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Abstract. In this paper, we consider a random entire function f(s, ω) defined by a random
Dirichlet series

∑∞
n=1Xn(ω)e−λns whereXn are independent and complex valued variables,

0 6 λn ր +∞. We prove that under natural conditions, for some random entire functions
of order (R) zero f(s, ω) almost surely every horizontal line is a Julia line without an
exceptional value. The result improve a theorem of J. R.Yu: Julia lines of random Dirichlet
series. Bull. Sci. Math. 128 (2004), 341–353, by relaxing condition on the distribution of
Xn for such function f(s, ω) of order (R) zero, almost surely.
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1. Introduction

In the field of mathematical analysis, the Dirichlet series is an infinite series that

takes the form of

(1) f(s) =

∞
∑

n=1

ane−λns,

where {an} ⊂ C, 0 6 λn ր +∞, and s = σ + it is a complex number. The Taylor

series

(2) g(z) =

∞
∑

n=1

anz
n,

is obtained when λn = n and z = e−s. If the Dirichlet series (1) converges for any

s ∈ C, it is an entire function. The abscissa of convergence of a Dirichlet series can

The research is supported by the National Natural Science Foundation of China
(No. 11101096).
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be defined as

σc = inf{σ ∈ R : f(s) converges for any s where Re(s) > σ
}

.

The line σ = σc is called the line of convergence. The half-plane of convergence is

defined as

Cσc
= {s ∈ C : Re(s) > σc}.

The random Dirichlet series and random Taylor series can be defined by replacing

the sequence of complex an by a sequence of complex random variables Xn(ω). We

then have the random Dirichlet series

(3) f(s, ω) =

∞
∑

n=1

Xn(ω)e−λns,

and random Taylor series

(4) g(z, ω) =
∞
∑

n=1

Xn(ω)zn.

Dirichlet series and in particular the growth and the value distribution of entire func-

tions defined by Dirichlet series are important branches of mathematical analysis. In

[12], [13], the author obtained some important results on Dirichlet series convergent

or convergent almost surely (a.s.) only in a half-plane. The related research has

been extended to more general random Dirichlet series and more accurate results

have been given in recent years (see [2], [8], [9], [10], [16]). For random entire func-

tions defined by random Dirichlet series, there are some better results for functions

a.s. of infinite order (R) [14]. Recently, J.R.Yu [15] gives a general result on some

random entire functions a.s. of zero order (R) which does not contain a theorem of

P.L.Davies [1].

In this paper, the conditions of the theorems in [15] are found to be too strong. By

improving the method of the proof in [15], we discard the same distribution condition

of the theorems in [15], and obtain the same results for a random entire function a.s.

of zero order (R).

The paper is organized as follows. Our theorem and corollary will be given in

Section 2. In Section 3, the proof of the main result appears.
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2. Statement of the results

In this paper, we study the Julia line of Dirichlet series and the Julia direction

of Taylor series. A line Im s = t0 is called a Julia line for entire f if in any open

strip containing the line, f takes on all values, with at most one exception, infinitely

often.

We first recall some results of [15]. The author of [15] introduces a special random

Dirichlet series

(5) f1(s, ω) =

+∞
∑

n=1

anXn(ω)eλns,

where {an} ⊂ C, 0 6 λn ր +∞, s = σ + it,

lim
n→+∞

lnn

λn
< +∞,(6)

lim
n→+∞

ln |an|
λn

= −∞,(7)

and in the probability space (Ω,A, P ) (ω ∈ Ω), {Xn(ω)} is a sequence of non-
degenerate, symmetric and independent complex random variables of the same dis-

tribution verifying

(8) 0 < E(|Xn(ω)|2) = d2 < +∞.

For f1(s, ω), the author of [15] has given the following results.

Proposition 1 ([15]). If

(9) lim
n→+∞

ln+ ln+ |an|−1

lnλn
=

c

c− 1
(1 < c < +∞),

then almost surely (a.s.) f1(s, ω) is an entire function verifying

(10) lim
σ→+∞

ln+ ln+M(σ, ω, f1)

lnσ
= c

and a.s. every horizontal line in the s-plane is a Julia line without an exceptional

value of f1(s, ω), i.e. there exists A ∈ A (P (A) = 1) such that for any ω ∈ A, (10)

holds and for any ω ∈ A, t0 ∈ R, η > 0, and α ∈ C,

(11) lim
σ→+∞

n(σ, t0, η, ω, f1 = α) = +∞,
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where

M(σ, ω, f1) = sup({|f1(σ + it, ω)| : t ∈ R})

and

n(σ, t0, η, ω, f1 = α) = ♯{s : f1(s, ω) = α, Re s 6 σ, | Im s− t0| < η}.

