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Abstract. We obtain the natural diagonal almost product and locally product struc-
tures on the total space of the cotangent bundle of a Riemannian manifold. Studying the
compatibility and the anti-compatibility relations between the determined structures and
a natural diagonal metric, we find the Riemannian almost product (locally product) and the
(almost) para-Hermitian cotangent bundles of natural diagonal lift type. Finally, we prove
the characterization theorem for the natural diagonal (almost) para-Kählerian structures
on the total space of the cotangent bundle.
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1. Introduction

Some new interesting geometric structures on the total space T ∗M of the cotangent

bundle of a Riemannian manifold (M, g) were obtained for example in [7], [19],

[21]–[23] by considering the natural lifts of the metric from the base manifold to T ∗M .

Extensive literature, concerning the cotangent bundles of natural bundles, may be

found in [12].

The fundamental differences between the geometry of the cotangent bundle and

that of the tangent bundle, its dual, are due to the construction of the lifts to T ∗M ,

which is not similar to the definition of the lifts to TM (see [27]).

In a few papers such as [2]–[6], [9]–[11], [17], [24], and [26], some almost product

structures and almost para-Hermitian structures (called also almost hyperbolic Her-
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mitian structures) were constructed on the total spaces of the tangent and cotangent

bundles.

In 1965, K. Yano initiated in [26] the study of the Riemannian almost product

manifolds. A.M. Naveira gave in 1983 a classification of these manifolds with re-

spect to the covariant derivative of the almost product structure (see [20]). In the

paper [25] in 1992, M. Staikova and K. Gribachev obtained a classification of the

Riemannian almost product manifolds, for which the trace of the almost product

structure vanishes, the basic class being that of the almost product manifolds with

nonintegrable structure (see [16]).

A classification of the almost para-Hermitian manifolds was made in 1988 by

C. Bejan, who obtained in [3] 36 classes, up to duality, and the characterizations of

some of them. P.M. Gadea and J. Muñoz Masqué gave in 1991 a classification à la

Gray-Hervella, obtaining 136 classes, up to duality (see [8]). Maybe the best known

class of (almost) para-Hermitian manifolds are the (almost) para-Kähler manifolds,

characterized by the closure of the associated 2-form, and studied for example in [1]

and [15].

In the present paper we consider a (1, 1)-tensor field P obtained as a natural

diagonal lift of the metric g from the base manifoldM to the total space T ∗M of the

cotangent bundle. This tensor field depends on four coefficients which are smooth

functions of the energy density t. We first determine the conditions under which the

tensor field constructed in this way is an almost product structure on T ∗M . We

obtain some simple relations between the coefficients of P . From the study of the

integrability conditions of the determined almost product structure, it follows that

the base manifold must be a space form, and two coefficients may be expressed as

simple rational functions of the other two coefficients, their first order derivatives,

the energy density, and the constant sectional curvature of the base manifold. Then

we prove characterization theorems for the cotangent bundles which are Riemannian

almost product (locally product) manifolds, or (almost) para-Hermitian manifolds,

with respect to the obtained almost product structure, and a natural diagonal lifted

metric G. Finally, we obtain the (almost) para-Kähler cotangent bundles of natural

diagonal lift type.

Throughout this paper, the manifolds, tensor fields and other geometric objects

are assumed to be differentiable of class C∞ (i.e. smooth). The Einstein summation

convention is used, the range of the indices h, i, j, k, l, m, r being always {1, . . . , n}.
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2. Preliminary results

The cotangent bundle of a smooth n-dimensional Riemannian manifold may be

endowed with a structure of 2n-dimensional smooth manifold, induced by the struc-

ture on the base manifold. If (M, g) is a smooth Riemannian manifold of dimen-

sion n, we denote its cotangent bundle by π : T ∗M → M . Every local chart on M ,

(U, ϕ) = (U, x1, . . . , xn), induces a local chart (π−1(U), Φ) = (π−1(U), q1, . . . , qn,

p1, . . . , pn) on T ∗M , as follows. For a cotangent vector p ∈ π−1(U) ⊂ T ∗M , the first

n local coordinates q1, . . . , qn are the local coordinates of its base point x = π(p)

in the local chart (U, ϕ) (in fact we have qi = π∗xi = xi ◦ π, i = 1, . . . n). The

last n local coordinates p1, . . . , pn of p ∈ π−1(U) are the vector space coordinates

of p with respect to the basis (dx1
π(p), . . . , dxn

π(p)), defined by the local chart (U, ϕ),

i.e. p = pi dxi
π(p).

