξν+1

for any vector field X tangent to M . Moreover, from the commuting property of

JνJ = JJν , ν = 1, 2, 3 in Section 1 and (2.1), the relation between these two contact

metric structures (ϕ, ξ, η, g) and (ϕν , ξν , ην , g), ν = 1, 2, 3, can be given by

ϕϕνX = ϕνϕX + ην(X)ξ − η(X)ξν ,(2.4)

ην(ϕX) = η(ϕνX), ϕξν = ϕνξ.

On the other hand, from the Kähler structure J , that is, ∇̃J = 0 and the quater-

nionic Kähler structure Jν (see (1.1)), together with Gauss and Weingarten formulas

it follows that

(∇Xϕ)Y = η(Y )AX − g(AX, Y )ξ, ∇Xξ = ϕAX,(2.5)

∇Xξν = qν+2(X)ξν+1 − qν+1(X)ξν+2 + ϕνAX,(2.6)

(∇Xϕν)Y = −qν+1(X)ϕν+2Y + qν+2(X)ϕν+1Y + ην(Y )AX − g(AX, Y )ξν(2.7)

Summing up these formulas, we find the following

(2.8) ∇X(ϕνξ) = ∇X(ϕξν)

= (∇Xϕ)ξν + ϕ(∇Xξν)

= qν+2(X)ϕν+1ξ − qν+1(X)ϕν+2ξ + ϕνϕAX

− g(AX, ξ)ξν + η(ξν)AX.
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Using the above expression (1.2) for the curvature tensor R̃ of G2(C
m+2), the equa-

tion of Codazzi becomes

(2.9) (∇XA)Y − (∇Y A)X = η(X)ϕY − η(Y )ϕX − 2g(ϕX, Y )ξ

+

3∑

ν=1

{ην(X)ϕνY − ην(Y )ϕνX − 2g(ϕνX, Y )ξν}

+

3∑

ν=1

{ην(ϕX)ϕνϕY − ην(ϕY )ϕνϕX}

+

3∑

ν=1

{η(X)ην(ϕY ) − η(Y )ην(ϕX)}ξν .

3. Key lemmas

Now let us assume that M is a Hopf hypersurface in G2(C
m+2) with commuting

shape operator, that is, the shape operator A of M commutes with the structures

tensors ϕ and ϕ1 as follows:

(∗) ϕϕ1AX = Aϕ1ϕX

for any tangent vector field X on M .

First of all, we establish one of the key lemmas as follows:

Lemma 3.1. LetM be a Hopf hypersurface in complex two-plane Grassmannians

G2(C
m+2), m > 3. If M has commuting shape operator, then the Reeb vector field

ξ belongs to either the distribution D or the distribution D⊥.

P r o o f. In order to prove our lemma, let us put ξ = η(X0)X0 +η(ξ1)ξ1 for some

unit X0 ∈ D and ξ1 ∈ D⊥ and η(X0)η(ξ1) 6= 0.

From the assumption (∗) for X = ξ and (2.2), we have

(3.1) ϕ1Aξ = η(ϕ1Aξ)ξ.

On the other hand, from the assumption that M is Hopf, we see that

(3.2) Aξ = αξ = αη(X0)X0 + αη(ξ1)ξ1.

Combining with (3.1) and (3.2), we have

αη(X0)ϕ1X0 = 0,

because ϕ1ξ1 = 0 and the structure tensor ϕ1 is skew-symmetric.
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But we see that ϕ1X0 is non-vanishing at all points of M . In fact, we obtain

‖ϕ1X0‖2 = g(ϕ1X0, ϕ1X0) = −g(ϕ2
1X0, X0) = g(X0, X0) = 1,

where we have used the equation (2.3) and the fact that X0 is unit.

Then it follows that

(3.3) αη(X0) = 0.

Thus we can consider the following two cases:

Case 1. α = 0, that is, Aξ = 0. This case is trivial by Lemma 3.1 due to Pérez

and Suh [6].

Case 2. α 6= 0. From (3.3), we have η(X0) = 0. This gives a contradiction.

So we complete the proof of our Lemma. �

Now, we consider another commuting condition for the shape operator A on M

when the Reeb vector ξ belongs to the distribution D⊥. We prove the following

lemma which will be useful in the proof of Lemma 4.2 in Section 4.

Lemma 3.2. Let M be a connected orientable Hopf hypersurface in G2(C
m+2),

m > 3 with ξ ∈ D⊥. If M satisfies the following condition

(∗∗) ϕϕ1AX = Aϕϕ1X, X ∈ D⊥,

then the distribution D⊥ is invariant under the shape operator A of M , that is,

g(AD⊥, D) = 0.