And for random Taylor series

(12) g1(z, ω) =

+∞
∑

n=0

anXn(ω)zn,

where {an} ⊂ C,

(13) lim
n→+∞

ln |an|
n

= −∞

and {Xn(ω)} is a sequence of non-degenerate, symmetric and independent complex
random variables of the same distribution verifying (8), we get

Proposition 2 ([15]). If

(14) lim
n→+∞

ln+ ln+ |an|−1

lnn
=

c

c− 1
(1 < c < +∞),

then a.s. the random Taylor series (12) is an entire function verifying

(15) lim
n→+∞

ln+ ln+M(r, ω, g1)

ln ln r
= c,

and a.s. every ray from the origin in the z-plane is a Julia direction without an

exceptional value of g1(z, ω), i.e. there exists A ∈ A (P (A) = 1) such that for any

ω ∈ A, (15) holds, and for any ω ∈ A, θ0 ∈ [0, 2π], η > 0, and α ∈ C

lim
n→+∞

n(r, θ0, η, ω, g1 = α) = +∞,

where

M(r, ω, g1) = max{|g1(z, ω)| : |z| = r}

and

n(r, θ0, η, ω, g1 = α) = ♯{z : g1(z, ω) = α, |z| 6 r, |arg z − θ0| < η}.
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The random Dirichlet series (5) is so special in that {Xn(ω)} is a sequence of
non-degenerate, symmetric and independent complex random variables of the same

distribution and subject to (8). In this paper, we study the random Dirichlet se-

ries (3) and the random Taylor series (4). We give the results on some random entire

functions a.s. of zero order (R) under a weaker condition on the complex random

variables. Suppose that {Xn(ω)} is a sequence of non-degenerate, symmetric and
independent complex random variables verifying the following conditions: EXn = 0,

lim
n→+∞

lnE|Xn|2
λn

= −∞,(16)

d2
E|Xn|2 6 E

2|Xn| < +∞,(17)

where d > 0 is a constant. Conditions (6) and (3) mean that the series (3) is an

entire function a.s. of zero order (R). For convenience, we denote
√

E|Xn|2 by d∆n.

Then, the condition (16) will be equivalent to

(18) lim
n→+∞

ln ∆n

λn
= −∞.

For f(s, ω) we have the following theorem.

Theorem 3. If

(19) lim
n→+∞

ln+ ln+ ∆−1
n

lnλn
=

c

c− 1
(1 < c < +∞),

then almost surely (a.s.) f(s, ω) is an entire function verifying

(20) lim
σ→+∞

ln+ ln+M(σ, ω, f)

lnσ
= c

and a.s. every horizontal line in the s-plane is a Julia line without an exceptional value

of f(s, ω), i.e. there exists A ∈ A (P (A) = 1) such that for any ω ∈ A, (20) holds

and for any ω ∈ A, t0 ∈ R, η > 0, and α ∈ C,

(21) lim
σ→+∞

n(σ, t0, η, ω, f = α) = +∞,

where

M(σ, ω, f) = sup({|f(σ + it, ω)| : t ∈ R})

and

n(σ, t0, η, ω, f = α) = ♯{s : f(s, ω) = α, Re s 6 σ, |Im s− t0| < η}.
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In particular, the random Taylor series (4) verifies the following conditions:

{Xn(ω)} is a sequence of non-degenerate, symmetric and independent complex
random variables verifying the following conditions: EXn = 0,

(22) lim
n→+∞

ln ∆n

n
= −∞.

We have the following corollary.

Corollary 4. If

(23) lim
n→+∞

ln+ ln+ ∆−1
n

lnn
=

c

c− 1
(1 < c < +∞),

then a.s. the random Taylor series (4) is an entire function verifying

(24) lim
n→+∞

ln+ ln+M(r, ω, g)

ln ln r
= c,

and a.s. every ray from the origin in the z-plane is a Julia direction without an

exceptional value of g(z, ω), i.e. there exists A ∈ A(P (A) = 1) such that for any

ω ∈ A, (24) holds, and for any ω ∈ A, θ0 ∈ [0, 2π], η > 0, and α ∈ C

lim
n→+∞

n(r, θ0, η, ω, g = α) = +∞,

where

M(r, ω, g) = max{|g(z, ω)| : |z| = r}

and

n(r, θ0, η, ω, g = α) = ♯{z : g(z, ω) = α, |z| 6 r, | arg z − θ0| < η}.

