
Czechoslovak Mathematical Journal

Jae Myung Park; Hyung Won Ryu; Hoe Kyoung Lee; Deuk Ho Lee
The Mα and C-integrals

Czechoslovak Mathematical Journal, Vol. 62 (2012), No. 4, 869–878

Persistent URL: http://dml.cz/dmlcz/143031

Terms of use:
© Institute of Mathematics AS CR, 2012

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/143031
http://dml.cz


Czechoslovak Mathematical Journal, 62 (137) (2012), 869–878

THE Mα AND C-INTEGRALS

Jae Myung Park, Hyung Won Ryu, Hoe Kyoung Lee, Daejeon,

Deuk Ho Lee, Kongju

(Received March 17, 2010)

Abstract. In this paper, we define the Mα-integral of real-valued functions defined on
an interval [a, b] and investigate important properties of the Mα-integral. In particular,
we show that a function f : [a, b] → R is Mα-integrable on [a, b] if and only if there exists
an ACGα function F such that F ′ = f almost everywhere on [a, b]. It can be seen easily
that every McShane integrable function on [a, b] is Mα-integrable and every Mα-integrable
function on [a, b] is Henstock integrable. In addition, we show that the Mα-integral is
equivalent to the C-integral.
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1. Introduction and Preliminaries

It is well-known [3] that a function f : [a, b] → R is C-integrable on [a, b] if and

only if there exists an ACGc function F such that F ′ = f almost everywhere on

[a, b].

In this paper, for a fixed positive real number α we define the Mα-integral and

prove that a function f : [a, b] → R is Mα-integrable on [a, b] if and only if there

exists an ACGα function F such that F ′ = f almost everywhere on [a, b].

In particular, we show that a function f : [a, b] → R is Mα-integrable on [a, b] if

and only if f is C-integrable on [a, b], and the integrals are equal.

A gauge on the interval [a, b] ⊂ R is a positive function defined on [a, b]. Given

a gauge δ, a δ-fine division of [a, b] is a collection {(Ii, xi) : i = 1, 2, . . . , n} of pairwise
non-overlapping intervals Ii ⊂ [a, b] such that

n
⋃

i=1

Ii = [a, b], Ii ⊂ (xi − δ(xi), xi +

δ(xi)) and xi ∈ [a, b]. If
n
⋃

i=1

Ii ⊂ [a, b], then the collection {(Ii, xi) : i = 1, 2, . . . , n}
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is called a δ-fine partial division of [a, b] and the points {xi} are called the tags of
the partial division {(Ii, xi)}.
Given a function f : [a, b] → R and a partial division D = {(Ii, xi) : 1 6 i 6 n},

we use the following notation:

f(D) =
n

∑

i=1

f(xi)|Ii| and ̺(D) =
n

∑

i=1

dist(xi, Ii),

where |Ii| is the Lebesgue measure of the interval Ii and dist(xi, Ii) = inf{|t − xi| :
t ∈ Ii}.

2. The Mα-integral

We now present the definition of the Mα-integal.

Definition 2.1. Let α > 0 be a constant. A function f : [a, b] → R is Mα-

integrable if there exists a real number A such that for each ε > 0 there exists

a positive function δ : [a, b] → R
+ such that

|f(D) − A| < ε

for each δ−fine division D = {(Ii, xi)}n
i=1 of [a, b] satisfying the condition ̺(D) < α.

The number A is called the Mα-integral of f on [a, b], and we write A =
∫ b

a
f or

A = (Mα)
∫ b

a
f .

The function f is Mα-integrable on the set E ⊂ [a, b] if the function fχE is Mα-

integrable on [a, b], and we write
∫

E
f =

∫ b

a
fχE .

We can easily get some basic properties of the Mα-integral.

Theorem 2.2. Let f : [a, b] → R. Then

(1) If f is Mα-integrable on [a, b], then f is Mα-integrable on every subinterval of

[a, b].

(2) If f is Mα-integrable on each of the intervals [a, c] and [c, b], then f is Mα-

integrable on [a, b] and
∫ c

a
f +

∫ b

c
f =

∫ b

a
f .

The following theorem shows the linearity properties of the Mα-integral.

Theorem 2.3. Let f and g be Mα-integrable functions on [a, b]. Then

(1) kf is Mα-integrable on [a, b] and
∫ b

a
kf = k

∫ b

a
f for each k ∈ R,

(2) f + g is Mα-integrable on [a, b] and
∫ b

a
(f + g) =

∫ b

a
f +

∫ b

a
g.