P r o o f. From now on, since ξ ∈ D⊥, let us put ξ = ξ1. Taking the covariant

derivative along any direction Y ∈ TM , we have

(3.4) ϕAY = ∇Y ξ = ∇Y ξ1 = q3(Y )ξ2 − q2(Y )ξ3 + ϕ1AY.

From this, taking the inner product with ξ2 and ξ3, we have

(3.5) q3(Y ) = 2g(AY, ξ3), q2(Y ) = 2g(AY, ξ2),

respectively.

Moreover, applying the structure tensor ϕ in (3.4), this equation can be written

as

(3.6) AY = αη(Y )ξ + 2g(AY, ξ2)ξ2 + 2g(AY, ξ3)ξ3 − ϕϕ1AY, Y ∈ TM,

where we have used that M is Hopf and the formulas (2.2), (2.3) and (3.5).
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Putting Y = ξ2 in (3.6), we get

Aξ2 = αη(ξ2)ξ + 2g(Aξ2, ξ2)ξ2 + 2g(Aξ2, ξ3)ξ3 − ϕϕ1Aξ2

= 2g(Aξ2, ξ2)ξ2 + 2g(Aξ2, ξ3)ξ3 − ϕϕ1Aξ2

= 2g(Aξ2, ξ2)ξ2 + 2g(Aξ2, ξ3)ξ3 − Aξ2.

Here from the condition (∗∗) we see that ϕϕ1Aξ2 = Aϕϕ1ξ2 = Aξ2, because ξ2 ∈ D⊥.

Therefore the third equality in the above equation holds. Consequently, it implies

(3.7) Aξ2 = g(Aξ2, ξ2)ξ2 + g(Aξ2, ξ3)ξ3.

Similarly, if we consider Y = ξ3 in (3.6), we get

(3.8) Aξ3 = g(Aξ3, ξ2)ξ2 + g(Aξ3, ξ3)ξ3,

because ϕϕ1Aξ3 = Aϕϕ1ξ3 = Aξ3.

From the two equations (3.7), (3.8) and the assumption Aξ1 = Aξ = αξ = αξ1,

we have Aξν ∈ D⊥ for any ν = 1, 2, 3. So we conclude that the distribution D⊥

is invariant under the shape operator A of M , that is, AD⊥ ⊂ D⊥. This gives

a complete proof of our lemma. �

Before giving the proof of our Main Theorem from the Introduction, let us check

whether the shape operator A of real hypersurfaces of Type (A) or of Type (B) in

Theorem A satisfies the condition (∗) or not.
First let us check for the case thatM is locally congruent to a real hypersurface of

Type (A), an open part of a tube around a totally geodesic G2(C
m+1) in G2(C

m+2).

We recall a proposition due to Berndt and Suh [3] as follows:

Proposition A. Let M be a connected real hypersurface of G2(C
m+2). Suppose

that AD ⊂ D, Aξ = αξ, and ξ is tangent to D⊥. Let J1 ∈ J be the almost Hermitian

structure such that JN = J1N . ThenM has three (if r = π/2
√

8) or four (otherwise)

distinct constant principal curvatures

α =
√

8 cot(
√

8r), β =
√

2 cot(
√

2r), λ = −
√

2 tan(
√

2r), µ = 0

with some r ∈ (0, π/
√

8). The corresponding multiplicities are

m(α) = 1, m(β) = 2, m(λ) = 2m − 2 = m(µ),
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and the corresponding eigenspaces are

Tα = Rξ = RJN = Rξ1 = Span{ξ} = Span{ξ1},
Tβ = C

⊥ξ = C
⊥N = Rξ2 ⊕ Rξ3 = Span{ξ2, ξ3},

Tλ = {X | X ⊥ Hξ, JX = J1X },
Tµ = {X | X ⊥ Hξ, JX = −J1X }

where Rξ, Cξ and Hξ respectively denotes real, complex and quaternionic span of

the structure vector field ξ and C⊥ξ denotes the orthogonal complement of Cξ in Hξ.

Now let us check case by case whether the two sides in (∗) are equal to each other:
Case A-1. X ∈ Tα (i.e. X = ξ = ξ1). It can easily be checked that the two sides

are equal to each other.

Case A-2. X ∈ Tβ, (i.e. X = ξ2 or X = ξ3). Then we put Aξ2 = βξ2, Aξ3 = βξ3,

where β =
√

2 cot(
√

2r). Then by putting X = ξ2 in (∗) we have

Left-Hand Side = ϕϕ1Aξ2 = βϕϕ1ξ2 = βϕξ3 = βϕ3ξ1 = βξ2,

and

Right-Hand Side = Aϕ1ϕξ2 = Aϕ1ϕ2ξ = Aϕ1ϕ2ξ1 = −Aϕ1ξ3 = Aξ2 = βξ2.