Letting λn = n and z = e−s, Theorem 3 becomes Corollary 4 immediately. Our re-

sults are general and contain the results in [15]. Furthermore, let X ′
n(ω) = X(ω)/∆n

which are complex random variables of the same distribution, and |an| = ∆n. Then

X ′
n(ω) verify (8), and Theorem 3 and Corollary 4 reduce to Proposition 1 and Propo-

sition 2 respectively, with Xn(ω) replacing anX
′
n(ω).

3. The proof of Theorem 3

3.1. Some lemmas for the proof. We begin with some preliminary results.

First, we need the following lemma.
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Lemma 5 ([2],[14]). Let {Xn(ω)} be a sequence of non-degenerate, symmetric,
and independent complex random variables and satisfy the conditions (17) and (18).

Then

(i) for any ω ∈ Ω, a.s. there exists N(ω) ∈ N,

|Xn(ω)| 6 n∆n, n > N(ω);

(ii) for any subsequence {Xnk
} of {Xn},

P
(

lim
k→+∞

{

|Xnk
| >

d

2
∆nk

})

= 1,

where d and ∆nk
are subject to the condition (17);

(iii) there exists β ∈ (0, 1), such that sup{P (Xn(ω) = c) : c ∈ C, n ∈ N} < β.

Lemma 6 (Paley-Zygmund). Let {Zn(ω)} be a sequence of independent com-
plex random variables in (Ω,A, P ) verifying

E(Xn(ω)) = 0, E(|Xn(ω)|2) = ∆2
n > 0, d = inf

n

{

E

(∣

∣

∣

Xn(ω)

∆n

∣

∣

∣

)}

> 0.

Then for any H ∈ A, (P(H) > 0), there exist B = B(d,H) and k = k(H, {Xn}) ∈ N

such that for any sequence {bk} ∈ C, and any p, q verifying q > p > k,

(25)

∫

H

∣

∣

∣

∣

q
∑

n=p

bnXn(ω)

∣

∣

∣

∣

2

P(dω) > B

q
∑

n=p

|bn|2∆2
n.

Lemma 6 is a generalization [10], [15] of the Paley-Zygmund lemma (see [6], [7]).

The proof can be found in [16]. Another similar version of this well-known lemma

can be found in [3].

Lemma 7. Let λn (0 6 nր +∞) verify (6), ∆n be subject to (18), and f(s) be

defined by (1). Then

(26) lim
σ→+∞

ln+ ln+M(σ, F )

lnσ
= c⇔ lim

n→+∞

ln+ ln+ |an|−1

lnλn
=

c

c− 1
,

whereM(σ, F ) = sup{|F (σ+it)| : t ∈ R} and 1 < c < +∞. Under the condition (26),

we have

lim
σ→+∞

ln+ ln+m(σ, F )

lnσ
= lim

σ→+∞

ln+ ln+M(σ, F )

lnσ
= c,

where m(σ, F ) = max{|an|eλnσ : n ∈ N}.
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The proof of this lemma is similar to the proof of the results on order (R) of

Dirichlet series in [11], [12].

J.R.Yu [15] introduces the following mappings,

(27) z = ϕ1(s) = exp
{

π

2η
(s− it0)

}

and ω = ϕ2(z) =
z − 1

z + 1
,

where t0 ∈ R and η > 0. Denote the inverse mappings by

(28) s = Φ1(z) = ϕ−1
1 (z) and z = Φ2(ω) = ϕ−1

2 (ω).

Let

(29) ω = ϕ(s) = ϕ2 ◦ ϕ1(s) and s = Φ(ω) = ϕ−1(ω) = Φ1Φ2(ω).

We introduce some sets as follows:

B(t0, η) = {s : |Im s− t0| < η},(30)

B
∗(σ, t0, η) = {s : Re s 6 σ} ∩ B(t0, η),(31)

H1 =
{

z : |arg z| < π

2

}

,(32)

H2 =
{

z : |arg z| < π

4

}

,(33)

H
∗
k(r) = {z : |z| 6 r} ∩Hk, (k = 1, 2),(34)

D(r) = {ω : |ω| < R}, (0 < R 6 1).(35)

It is easy to see that

ϕ1(B(t0, η)) = H1, and ϕ2(H1) = D(1).