The following lemma is used frequently in the theory of the Mα-integral.
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Lemma 2.4 (Saks-Henstock Lemma). Let f : [a, b] → R be Mα-integrable on

[a, b] and let ε > 0. Suppose that δ is a gauge on [a, b] such that

∣

∣

∣

∣

f(D) −
∫ b

a

f

∣

∣

∣

∣

< ε

for each δ-fine division D = {(Ii, xi)} of [a, b] satisfying the condition ̺(D) < α. If

D′ = {(Ii, xi)}m
i=1 is a δ-fine partial division of [a, b] satisfying the condition ̺(D′) <

α, then
∣

∣

∣

∣

f(D′) −
m

∑

i=1

∫

Ii

f

∣

∣

∣

∣

6 ε.

P r o o f. Assume that D′ = {(Ii, xi)}m
i=1 is an arbitrary δ-fine partial division of

[a, b] satisfying the condition ̺(D′) < α. Let [a, b] −
m
⋃

i=1

Ii =
k
⋃

j=1

I ′j .

Let η > 0. Since f is Mα-integrable on each I ′j , there exists a gauge δj : I ′j → R
+

such that
∣

∣

∣

∣

f(Dj) −
∫

I′

j

f

∣

∣

∣

∣

<
η

k

for each δj-fine division Dj of I
′

j satisfying the condition ̺(Dj) < α.

We may assume that δj(x) 6 δ(x) for all x ∈ I ′j . For each j, choose a δj-fine

division Dj of I
′

j with ̺(Dj) < (α − ̺(D′))/k. Let D0 = D′ ∪ D1 ∪ . . . ∪ Dk. Then

D0 is a δ-fine division of [a, b] satisfying ̺(D0) < α and we have

∣

∣

∣

∣

f(D0) −
∫ b

a

f

∣

∣

∣

∣

< ε.

Consequently, we have

∣

∣

∣

∣

f(D′) −
m

∑

i=1

∫

Ii

f

∣

∣

∣

∣

=

∣

∣

∣

∣

f(D0) −
k

∑

j=1

f(Dj) −
(

∫ b

a

f −
k

∑

j=1

∫

I′

j

f

)
∣

∣

∣

∣

6

∣

∣

∣

∣

f(D0) −
∫ b

a

f

∣

∣

∣

∣

+

k
∑

j=1

∣

∣

∣

∣

f(Dj) −
∫

I′

j

f

∣

∣

∣

∣

< ε + k · η

k
= ε + η.

Since η > 0 was arbitrary, we have |f(D′) −
m
∑

i=1

∫

Ii
f | 6 ε. �

If F : [a, b] → R, then F can be treated as a function of intervals by defining

F ([c, d]) = F (d) − F (c) for each subinterval [c, d] ⊂ [a, b].
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Theorem 2.5. If the function F : [a, b] → R is differentiable on [a, b] with f(x) =

F ′(x) for each x ∈ [a, b], then f : [a, b] → R is Mα-integrable.

P r o o f. Let ε > 0. By the definition of derivative, for each x ∈ [a, b] there exists

a positive function δ : [a, b] → R
+ such that

∣

∣

∣

F (y) − F (x)

y − x
− f(x)

∣

∣

∣
<

ε

2(α + b − a)

for all y ∈ [a, b] with 0 < |y − x| < δ(x). Assume that D = {(Ii, xi)}n
i=1 is a δ-fine

division of [a, b] satisfying the condition ̺(D) < α. Then we have

∣

∣

∣

∣

n
∑

i=1

[f(xi)|Ii| − F (Ii)]

∣

∣

∣

∣

6

n
∑

i=1

|f(xi)|Ii| − F (Ii)|

<
ε

α + b − a

n
∑

i=1

(dist(xi, Ii) + |Ii|)

<
ε

α + b − a
(α + b − a) = ε.

Hence, f : [a, b] → R is Mα-integrable on [a, b]. �

Let F be a function defined on the subintervals of [a, b]. For a given partial division

D = {(Ii, xi) : i = 1, 2, . . . , n}, we write

F (D) =
n

∑

i=1

F (Ii).

Definition 2.6. Let α > 0 be a constant. Let F : [a, b] → R and let E be

a subset of [a, b].

a) F is said to be ACα on E if for each ε > 0 there exist a constant η > 0 and

a gauge δ : [a, b] → R
+ such that |F (D)| < ε for each δ-fine partial division

D = {(Ii, xi)} of [a, b] satisfying xi ∈ E,
∑

i

|Ii| < η and ̺(D) < α.

b) F is said to be ACGα on E if E can be expressed as a countable union of sets

on each of which F is ACα.

Theorem 2.7. If a function f : [a, b] → R is Mα-integrable on [a, b] with the

primitive F , then F is ACGα on [a, b].