From this we see that both sides are equal to βξ2. Similarly, by putting X = ξ3

in (∗) we know that they are equal to βξ3.

Case A-3. X ∈ Tλ = {X | X ⊥ Hξ, ϕX = ϕ1X}. For any X ∈ Tλ, λ =

−
√

2 tan(
√

2r) we get

ϕϕ1X = ϕ2X = −X, ϕ1ϕX = ϕ1
2X = −X.

From this we know that the formula (∗) is equal to −λX .

Case A-4. X ∈ Tµ = {X | X ⊥ Hξ, ϕX = −ϕ1X}. We have ϕϕ1X = −ϕ2X =

X , ϕ1ϕX = −ϕ1
2X = X for any X ∈ Tµ. So we know that they are equal to

µX = 0, because µ = 0.

Hence we conclude with a remark as follows:

Remark 3.3. The shape operator A of real hypersurfaces of Type (A) in

G2(C
m+2) satisfies the condition (∗).

Second, let us check whether the shape operator A of real hypersurfaces of

Type (B) satisfies the condition (∗). As is well known to us, a real hypersurface of
Type (B) has five distinct constant principal curvatures as follows [3]:
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Proposition B. LetM be a connected real hypersurface of G2(C
m+2). Suppose

that AD ⊂ D, Aξ = αξ, and ξ is tangent to D. Then the quaternionic dimension

m of G2(C
m+2) is even, say m = 2n, and M has five distinct constant principal

curvatures

α = −2 tan(2r), β = 2 cot(2r), γ = 0, λ = cot(r), µ = − tan(r)

with some r ∈ (0, π/4). The corresponding multiplicities are

m(α) = 1, m(β) = 3 = m(γ), m(λ) = 4n − 4 = m(µ)

and the corresponding eigenspaces are

Tα = Rξ = Span{ξ
}
,

Tβ = JJξ = Span{ξν | ν = 1, 2, 3},
Tγ = Jξ = Span{ϕνξ | ν = 1, 2, 3},
Tλ, Tµ,

where

Tλ ⊕ Tµ = (HCξ)⊥, JTλ = Tλ, JTµ = Tµ, JTλ = Tµ.

Here we suppose that a real hypersurface of Type (B) has the commuting shape

operator A, that is, the shape operator A of M satisfies the commuting condition

ϕϕ1AX = Aϕ1ϕX for any tangent vector field X on M . Then we see that

ϕϕ1Aξ = Aϕ1ϕξ ⇔ ϕϕ1Aξ − Aϕ1ϕξ = 0

⇔ ϕϕ1Aξ = 0

⇔ αϕϕ1ξ = 0 (because ξ ∈ Tα)

⇔ αϕ2ξ1 = 0 (by eq: (2.4))

⇔ −αξ1 = 0 (by eq: (2.2))

⇔ α = 0. (because ξ1: unit)

But this case can not occur for any r ∈ (0, π/4). In fact, α = −2 tan(2r) is non-

vanishing in (0, π/4). So we also state the following remark:

Remark 3.4. The shape operators A of real hypersurfaces of Type (B) in

G2(C
m+2) do not satisfy the commuting condition (∗).
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4. The proof of the Main Theorem

In this section, we assume that M is a Hopf hypersurface in G2(C
m+2) with

commuting shape operator, that is, the shape operator satisfies the condition (∗).
Then by Lemma 3.1 we consider the following two cases:

Case I: the Reeb vector field ξ belongs to the distribution D,

Case II: the Reeb vector field ξ belongs to the distribution D⊥.

First, let us consider Case I, that is, ξ ∈ D.

To consider this case, we recall a one theorem by Lee and Suh [5] as follows:

Theorem C. Let M be a connected orientable Hopf hypersurface in G2(C
m+2),

m > 3. Then the Reeb vector field ξ belongs to the distribution D if and only if

M is locally congruent to an open part of a tube around a totally geodesic HPn in

G2(C
m+2), where m = 2n.

Then from Theorem C, we see that M is locally congruent to a real hypersurface

of Type (B) under our assumption. But in Section 3 we have checked that the shape

operator A of real hypersurface of Type (B) does not satisfy the condition (∗) (see
Remark 3.4). From these facts, first we assert the following:

Theorem 4.1. There does not exist any Hopf hypersurface in G2(C
m+2), m > 3,

with the commuting shape operator ϕϕ1A = Aϕ1ϕ if the Reeb vector field ξ belongs

to the distribution D.