Thus by (29) we get

(36) ϕ(B(t0, η)) = D(1), Φ(D(1)) = B(t0, η).

We have the following lemma.
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Lemma 8 ([4], [15]). Let R ∈ (0, 1),

r =
1 +R

1 −R
and σ =

2η

π

ln r.

Then

B
∗
(

σ +
2η

π

ln k1, t0,
η

2

)

∩
{

s : Re s = σ +
2η

π

ln r
}

(37)

⊂ Φ(D(R)) ⊂ B
∗(σ, t0, η), (1

4 < k1 <
1
2 ),

and

(38)
π

2η
σ − ln 2 < − ln(1 −R) <

π

2η
σ.

Lemma 9 ([15]). Let G(ω) be holomorphic in D(1). The following affirmations

hold

(i)

1 −R

4
ln+M(R,G) 6 T

(R+ 1

2
, G

)

6 ln+M
(R+ 1

2
, G

)

(0 < R < 1),

where M(R,G) = max{|G(ω) : |ω| = R} and

T (R,G) = (2π)−1

∫ 2π

0

ln+ |G(Reiθ)| dθ.

(ii) If g1 and g2 are any two different complex numbers or g1(z) and g2(z) are any

two different holomorphic function in D(1) verifying

T (R, gj(ω)) = O(T (R,G(ω))) (R ր 1, j = 1, 2),

then

T (R,G(ω)) 6 3
2

∑

j=1

N(R,G = gj) +O(ln(1 −R)−1) (R ր 1),

or

T (R,G(ω)) 6 3

2
∑

j=1

N
(R + 1

2
, G(ω) = gj(ω)

)

+O
(

N
(R+ 1

2
, gj(ω)

)

+ ln(1 −R)−1
)

(R ր 1),
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where n(R,G(ω) − gj or gj(ω)) = ♯{ω : G(ω) = gj or gj(ω), |ω| 6 R} and

N(R,G(ω) = gj or gj(ω)) =

∫ R

R0

n(u,G(ω) = gj or gj(ω))

u
du+O(1),

R0 being a fixed number in (0, 1).

Lemma 9 is the Lemma 5 in [15].

3.2. Proof. Now we turn to the proof of Theorem 1. The proof is divided into

the following nine steps.

(I) We first prove that f(s, ω) is a.s. an entire function.

Lemma 5 (i) implies that the abscissa of convergence of (3)

(39) σc = lim
n→+∞

ln |Xn(ω)|
λn

6 lim
n→+∞

lnn∆n

λn
6 lim

n→+∞

ln ∆n

λn
+ lim

n→+∞

lnn

λn
(a.s.).

By the conditions (6) and (22), the inequality (39) implies

σc = −∞,

i.e. f(s, ω) is a.s. an entire function.

(II) We next prove that (20) holds.

By (6) and (18), there exists N such that for any n > N , n < (
√

∆n)−1. Then,

Lemma 5 (i) implies that

lim
n→+∞

ln+ ln+ |Xn(ω)|−1

lnλn
> lim

n→+∞

ln+ ln+(n∆n)−1

lnλn
> lim

n→+∞

ln+ ln+(
√

∆n)−1

lnλn

> lim
n→+∞

ln+ ln+(∆n)−1

lnλn
.

By (19), there is a sequence {nk} ⊂ {n} such that

lim
k→+∞

ln+ ln+(1
2d∆nk

)−1

lnλnk

= lim
n→+∞

ln+ ln+(∆n)−1

lnλn
.

Combining this with Lemma 5 (ii) we get

lim
n→+∞

ln+ ln+ |Xn(ω)|−1

lnλn
6 lim

k→+∞

ln+ ln+ |Xnk
(ω)|−1

lnλnk

6 lim
k→+∞

ln+ ln+(1
2d∆nk

)−1

lnλnk

6 lim
k→+∞

ln+ ln+(1
2d∆nk

)−1

lnλnk

= lim
n→+∞

ln+ ln+(∆n)−1

lnλn
.
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On the other hand, for any ω ∈ Ω, the order of growth of fω(s) is c if and only if

lim
n→+∞

ln+ ln+ |Xn(ω)|−1

lnλn
=

c

c− 1
.

Hence there exists A ∈ A (P (A) = 1) such that for any ω, (20) holds.