The concept of M -tensor field on the cotangent bundle of a Riemannian manifold

was defined by the present author in [7], in the same manner as the M -tensor fields

were introduced on the tangent bundle (see [18]).

We recall the splitting of the tangent bundle to T ∗M into the vertical distribution

V T ∗M = Kerπ∗ and the horizontal one determined by the Levi Civita connection ∇̇

of the metric g:

(2.1) TT ∗M = V T ∗M ⊕ HT ∗M.

If (π−1(U), Φ) = (π−1(U), q1, . . . , qn, p1, . . . , pn) is a local chart on T ∗M , induced

from the local chart (U, ϕ) = (U, x1, . . . , xn), the local vector fields (∂/∂p1), . . . ,

(∂/∂pn) on π−1(U) define a local frame for V T ∗M over π−1(U) and the local vec-

tor fields (δ/δq1), . . . , (δ/δqn) define a local frame for HT ∗M over π−1(U), where

(δ/δqi) = (∂/∂qi) + Γ0
ih(∂/∂ph), Γ0

ih = pkΓk
ih, and Γk

ih(π(p)) are the Christoffel sym-

bols of g.

The set of vector fields {(∂/∂pi), (δ/δqj)}i,j=1,n, denoted by {∂
i, δj}i,j=1,n, defines

a local frame on T ∗M , adapted to the direct sum decomposition (2.1).

We consider the energy density defined by g in the cotangent vector p:

t =
1

2
‖p‖2 =

1

2
g−1

π(p)(p, p) =
1

2
gik(x)pipk, p ∈ π−1(U).

We have t ∈ [0,∞) for all p ∈ T ∗M .

In the sequel we shall use the following lemma, which may be proved easily.

Lemma 2.1. If n > 1 and u, v are smooth functions on T ∗M such that

ugij + vpipj = 0, ugij + vg0ig0j = 0, or uδi
j + vg0ipj = 0
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on the domain of any induced local chart on T ∗M , then u = 0, v = 0. We have used

the notation g0i = phghi.

3. Almost product structures of natural diagonal lift type

on the cotangent bundle

In this section we shall find the almost product structures on the (total space

of the) cotangent bundle, which are natural diagonal lifts of the metric from the

base manifold M to T ∗M . Then we shall study the integrability conditions for

the determined structures, obtaining the natural diagonal locally product structures

on T ∗M .

An almost product structure J on a differentiable manifold M is a (1, 1)-tensor

field on M such that J2 = I. The pair (M, J) is called an almost product manifold.

When the almost product structure J is integrable, it is called a locally product

structure, and the manifold (M, J) is a locally product manifold.

An almost paracomplex manifold is an almost product manifold (M, J), such that

the two eigenbundles associated with the two eigenvalues +1 and −1 of J , respec-

tively, have the same rank. Equivalently, a splitting of the tangent bundle TM into

the Whitney sum of two subbundles T±M of the same fiber dimension is called an

almost paracomplex structure on M .

V. Cruceanu presented in [6] two simple almost product structures on the total

space T ∗M of the cotangent bundle, obtained by considering on the base manifoldM

a linear connection∇ and a non-degenerate (0, 2)-tensor field g. If α is a differentiable

1-form and X is a vector field on M , αV denotes the vertical lift of α and XH the

horizontal lift of X to T ∗M , one can consider

P (XH) = −XH , P (αV ) = αV ,(3.1)