Next we consider the case ξ ∈ D⊥. Accordingly, we may put ξ = ξ1. Then we

have the following:

Lemma 4.2. Let M be a hypersurface in complex two-plane Grassmannians

G2(C
m+2), m > 3 with ξ ∈ D⊥. If M has commuting shape operator, that is,

the shape operator A on M satisfies the condition (∗), then the distribution D⊥ is

invariant under the shape operator A on M .

P r o o f. Since ξ ∈ D⊥, let us assume ξ = ξ1. Substituting X = ξ in our

assumption (∗), we have
ϕϕ1Aξ = 0.

Applying ϕ in the above equation, it becomes

ϕ1Aξ = η(ϕ1Aξ)ξ.

Taking an inner product with ξ1, we obtain η(ϕ1Aξ)η(ξ1) = 0. Since ξ = ξ1, it

means that η(ϕ1Aξ) = 0. So, we have

ϕ1Aξ = 0.
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From this, we have Aξ = αξ where α = g(Aξ, ξ1) = g(Aξ, ξ), because ξ = ξ1.

Moreover, from (2.4), we see that

(4.1) ϕ1ϕX = ϕϕ1X − η1(X)ξ + η(X)ξ1

= ϕϕ1X

for any tangent vector field X on M .

Thus we can write the condition (∗) as

(4.2) ϕϕ1AX = Aϕ1ϕX = Aϕϕ1X

for any tangent vector field X on M .

Now putting X = ξν , ν = 2, 3 in (4.2), this equation can be written as

(4.3) ϕϕ1Aξν = Aϕϕ1ξν , ν = 2, 3.

From Lemma 3.2, we have Aξν ∈ D⊥, ν = 2, 3 under our assumption. This completes

the proof of our Lemma. �

Therefore from Theorem A in the Introduction, we conclude the following:

Lemma 4.3. Let M be a connected hypersurface in complex two-plane Grass-

mannians G2(C
m+2), m > 3 satisfying the commuting condition (∗). If the Reeb

vector field ξ belongs to the distribution D⊥, thenM is locally congruent to an open

part of a tube around a totally geodesic G2(C
m+1) in G2(C

m+2).

As mentioned in Remark 3.3 in Section 3, the shape operator A for real hypersur-

faces of Type (A) satisfies the commuting condition (*) for any tangent vector field

on M . From this fact and Lemma 4.3, we arrive at the following:

Theorem 4.4. Let M be a connected hypersurface in complex two-plane Grass-

mannians G2(C
m+2), m > 3 satisfying the commuting condition (∗). Then the Reeb

vector field ξ belongs to the distribution D⊥ if and only if M is locally congruent to

an open part of a tube around a totally geodesic G2(C
m+1) in G2(C

m+2).

Summing up Lemma 3.1, and Theorems 4.1 and 4.4, we give a complete proof of

our Main Theorem from the Introduction. �

860



References

[1] D.V.Alekseevskii: Compact quaternion spaces. Funkts. Anal. Prilozh. 2 (1968), 11–20.
[2] J.Berndt: Riemannian geometry of complex two-plane Grassmannian. Rend. Semin.
Mat., Torino 55 (1997), 19–83.

[3] J.Berndt, Y. J. Suh: Real hypersurfaces in complex two-plane Grassmannians. Monatsh.
Math. 127 (1999), 1–14.

[4] J.Berndt, Y. J. Suh: Real hypersurfaces with isometric Reeb flow in complex two-plane
Grassmannians. Monatsh. Math. 137 (2002), 87–98.

[5] H.Lee, Y. J. Suh: Real hypersurfaces of type B in complex two-plane Grassmannians
related to the Reeb vector. Bull. Korean Math. Soc. 47 (2010), 551–561.

[6] J.D. Pérez, Y. J. Suh: The Ricci tensor of real hypersurfaces in complex two-plane Grass-
mannians. J. Korean Math. Soc. 44 (2007), 211–235.

[7] Y. J. Suh: Real hypersurfaces in complex two-plane Grassmannians with commuting
shape operator. Bull. Aust. Math. Soc. 68 (2003), 379–393.

Authors’ addresses: H y u n j i n L e e, Graduate School of Electrical Engineering Uni-
versity and Computer Science, Kyungpook National University, Daegu 702-701, Korea,
e-mail: lhjibis@hanmail.net; S e o n hu i K im, Department of Mathematics, Kyungpook
National University, Daegu 702-701, Korea, e-mail: kimsh0123@hanmail.net; Yo u n g J i n
S u h, Department of Mathematics, Kyungpook National University, Daegu 702-701, Korea,
e-mail: yjsuh@knu.ac.kr.

861


		webmaster@dml.cz
	2020-07-03T20:08:41+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