(III) We thirdly prove that there exists A∗(⊂ A) ∈ A (P (A∗) = 1) such that for

any ω ∈ A∗, t0 ∈ R and η > 0,

(40) lim
σ→+∞

ln+ ln+M(σ, t0, η, ω, f)

lnσ
= c,

where M(σ, t0, η, ω, f) = sup{|f(σ + it, ω)| : |t− t0| < η}.
Suppose that for tj < R, ηk > 0, there exists

H =
{

lim
σ→+∞

ln+ ln+M(σ, tj , ηk, ω, f)

lnσ
< c

}

(⊂ A) ∈ A,

such that P (H) > 0. Then for any ε ∈ (0, c − 1) there exists H′ ⊂ H(P (H′) > 0)

such that for any ω ∈ H′, and for σ sufficiently large,

M(σ, tj , ηk, ω, f) < exp(σc−ε).

By Lemma 6, there exist B and k > 0 such that for any p, q ∈ N verifying

q > p > k,

B

q
∑

m=p

∆2
ne2λnσ

6

∫

H1

∣

∣

∣

∣

q
∑

n=p

Xn(ω)eλnσ

∣

∣

∣

∣

2

P (dω),

where Re s = σ and |Im s− tj < ηk|. By the Lebesgue theorem,

B
+∞
∑

m=p

∆2
ne2λnσ 6

∫

H1

∣

∣

∣

∣

+∞
∑

n=p

Xn(ω)eλnσ

∣

∣

∣

∣

2

P (dω).

Hence for ω ∈ H′, and σ sufficiently large,

∆neλnσ 6 B′ exp(σc−ε),

where n > p and B′ is a positive constant.

We would have ln ∆n 6 σc−ε−λnσ+O(1) and by setting σ = (λn/(c−ε))1/(c−ε−1)

ln ∆−1
n > λ(c−ε)/(c−ε−1)

n

( 1

c− ε

)1/(c−ε−1)(

1 − 1

c− ε

)

+O(1).
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Then

(41) lim
n→+∞

ln+ ln+ ∆−1
n

lnλn
>

c− ε

c− ε− 1
>

c

c− 1
,

which is in contradiction with (19). Hence H does not exist, so for tj ∈ R and η > 0,

there exists Ajk(⊂ A) ∈ A such that P (Ajk) = 1, where

(42) Ajk =
{

ω ∈ A : lim
σ→+∞

ln+ ln+M(σ, tj , ηk, ω, f)

ln σ
= c

}

.

Let {tj} be a sequence of rational numbers in R and ηk ց 0. Then for each pair

(j, k), there exists Ajk verifying (42) and P (Ajk) = 1. Let A∗ =
+∞
⋂

n=0

n
⋂

j+k=0

Ajk. Then

P (A∗) = 1 and for any ω ∈ A∗, t0 ∈ R and η > 0, (40) holds.

(IV) We fourthly prove that if {sm}(⊂ C) verifies

mh 6 Re sm = σm 6 (m+ 1)h (m ∈ N, h > 1),

then

lim
m→+∞

ln+ ln+ |f(sm, ω)|
lnσ

= c (a.s.).

We shall prove that P (J) = 0, where

J =
{

ω ∈ A
∗ : lim

m→+∞

ln+ ln+ |f(sm, ω)|
lnσ

< c
}

.

Suppose that P (J) > 0. Then there exist ε ∈ (0, c − 1) and Mn > 0 such that

P (J1) > 0, where

J1 =

{

ω ∈ J : m > Mn,

∣

∣

∣

∣

+∞
∑

n=p

Xn(ω)eλnσm

∣

∣

∣

∣

< exp(σc−ε
m )

}

.

By Lemma 6, for some p ∈ N

+∞
∑

n=0

∆2
ne2λnσm 6 K inf

J1

∣

∣

∣

∣

+∞
∑

n=p

Xn(ω)eλnσm

∣

∣

∣

∣

P(dω) < K ′ exp(2σc−ε
m ),

where K and K ′ are positive constants. Hence for n > p

∆neλnσm < exp(σc−ε
m )
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and

ln ∆n < −λnσm + σc−ε
m +K ′′,

where K ′′ is a positive constant.

Choose m = mn and σmn
such that

mh
n 6

( λn

c− ε

)1/(c−ε−1)

6 (mn + 1)h and mh
n 6 σmn

6 (mn + 1)h.

Then

( mn

mn + 1

)h( λn

c− ε

)1/(c−ε−1)

6 σmn
6

(mn + 1

mn

)h( λn

c− ε

)1/(c−ε−1)

.