P r o o f. By the definition of theMα-integral and by the Saks-Henstock Lemma,

for each ε > 0 there exists a gauge δ : [a, b] → R
+ such that

∣

∣

∣

∣

n
∑

i=1

[f(xi)|Ii| − F (Ii)]

∣

∣

∣

∣

6 ε
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for each δ-fine partial division D = {(Ii, xi)} of [a, b] satisfying the condition

̺(D) < α.

Assume that En = {x ∈ [a, b] : n − 1 6 |f(x)| < n} for each n ∈ N. Then we

have [a, b] =
⋃

En. To show that F is ACα on each En, fix n and take a δ-fine

partial division D0 = {(Ii, xi)} of [a, b] satisfying xi ∈ En for all i and ̺(D) < α. If
∑

i

|Ii| < ε/n, then

|F (D0)| 6

∣

∣

∣

∣

∑

i

[F (Ii) − f(xi) · |Ii|]
∣

∣

∣

∣

+

∣

∣

∣

∣

∑

i

f(xi)|Ii|
∣

∣

∣

∣

6

∣

∣

∣

∣

∑

i

[F (Ii) − f(xi)|Ii|]
∣

∣

∣

∣

+
∑

i

|f(xi)| · |Ii|

6 ε + n
∑

i

|Ii| < 2ε.

�

Now we recall the definitions of the McShane and Henstock integrals.

A function f : [a, b] → R is McShane integrable on [a, b] if there exists a real

number A such that for each ε > 0 there exists a gauge δ : [a, b] → R
+ such that

|f(D) − A| < ε

for each δ-fine division D = {(Ii, xi)}n
i=1 of [a, b].

A function f : [a, b] → R is Henstock integrable if there exists a real number A

such that for each ε > 0 there exists a gauge δ : [a, b] → R
+ such that

|f(D) − A| < ε

for each δ-fine division D = {(Ii, xi)}n
i=1 of [a, b] with xi ∈ Ii.

From the definitions of the two integrals, we easily get the following theorem.

Theorem 2.8. Let f : [a, b] → R be a function.

a) If f is McShane integrable on [a, b], then f is Mα-integrable on [a, b].

b) If f is Mα-integrable on [a, b], then f is Henstock integrable on [a, b].

A function f : [a, b] → R is Mα-integrable on [a, b] if and only if there exists an

ACGα function F on [a, b] such that F ′ = f almost everywhere on [a, b]. To prove

this fact, we need the following two lemmas.
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Lemma 2.9. Suppose that f : [a, b] → R and let E ⊂ [a, b]. If µ(E) = 0, then for

each ε > 0 there exists a positive function δ on E such that |f(D)| < ε for every δ-fine

partial division D = {(Ii, xi)}n
i=1 of [a, b] satisfying xi ∈ E for all i = 1, 2, . . . , n and

̺(D) < α.

P r o o f. For each n, let En = {x ∈ E : n − 1 6 |f(x)| < n} and let ε > 0. Then

E =
⋃

En. Since µ(En) = 0 for each n, we can choose an open set On ⊃ En with

µ(On) < ε/n · 2n.

For x ∈ En, define δ(x) = dist(x, Oc
n). Suppose that D is a δ-fine partial division

of [a, b] with tags in E satisfying the condition ̺(D) < α. Let Dn be a subset of D

that has tags in En and let π = {n ∈ Z
+ : Dn 6= ϕ}. Then

|f(D)| 6
∑

n∈π

|f(Dn)| 6
∑

n∈π

|f |(Dn) <
∑

n∈π

nµ(On) <
∑

n∈π

n · ε

n · 2n
= ε.

�

Lemma 2.10. Suppose that F : [a, b] → R is ACGα on [a, b] and let E ⊂ [a, b].

If µ(E) = 0, then for each ε > 0 there exists a gauge δ on E such that |F (D)| < ε

for every δ-fine partial division D = {(Ii, xi)}n
i=1 of [a, b] satisfying xi ∈ E for all

i = 1, 2, . . . , n and ̺(D) < α.

P r o o f. Let E =
∞
⋃

n=1

En where the En’s are pairwise disjoint and F is ACα on

each En. Let ε > 0. For each n, there exist a gauge δn : En → R
+ and a positive

number ηn > 0 such that |F (D)| < ε/2n for each δn-fine partial division D =

{(Ii, xi)} of [a, b] satisfying xi ∈ En,
∑ |Ii| < ηn and ̺(D) < α. For each n, choose

an open set On ⊃ En with µ(On) < ηn. Define δ(x) = min{δn(x), ̺(x, On
c)} for

x ∈ En. Suppose that D = {(Ii, xi)}n
i=1 is a δ-fine partial division of [a, b] satisfying

xi ∈ E and ̺(D) < α. Let Dn be subset of D that has tags in En and note that

(Dn)
∑ |Ii| < µ(On) < ηn. Hence,

|F (D)| 6

∞
∑

n=1

|F (Dn)| <

∞
∑

n=1

ε

2n
= ε.