Q(XH) = (X♭)V , Q(αV ) = (α♯)H ,(3.2)

where X♭ = gX is the 1-form on M defined by X♭(Y ) = gX(Y ) = g(X, Y ), for all

Y ∈ T 1
0 (M), α♯ = g−1

α is a vector field on M defined by g(α♯, Y ) = α(Y ), for all

Y ∈ T 1
0 (M). P is a paracomplex structure if and only if ∇ has vanishing curvature,

while Q is paracomplex if and only if the curvature of ∇ and the exterior covariant

differential Dg of g, given by

(Dg)(X, Y ) = ∇X(Y ♭) −∇Y (X♭) − [X, Y ]♭,

vanish.
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The results from [13] and [14] concerning the natural lifts allow us to introduce

a (1, 1)-tensor field P on T ∗M , which is a natural diagonal lift of the metric g from

the base manifold to the total space T ∗M of the cotangent bundle. Using the adapted

frame {∂i, δj , }i,j=1,n to T ∗M , we define P by the relations

(3.3) Pδi = P
(1)
ij ∂j, P∂i = P ij

(2)δj,

where the M -tensor fields involved as coefficients have the forms

(3.4) P
(1)
ij = a1(t)gij + b1(t)pipj , P ij

(2) = a2(t)g
ij + b2(t)g

0ig0j ,

a1, b1, a2, and b2 being smooth functions of the energy density t.

The invariant expression of the defined structure is

PXH
p = a1(t)(X

♭)V
p + b1(t)p(X)pV

p ,(3.5)

PαV
p = a2(t)(α

♯)H
p + b2(t)g

−1
π(p)(p, α)(p♯)H

p ,

at every point p of the induced local card (π−1(U), Φ) on T ∗M , for all X ∈ T 1
0 (M),

for all α ∈ T 0
1 (M). The vector p♯ is tangent to M in π(p), pV = pi∂

i is the Liouville

vector field on T ∗M , and (p♯)H = g0iδi is the geodesic spray on T ∗M .

Example 3.1. When a1 = a2 = 1, b1 and b2 vanish, we have the structure given

by (3.2).

The next theorems present the conditions under which the above tensor field P

defines an almost product (locally product) structure on the total space of the cotan-

gent bundle.

Theorem 3.2. The tensor field P , given by (3.3) or (3.5), defines an almost

product structure of natural diagonal lift type on T ∗M , if and only if its coefficients

satisfy the relations

(3.6) a1 =
1

a2
, a1 + 2tb1 =

1

a2 + 2tb2
.

P r o o f. The condition P 2 = I in the definition of the almost product structure

may be written in the following form, by using (3.3):

P
(1)
ij P il

(2) = δl
j, P ij

(2)P
(1)
il = δj

l ,

and substituting (3.4) it becomes

(a1a2 − 1)δl
j + [b1(a2 + 2tb2) + a1b2]g

0lpj = 0.
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Using Lemma 2.1, we have that the above expression vanishes if and only if

a1 =
1

a2
, b1 = −

a1b2

a2 + 2tb2
,

which implies also the second relation in (3.6). �

Remark 3.3. If a1 = β−1, a2 = β, b1 = u(αβ)−1 and b2 = −uβ(α + 2tu)−1,

where α and β are real constants and u is a smooth function of t, the statements of

Theorem 3.2 are satisfied, so the structure considered in [24] is an almost product

structure on the total space T ∗M of the cotangent bundle.

Theorem 3.4. The natural diagonal almost product structure P on the total

space of the cotangent bundle of an n-dimensional connected Riemannian mani-

fold (M, g), with n > 2, is a locally product structure on T ∗M (i.e. P is integrable)

if and only if the base manifold is of constant sectional curvature c, and the coeffi-

cients b1, b2 are given by:

(3.7) b1 =
a1a

′
1 + c

a1 − 2ta′
1

, b2 =
a1a

′
2 − a2

2c

a1 + 2cta2
.

P r o o f. The almost product structure P on T ∗M is integrable if and only if the

vanishing condition for the Nijenhuis tensor field NP ,

NP (X, Y ) = [PX, PY ] − P [PX, Y ] − P [X, PY ] + P 2[X, Y ], ∀X, Y ∈ T 1
0 (T ∗M),

is satisfied.

Studying the components of NP with respect to the adapted frame on T ∗M ,

{∂i, δj}i,j=1,n, we first obtain

NP (∂i, ∂j) = [P
(1)
km(∂jPmi

(2) − ∂iPmj
(2) ) + Rim0

kml Pmi
(2) P

lj
(2)]∂

k.