We would have

ln δn < λ(c−ε)/(c−ε−1)
n

( 1

c− ε

)1/(c−ε−1)(

−
( mn

mn + 1

)h

+
(mn + 1

mn

)h(c−ε) 1

c− ε

)

.

For n sufficiently large, the expression on the right-hand side of the last inequality

would be negative and consequently

lim
n→+∞

ln+ ln+ ∆−1
n

lnλn
6= c− ε

c− ε− 1
>

c

c− 1
,

which is in contradiction with (19). Hence P (J) = 0.

(V) The equation (36) shows that Φmaps the unit disc D(1) in the w-plane into the

strip B(t0, η) in the s-plane. Consequently, the mapping Φ transforms the function

(3) into a holomorphic function in D(1) as follows:

(43) ψ(w, ω) =
+∞
∑

n=0

Xn(ω) exp{λnΦ(w)}.

In this step, we prove that for any ω ∈ A′ (P (A′) = 1) and α ∈ C, except perhaps

for an exceptional value

(44) lim
R→1

N(R,ω, ψ = α)

ln 1/(1 −R)
= +∞.

By Lemma 8, for ω ∈ A∗, 0 < R < 1, r = (1 +R)/(1 −R) and for σ = (2η/π) ln r

sufficiently large

ln+ ln+M(σ + 2η/π, t0, η/2, ω, f)

ln πσ/(2η)
6

ln+ ln+M(R,ω, ψ)

ln ln 1/(1 −R)

6
ln+ ln+M(σ, t0, η, ω, f)

ln(πσ/(2η) − ln 2)
.
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Hence by (41) and by Lemma 9 (i)

lim
R→1

ln+ ln+M(R,ω, ψ)

ln ln 1/(1 −R)
= c > 1 and lim

R→1

ln+ ln+ T (R,ω, ψ)

ln ln 1/(1 −R)
6 c.

We shall prove P (V) = 0, where

V =

{

ω ∈ A
∗ − J : lim

R→1

ln+ ln+ T (R,ω, ψ)

ln ln 1/(1 −R)
< c

}

.

Suppose that P (V) > 0. Then there exist ε ∈ (0, c − 1) and R∗ ∈ (0, 1) such that

P (V1) > 0, where

V1 =
{

ω ∈ V : T (R,ω, ψ) <
(

ln
1

1 −R

)c−2ε

, 1 > R > R∗
}

.

Then for ω ∈ V1 and 1 > R > R∗

1

2π

∫

π/4

−π/4

ln+ |ψ(Reiθ, ω)| dθ <
(

ln
1

1 −R

)c−2ε

.

Suppose Rn > R∗, Rn ր 1 and (ln 1/(1 − Rn))−ε = 1/(8n2). Let v =
+∞
∑

n=1
1/n2.

Consider

An(θ, ω) =
{

(θ, ω) : θ ∈
[

− π

4
,

π

4

]

, ω ∈ V1, |ψ(Rneiθ, ω)| > exp
(

ln
1

1 −Rn

)c−ε}

.

Then for a fixed ω ∈ V1, mAn(θ, ω) < 2π(ln 1/(1 −Rn))−ε and

m
(

⋃

n

An(θ, ω)
)

6
∑

n=1

mAn(θ, ω) < 2π

∑

n

(

ln
1

1 −Rn

)

< 2π

∑

n

1

8vn2
<

π

4
,

where m denotes the Lebesgue measure on [−π/4, π/4].

Let B(θ, ω) = [−π/4, π/4] × V1 −
⋃

n
An(θ, ω). Then

(45) (m× P )B(θ, ω) >
1

3
πP (V1) −

1

4
πP (V1) =

1

4
πP (V1).

On the other hand, if for any θ ∈ [−π/4, π/4], P (B(θ, ω)) < 1
2P (V1), we would have

(m× P )B(θ, ω) =

∫

π/4

−π/4

dθ

∫

V1

1B(θ,ω)P (dω) <
1

4
πP (V1),
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which is in contradiction with (45). Hence there exists θ0 ∈ [−π/4, π/4] such that

P (B(θ0, ω)) > 1
2P (V1) > 0 i.e.

P
({

ω ∈ V1 : |ψ(Rneiθ0 , ω)| 6 exp
{(

ln
1

1 −Rn

)c−ε}

, n ∈ N

})

> 0.

Applying the mapping in (27), we obtain

sn = Ψ(Rneiθ0) (Re sn = σn),

and

ln
1

1 −Rn
= O(1)(σn +O(1)) (n→ +∞).