�

Theorem 2.11. A function f : [a, b] → R is Mα-integrable on [a, b] if and only if

there exists an ACGα function F on [a, b] such that F ′ = f almost everywhere on

[a, b].

P r o o f. Suppose that f is Mα-integrable on [a, b] and let F (x) =
∫ x

a
f for each

x ∈ [a, b]. Then by Theorem 2.7, F is ACGα on [a, b]. Since f is Henstock integrable

on [a, b], F ′ = f almost everywhere on [a, b] by [4, Theorem 9.12].
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Conversely, suppose that there exists an ACGα function F such that F ′ = f

almost everywhere on [a, b]. Let E = {x ∈ [a, b] : F ′(x) 6= f(x)} and let ε > 0. Then

µ(E) = 0. For each x ∈ [a, b] − E, choose δ(x) > 0 such that

|F (y) − F (x) − f(x)(y − x)| <
ε

6(α + b − a)
|y − x|

whenever |y−x| < δ(x) and y ∈ [a, b]. By Lemma 2.9 and 2.10, we can find δ(x) > 0

on E such that |f(D)| < ε/3 and |F (D)| < ε/3, whenever D = {(Ii, xi)} is a δ-fine

partial division of [a, b] satisfying xi ∈ E and ̺(D) < α.

Suppose that D = {(Ii, xi)} is a δ-fine partial division of [a, b] satisfying ̺(D) < α.

Let D1 be the subset of D that has tags in E and let D2 = D − D1. Then

|f(D) − F (D)| = |f(D2) − F (D2)| + |f(D1)| + |F (D1)|
6 (D2)

∑

∣

∣f(xi)|Ii| − F (Ii)
∣

∣ +
ε

3
+

ε

3

6
ε

3(α + b − a)

∑

(dist(xi, Ii) + |Ii|) +
2

3
ε

6
ε

3(α + b − a)
(α + b − a) +

2

3
ε = ε.

Hence f is Mα-integrable on [a, b]. �

The following examples show that the converse of Theorem 2.8 is not true.

Example 2.12. (1) Let f be a function defined by

f(x) =







2x sin
1

x2
− 2

x
cos

1

x2
if 0 < x 6 1,

0 if x = 0.

Then it is easy to show that the primitive of f is

F (x) =







x2 sin
1

x2
if 0 < x 6 1,

0 if x = 0.

Since F is differentiable and F ′ = f everywhere on [0, 1], f is Mα-integrable due

to Theorem 2.5. But F is not absolutely continuous on [0, 1] and therefore f is not

McShane integrable on [0, 1].

(2) The function F defined by

F (x) =







x sin
1

x2
if 0 < x 6 1,

0 if x = 0
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is differentiable almost everywhere on [0, 1]. By [3, Theorem 9.6], F ′ is Henstock

integrable on [0, 1]. But we can show that F is not ACGα on [0, 1].

To show this, suppose that F is ACGα. Then there exists a set E ⊂ [0, 1] such

that 0 ∈ E and F is ACα on E. Hence, there exist a gauge δ : [0, 1] → R
+ and

a positive number η > 0 such that |F (D)| < α/2 whenever D = {(Ii, xi)} is a δ-fine

partial division of [0, 1] satisfying the conditions xi ∈ E,
∑ |Ii| < η and ̺(D) < α.

Let an = 1/
√

(2n + 1

2
)π and bn = 1/

√
2nπ for each positive integer n. Then

an < bn < 1 and
∞
∑

n=1

an = ∞. Choose a δ-fine partial division D = {([ai, bi], 0):

N 6 i 6 M} such that α/2 <
M
∑

i=N

ai < α and bN < min{δ(0), η}. Then 0 ∈ E,

M
∑

i=N

(bi − ai) < η, and
M
∑

i=N

dist(0, [ai, bi]) =
M
∑

i=N

ai < α.

Hence, D is a δ-fine partial division of [0, 1] satisfying the condition ̺(D) < α.

But we have

|F (D)| =

∣

∣

∣

∣

M
∑

i=N

[F (bi) − F (ai)]

∣

∣

∣

∣

=

M
∑

i=N

ai > α/2.