Substituting the values (3.4), after some tensorial computations the above expres-

sion becomes

(3.8) a1(a
′

2 − b2)(δ
h
i pj − δh

j pi) − a2
2 Rimh

kij +a2b2(Rimh
kjl pi − Rimh

kil pj)g
0kg0l = 0.

We differentiate (3.8) with respect to ph. Since the curvature of the base manifold

does not depend on p, we take the value of this derivative at p = 0, and we obtain

(3.9) Rh
kij = c(δh

i gkj − δh
j gki),
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where

c =
a1(0)

a2
2(0)

(a′

2(0) − b2(0))

is a function depending on q1, . . . , qn only. Schur’s theorem implies that c must be

a constant when M is connected, of dimension n > 2.

Moreover, by virtue of (3.9), the relation (3.8) becomes

(3.10) [a1a
′

2 − a2
2c − b2(a1 + 2ta2c)](δ

h
i gkj − δh

j gki) = 0.

Solving (3.10) with respect to b2, we obtain the second relation in (3.7).

The Nijenhuis tensor field computed for both horizontal arguments is

NP (δi, δj) = (P
(1)
li ∂lP

(1)
hj − P

(1)
lj ∂lP

(1)
hi + Rim0

hij)∂
h,

which vanishes if and only if

[b1(2ta′

1 − a1) + a′

1a1 + c](ghjpi − ghipj) = 0,

namely, when b1 has the form in (3.7).

The mixed components of the Nijenhuis tensor field have the form

NP (δi, ∂
j) = −NP (∂j , δi) = (P

(1)
mi ∂mP hj

(2) + P hl
(2)∂

jP
(1)
li − P lh

(2)P
jm
(2) Rim0

lim)δh,

which after substituting (3.4) and (3.9) become

(a1a
′

2 + a2b1 − a2
2c + 2ta′

2b1)g
hjpi

+ (a2b1 + a1b2 + 2tb1b2)δ
j
i g

0h + (a′

1a2 + a1b2 + a2
2c + 2cta2b2)δ

h
i g0j

+ (a2b
′

1 + a′

1b2 + 3b1b2 + a1b
′

2 − a2b2c + 2tb′1b2 + 2tb1b
′

2)pig
0hg0j.

Taking (3.6) into account, the above expression takes the form

(a1 − 2a′
1t)b1 − a1a

′
1 − c

a2
1

ghjpi +
a1a

′
1 + c − (a1 − 2a′

1t)b1

a1(a1 + 2tb1)
δh
i g0j

+
(a1a

′
1 + c)b1 − (a1 − 2ta′

1)b
2
1

a2
1(a1 + 2tb1)

pig
0hg0j

and it vanishes if and only if b1 is expressed by the first relation in (3.7).

One can verify that all the components of the Nijenhuis tensor field vanish under

the same conditions, so the almost product structure P on T ∗M is integrable, i.e. P is

a locally product structure on T ∗M . �

Remark 3.5. If the coefficients involved in the definition of P have the values

presented in Remark 3.3, the relations (3.7) take the form u = cαβ2, so Theorem 3.4

implies the results stated in [24, Theorem 4.2].

943



4. Natural diagonal Riemannian almost product and almost

para-Hermitian structures on T ∗M

Authors like M. Anastasiei, C. Bejan, V. Cruceanu, H. Farran, A. Heydari, S. Ishi-

hara, I. Mihai, G. Mitric, C. Nicolau, V. Oproiu, L. Ornea, N. Papaghiuc, E. Peyghan,

K. Yano, and M. S. Zanoun considered almost product structures and almost para-

Hermitian structures (called also almost hyperbolic Hermitian structures) on the

total spaces of the tangent and cotangent bundles.

A Riemannian manifold (M, g), endowed with an almost product structure J sat-

isfying the relation

(4.1) g(JX, JY ) = εg(X, Y ), ∀X, Y ∈ T 1
0 (M),

is called a Riemannian almost product manifold if ε = 1, or an almost para-Hermitian

manifold (called also an almost hyperbolic Hermitian manifold) if ε = −1.

In the following we shall find the Riemannian almost product (locally product)

and the (almost) para-Hermitian cotangent bundles of natural diagonal lift type.