Hence for ω ∈ V1

lim
n→+∞

ln+ ln+ |f(sn, ω)|
lnσn

6 c− ε,

which is contrary to the result in (18). Hence P (V) = 0 and for any ω ∈ A∗ − J−V,

(P (A∗ − J− V) = 1),

lim
R→1

lnT (R,ω, ψ)

ln ln 1/(1 −R)
= c and lim

R→1

T (R,ω, ψ)

ln 1/(1 −R)
= +∞.

Consequently for any ω ∈ A′ = A∗ − J−V and α ∈ C, (44) holds except perhaps for

an exceptional value.

(VI) Consider now some non-random holomorphic function in D(1). For anyM ∈
N, let {∆n} be as in (17) and {cj}+∞

j=M+1 ⊂ C be such that

(46) lim
n→+∞

ln+ ln+ |∆ncn|−1

lnλn
=

c

c− 1
.

Then by Lemma 5 (i) and (19), as in the above proof,

(47) GM (w) =
+∞
∑

m=M+1

∆ncn exp(λnΦ(w))

is holomorphic in D(1). By (19), we can choose cn such that (47) and

(48) lim
R→1

T (R,GM)

ln 1/(1 −R)
= +∞

hold.
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(VII) In the seventh step, we prove that there exist a point (c0, c1, . . . , cM ) ∈ CM+1

and a number α ∈ C such that

(49) lim
R→1

N(R,G∗(w, c) = α)

ln 1/(1 −R)
< +∞

and

(50) lim
R→1

T (R,G∗(w, c))

ln 1/(1 −R)
< +∞,

where

(51) G∗(w, c) =
M
∑

n=0

∆ncn exp(λnΦ(w)) +GM (w),

and c = (c0, c1, . . . , cM , cM+1, cM+2, . . .) ∈ C+∞.

We just prove the case λ0 > 0 (the case λ0 = 0 can be deduced). In fact, if (49)

holds, we can not find a point (c′0, c
′
1, . . . , c

′
M , α′) 6= (c0, c1, . . . , cM , α) ∈ CM+1 such

that (23) ∼ (25) hold with c0, c1, . . . , cM and α replaced by c′0, c
′
1, . . . , c

′
M and α′

respectively. Otherwise, the condition λ0 > 0 implies that there exist two different

holomorphic functions in D(1),

g1(w, c) = α−
M
∑

n=0

∆ncn exp(λnΦ(w)) and g2(w, c) = α′−
M
∑

n=0

∆nc
′
n exp(λnΦ(w)),

such that

lim
R→1

N(R,GM ) = gj

ln 1/(1 −R)
< +∞ (j = 1, 2),

which is in contradiction with Lemma 9 (ii).

(VIII) In the eighth step, we calculate the probability of the event

S =
{

ω ∈ A
′ : there exists α ∈ C such that lim

R→1

N(R,G∗(w, ω) = α)

ln 1/(1 − R)
< +∞

}

.

Let

E∞ = {c ∈ C
∞ : G∗(w, ω) verifies (46), (49) and (50)},

E∞,M = {(cM+1, cM+2, . . . , ) : c ∈ C
∞}

and

S∞ = {(X0(ω), X1(ω), . . .) : ω ∈ S} ⊂ E∞.
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Consider the probability space (C,B, µn) generated by the random variables Xn(ω),

and for any fixed M , let

µ∞ =

+∞
∏

n=0

, µ̃M =

M
∏

n=0

µn, µ∞,M =

+∞
∏

n=M+1

µn,

z = (z0, z1, . . .), z̃M = (z0, z1, . . . , zM ) and z∞,M = (zM+1, zM+2, . . .).

We have, by Lemma 5 (iii)

P (S) =

∫

Ω

1P(dω) =

∫

C∞

1S∞µ∞(dz) 6

∫

C∞

1E∞µ∞(dz)

=

∫

E∞

µ∞,M (dz∞,M )

∫

CM+1

1{z0=∆0c0,...,z1=∆M cM}(dz̃m)

=

∫

E∞,M

M
∏

n=0

P({Xn(ω) = ∆ncn})µ∞,M (dz∞,M ) < βM+1.

Letting M ր +∞, we see that P (S) = 0, i.e. for ω ∈ A′ − S (P (A′ − S) = 1) and

α ∈ C

lim
R→1

N(R,ψ(w, ω) = α)

ln 1/(1 −R)
= +∞,

lim
R→1

n(R,ψ(w, ω) = α) = +∞

and (21) holds for fixed pair (t0, η).