This contradiction shows that F is not ACGα on [0, 1]. Hence, F ′ is not Mα-

integrable on [0, 1].

3. Equivalence of the Mα and C-integrals

Recall [1], [2] that a function f : [a, b] → R is C-integrable on [a, b] if there exists

a real number A such that for each ε > 0 there exists a gauge δ such that

|f(D) − A| < ε

for each δ-fine division D = {(Ii, xi) : i = 1, 2, . . . , n} of [a, b] satisfying the condition

̺(D) < 1/ε.

To show that theMα-integral is equivalent to the C-integral, we need the following

lemma.

Lemma 3.1. Let α > 0 be a constant and let δ : [a, b] → R
+ be a gauge with

δ(x) < α/4 for each x ∈ [a, b]. If D is a δ-fine division of [a, b] with ̺(D) < nα

for some positive integer n, then there exist δ-fine pairwise disjoint partial divisions

D1, D2, . . . , Dm of intervals in D such that D =
m
⋃

i=1

Di, ̺(Di) < α for each i =

1, 2, . . . , m and m < 2n.
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P r o o f. Let D = {(Ii, xi)}p
i=1
be a δ-fine division of [a, b] with ̺(D) < nα

for some positive integer n. Choose the greatest positive integer n1 such that
n1
∑

i=1

dist(xi, Ii) < α and let D1 = {(Ii, xi)}n1

i=1
. Next, choose the greatest positive

integer n2 such that
n2
∑

i=n1+1

dist(xi, Ii) < α and let D2 = {(xi, Ii)}n2

i=n1+1
. Continu-

ing in this way, we have partial divisions D1, D2, . . . , Dm such that

D =

m
⋃

i=1

Di and ̺(Di) < α

for each i = 1, 2, . . . , m.

From the construction of each Di we have

3

4
α < ̺(Di) < α

for each i = 1, 2, . . . , m.

Suppose that m > 2n. Then

̺(D) =
m

∑

i=1

̺(Di) >
m

∑

i=1

3

4
α =

3

4
αm >

3

4
α · 2n =

3

2
αn.

This contradicts the fact that ̺(D) < nα. Hence, m < 2n. �

Theorem 3.2. Let α > 0 be a constant. A function f : [a, b] → R is Mα-

integrable on [a, b] if and only if f is C-integrable on [a, b]. The value of the integral

is the same in both cases.

P r o o f. Suppose that f is C-integrable on [a, b] and let F (x) = (C)
∫ x

a
f . Let

ε > 0. Choose ε1 > 0 such that α < 1/ε1 and ε1 < ε. Since f is C-integrable on

[a, b], there exists a gauge δ : [a, b] → R
+ such that

∣

∣

∣

∣

f(D) − (C)

∫ b

a

f

∣

∣

∣

∣

< ε1

for each δ-fine division D of [a, b] with ̺(D) < 1/ε1.

If D is a δ-fine division of [a, b] with ̺(D) < α, then

∣

∣

∣

∣

f(D) − (C)

∫ b

a

f

∣

∣

∣

∣

< ε1 < ε.

Hence, f is Mα-integrable on [a, b] and

(Mα)

∫ b

a

f = (C)

∫ b

a

f.
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Conversely, suppose that f is Mα-integrable on [a, b] and let F (x) = (Mα)
∫ x

a
f

for each x ∈ [a, b]. Let ε > 0. Choose a positive integer n such that 1/ε < nα. Since

f is Mα-integrable on [a, b], there exists a gauge δ1 : [a, b] → R
+ such that

|f(D) − F ([a, b])| <
ε

2n

for each δ1-fine division D of [a, b] with ̺(D) < α. Define δ(x) = min{δ1(x), α/4} for
each x ∈ [a, b]. Let D be a δ-fine division of [a, b] with ̺(D) < 1/ε. By Lemma 3.1,

we can decompose D into pairwise disjoint δ-fine partial divisions D1, D2, . . . , Dm

such that D =
m
⋃

i=1

Di, ̺(Di) < α for each i = 1, 2, . . . , m and m < 2n.

By the Saks-Henstock Lemma we have

|f(D) − F ([a, b])| 6

m
∑

i=1

|f(Di) − F (Di)| 6

m
∑

i=1

ε

2n
=

mε

2n
< ε.

Hence, f is C-integrable on [a, b]. �

For any constant α > 0, the Mα-integral is equivalent to the C-integral by Theo-

rem 3.2. Hence, we have the following corollary.

Corollary 3.3. Let α and β be positive constants. A function f : [a, b] → R is

Mα-integrable on [a, b] if and only if f is Mβ-integrable on [a, b].
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