To this aim, we consider a natural diagonal lifted metric on the total space T ∗M

of the cotangent bundle, defined by

(4.2)















Gp(X
H , Y H) = c1(t)gπ(p)(X, Y ) + d1(t)p(X)p(Y ),

Gp(α
V , ωV ) = c2(t)g

−1
π(p)(α, ω) + d2(t)g

−1
π(p)(p, α)g−1

π(p)(p, ω),

Gp(X
H , αV ) = Gp(α

V , XH) = 0,

for every X, Y ∈ T 1
0 (M), α, ω ∈ T 0

1 (M), p ∈ T ∗M , where the coefficients c1, c2, d1,

d2 are smooth functions of the energy density.

The conditions for G to be nondegenerate are enssured if

c1c2 6= 0, (c1 + 2td1)(c2 + 2td2) 6= 0.

The metric G is positive definite if

c1 + 2td1 > 0, c2 + 2td2 > 0.

Using the adapted frame {∂i, δj}i,j=1,n on T ∗M , (4.2) becomes

(4.3)















G(δi, δj) = G
(1)
ij = c1(t)gij + d1(t)pipj,

G(∂i, ∂j) = Gij
(2) = c2(t)g

ij + d2(t)g
0ig0j,

G(∂i, δj) = G(δi, ∂
j) = 0,

where c1, c2, d1, d2 are smooth functions of the density energy on T ∗M .
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Next we shall prove the following characterization theorem:

Theorem 4.1. Let (M, g) be an n-dimensional connected Riemannian manifold,

with n > 2, and T ∗M the total space of its cotangent bundle. Let G be a natural

diagonal lifted metric on T ∗M , defined by (4.2), and P an almost product structure

on T ∗M , characterized by Theorem 3.2. Then (T ∗M, G, P ) is a Riemannian almost

product manifold, or an almost para-Hermitian manifold if and only if the following

proportionality relations between the coefficients hold:

(4.4)
c1

a1
= ε

c2

a2
= λ,

c1 + 2td1

a1 + 2tb1
= ε

c2 + 2td2

a2 + 2tb2
= λ + 2tµ,

where ε takes the corresponding values from the definition (4.1), and the proportion-

ality coefficients λ > 0 and λ + 2tµ > 0 are some functions depending on the energy

density t.

If, moreover, the relations stated in Theorem 3.4 are fulfilled, then (T ∗M, G, P )

is a Riemannian locally product manifold for ε = 1, or a para-Hermitian manifold

for ε = −1.

P r o o f. With respect to the adapted frame {∂i, δj}i,j=1,n, the relation (4.1)

becomes:

(4.5) G(Pδi, P δj) = εG(δi, δj), G(P∂i, P∂j) = εG(∂i, ∂j), G(P∂i, P δj) = 0,

and using (3.3) and (4.3) we have

(−εc1 + a2
1c2)gij + [−εd1 + a2

1d2 + 2b1c2(a1 + tb1) + 4tb1d2(a1 + tb1)]pipj = 0,

(a2
2c1 − εc2)g

ij + [−εd2 + a2
2d1 + 2b2c1(a2 + tb2) + 4tb2d1(a2 + tb2)]g

0ig0j = 0.

Taking into account Lemma 2.1, the coefficients which appear in the above ex-

pressions vanish. Due to the first relation in (3.6), we get by equalizing to zero the

coefficients of gij and gij the first relation in (4.4).

Moreover, multiplying by 2t the coefficients of pipj and g0ig0j and adding them

to the coefficients of gij and gij , respectively, we obtain

−ε(c1 + 2td1) + (a1 + 2tb1)
2(c2 + 2td2) = 0,(4.6)

(a2 + 2tb2)
2(c1 + 2tb1) − ε(c2 + 2td2) = 0.

Using the second relation in (3.6), (4.6) leads to the second relation in (4.4). �
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Remark 4.2. When the coefficients of the almost product structure P have the

expressions in Remark 3.3, and the coefficients of the metric G on T ∗M are c1 = a1,

d1 = b1, c2 = −a2 and d2 = −b2, Theorem 4.1 implies that T ∗M endowed with

the almost product structure and with the metric considered in [24] is an almost

para-Hermitian manifold.

5. Natural diagonal para-Kähler structures on T ∗M

In the sequel we shall study the cotangent bundles endowed with para-Kähler

structures of natural diagonal lift type. This class of almost para-Hermitian struc-

tures, studied for example in [1] and [15], is characterized by the closedness of the

associated 2-form Ω.