(IX) We finally complete the proof of Theorem 1.

As in (17), for each pair (tj , ηk) we can obtain the sets Vjk and Sjk as we have

obtained V and S in (19) and in (21), and construct the event A∗∗ =
+∞
⋂

n=0

+∞
⋂

j+k=0

(Ajk −

J − Vjk − Sjk). Then P (A∗∗) = 1 and for any ω ∈ A∗∗, {s : Im s = t0} is a Julia
line without an exceptional value of f(s, ω). Hence A in Theorem 3 is replaced by

A∗∗. �

Acknowledgement. The authors thank very much Xiaojing Guo, Yiying Huo,

and Mieli Liang. They also thank Prof. Jiarong Yu for his works.

References

[1] P.L.Davies: Some results on the distribution of zeros of random entire functions. Proc.
Lond. Math. Soc., III. Ser. 26 (1973), 99–141.

[2] X.Ding, J. Yu: Picard points of random Dirichlet series. Bull. Sci. Math. 124 (2000),
225–238.

[3] J.-P.Kahane: Some Random Series of Functions (2nd, ed.). Cambridge University Press,
Cambridge, 1985.

935



[4] J.E. Littlewood, A. C.Offord: On the distribution of zeros and a-values of a random inte-
gral function. Ann. Math. 49 (1948), 885–952; Errata. Ann. Math. 50 (1949), 990–991.

[5] R.Nevanlinna: Le Théorème de Picard-Borel et la Théorie des Functions Méromorphes.
Gauthier-Villiars, Paris, 1929. (In French.)

[6] R.E.A.C. Paley, A. Zygmund: On some series of functions. I, II. Proceedings Cambridge
Philos. Soc. 26 (1930), 337–357, 458–474.

[7] R.E.A.C. Paley, A. Zygmund: On some series of functions. III. Proc. Camb. Philos.
Soc. 28 (1932), 190–205.

[8] D.C. Sun, J. R.Yu: Sur la distribution des valeurs de certaines séries aléatoires de
Dirichlet. II. C. R. Acad. Sci., Paris, Sér. I 308 (1989), 205–207. (In French.)

[9] D.C. Sun, J. R.Yu: On the distribution of values of random Dirichlet series. II. Chin.
Ann. Math., Ser. B 11 (1990), 33–44.

[10] F. J. Tian, D. C. Sun, J. R.Yu: On random Dirichlet series. (Sur les séries aléatoires
de Dirichlet). C. R. Acad. Sci., Paris, Sér. I, Math. 326 (1998), 427–431. (In French.
Abridged English version.)

[11] C.-Y.Yu: Sur les droites de Borel de certaines fonctions entières. Ann. Sci. Éc. Norm.
Supér., III. Sér. 68 (1951), 65–104. (In French.)

[12] J.R.Yu: Some properties of random Dirichlet series. Acta Math. Sin. 21 (1978), 97–118.
(In Chinese.)

[13] J.R.Yu: Sur quelques séries gaussiennes de Dirichlet. (On some gaussian Dirichlet se-
ries). C. R. Acad. Sci., Paris, Sér. I 300 (1985), 521–522. (In French.)

[14] J.R.Yu: Borel lines of random Dirichlet series. Acta Math. Sci., Ser. B, Engl. Ed. 22
(2002), 1–8.

[15] J.R.Yu: Julia lines of random Dirichlet series. Bull. Sci. Math. 128 (2004), 341–353.
[16] J.R.Yu, D. C. Sun: On the distribution of values of random Dirichlet series. I. Lectures

on complex analysis, Proc. Symp., Xian/China 1987 (1988), 67–95.

Authors’ addresses: Q i y u J i n: Université de Bretagne-Sud, Campus de Tohaninic,
BP 573, 56017 Vannes, France; Université Européne de Bretagne, France, e-mail: qiyu.jin
@univ-ubs.fr; G u a n g t i e D e n g: Key Laboratory of Mathematics and Complex Systems,
Ministry of Education, School of Mathematical Sciences, Beijing Normal University, Beijing
100875, People’s Republic of China, e-mail: denggt@bnu.edu.cn; D a o chu n S u n: School
of Mathematical Sciences, South China Normal University, Guangzhou 510631, People’s
Republic of China, e-mail: sundch@scnu.edu.cn.

936


		webmaster@dml.cz
	2020-07-03T20:11:24+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