The 2-form Ω associated with the almost para-Hermitian structure (G, P ) of nat-

ural diagonal lift type on the total space of the cotangent bundle is given by the

relation

Ω(X, Y ) = G(X, PY ), ∀X, Y ∈ T 1
0 (T ∗M).

Studying the closedness of Ω, we may prove the following theorem:

Theorem 5.1. The almost para-Hermitian structure (G, P ) of natural diagonal

lift type on the total space T ∗M of the cotangent bundle of a Riemannian mani-

fold (M, g) is almost para-Kählerian if and only if

µ = λ′.

P r o o f. The 2-form Ω on T ∗M has the following expression with respect to the

local adapted frame {∂i, δj}i,j=1,...,n:

Ω(∂i, ∂j) = Ω(δi, δj) = 0, Ω(∂j , δi) = Gjh
(2)P

(1)
hi , Ω(δi, ∂

j) = G
(1)
ih P hj

(2).

By substituting (3.4) and (4.3) in the above expressions, and taking into account

the conditions for (T ∗M, G, P ) to be an almost para-Hermitian manifold (see Theo-

rem 4.1), we have

(5.1) Ω(δi, ∂
j) = −Ω(∂j, δi) = λδj

i + µpig
0j ,

which has the invariant expression

Ω(XH
p , αV

p ) = λα(X) + µp(X)g−1
π(p)(p, α)

for every X ∈ T 1
0 (M), α ∈ T 0

1 (M), p ∈ T ∗M .
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Taking into account the relation (5.1) we have that the 2-form Ω associated to the

natural diagonal para-Hermitian structure has the form

(5.2) Ω = (λδj
i + µpig

0j) dqi ∧ Dpj ,

where Dpj = dpj − Γ0
jh dqh is the absolute differential of pi.

Moreover, the differential of Ω will be

dΩ = (dλδj
i + dµg0jpi + µ dg0jpi + µg0j dpi) ∧ dqi

∧ Dpj − (λδj
i + µpig

0j) dqi ∧ dDpj .

Let us compute the expressions of dλ, dµ, dg0i and dDpi:

dλ = λ′g0hDph, dµ = µ′g0hDph, dg0i = ghiDph − Γi
j0 dqj ,

dDpi =
1

2
R0

ijh dqh ∧ dqj − Γh
ijDph ∧ dqj .

Then, by substituting these relations into the expression of dΩ, taking into account

the properties of the external product, the symmetry of gij and Γh
ij and the Bianchi

identities, we obtain

dΩ = (µ − λ′)pkgkhδi
jDph ∧ Dpi ∧ dqj ,

which, due to the antisymmetry of δi
jDpi ∧ dqj , may be written as

dΩ =
1

2
(µ − λ′)pk(gkhδj

i − gkjδh
i )Dph ∧ Dpj ∧ dqi,

and it vanishes if and only if µ = λ′. �

Using Theorems 3.2, 3.4 and 5.1, we immediately prove

Theorem 5.2. An almost para-Hermitian structure (G, P ) of natural diagonal

lift type on the total space T ∗M of the cotangent bundle of a Riemannian mani-

fold (M, g) is para-Kählerian if and only if P is a locally product structure (see

Theorem 3.4) and µ = λ′.

Remark 5.3. The almost para-Kählerian structures of natural diagonal lift type

on T ∗M depend on three essential coefficients a1, b1 and λ, while the natural diagonal

para-Kählerian structures on T ∗M depend on two essential coefficients a1 and λ,

which in both cases must satisfy the supplementary conditions a1 > 0, a1 +2tb1 > 0,

λ > 0, λ + 2tλ′ > 0, where b1 is given by (3.7).
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Remark 5.4. Taking into account Remark 4.2, we have that the constant λ

is equal to 1 and µ vanishes, so Theorem 5.1 leads to the statements in [24, Theo-

rem 3.1], namely, the structure constructed in [24] is almost para-Kählerian on T ∗M .

Moreover, taking into account Remark 3.5, it follows that the relations (14) in [24]

are fulfilled in the case when the constructed structure is para-Kähler.
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