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KYB ERNET IK A — VO LUME 4 8 ( 2 0 1 2 ) , NUMBER 5 , PAGES 9 0 7 – 9 2 3

FULL-NEWTON STEP INFEASIBLE INTERIOR-POINT
ALGORITHM FOR SDO PROBLEMS

Hossein Mansouri

In this paper we propose a primal-dual path-following interior-point algorithm for semidefi-
nite optimization. The algorithm constructs strictly feasible iterates for a sequence of pertur-
bations of the given problem and its dual problem. Each main step of the algorithm consists of
a feasibility step and several centering steps. At each iteration, we use only full-Newton step.
Moreover, we use a more natural feasibility step, which targets at the µ+-center. The itera-
tion bound of the algorithm coincides with the currently best iteration bound for semidefinite
optimization problems.

Keywords: semidefinite optimization, infeasible interior-point method, primal-dual
method, polynomial complexity, Newton-step, optimal solutions

Classification: 90C05, 90C51

1. INTRODUCTION

Semidefinite optimization (SDO) problems are convex optimization problems over the
intersection of an affine set and the cone of positive semidefinite matrices. SDO has
wide applications in continuous and combinatorial optimization [1, 20]. In the past
decade, SDO has become a popular research area in mathematical programming when
it became clear that the algorithm for linear optimization (LO) can often be extended
to the more general SDO case. Several interior-point methods (IPMs) designed for LO
have been successfully extended to SDO [7, 11, 12, 16, 21]. An interesting fact is that
almost all known polynomial-time variants of IPMs use the so-called central path as a
guideline to the optimal set, and some variants of Newton’s method follow the central
path approximately. For a comprehensive learning about IPMs, we refer to Roos et
al. [19] and Klerk [4]. Infeasible IPMs (IIPMs) start with an arbitrary positive point
and feasibility is reached as optimality is approached. The choice of the starting point
in IIPMs is crucial for the performance. Lustig [8] was the first to present IIPMs for
LO. Zhang [21] was the first to present a primal-dual IIPMs for SDO with polynomial
iteration complexity. In [18] an IIPM for LO was proposed by Roos and later this
algorithm extended to semidefinite optimization by Mansouri et al. [10, 11, 12, 13]. It
differs from the classical IIPMs [6], since the new method uses only full steps which
has the advantage that no line searches are needed. Our motivation for the use of
full-Newton steps is that, we use another definition for feasibility step and show that
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the complexity coincides with the best known complexity of IIPMs. In this paper, we
further consider full-Newton infeasible interior-point algorithm for SDO problems. The
main difference with the aforementioned algorithm is the way the search directions are
generated. In our algorithm, we change the definition of the feasibility step by replacing
equation

∆fX + P∆fSPT = (1− θ) µS−1 −X

instead of classical directions to calculate the search directions. A special feature of the
direction is that, if the iterate is strictly feasible for SDO, the full-Newton step targeting
to central path has local quadratic convergence property according to the proximity
measure. The complexity result shows that the full-Newton step IIPM for SDO based
on new directions enjoys the best-known iteration complexity for SDO.
This paper is organized as follows. First, we review some results which are due to [11],
and then, apply them to analyze the feasibility and the centering steps of our algorithm.
Then we present our algorithm. Each main step of the algorithm consists of a feasibility
step and several centering steps. Recall that in [11] the feasibility step targets at the
µ-center of the next pair of perturbed problems. Since the aim of each main iteration is
to get a good approximation of the µ+-center of the next pair of perturbed problems,
we take a more natural approach to let the feasibility step target at the µ+-center of the
next pair of perturbed problems. Finally, we give some concluding remarks.

NOTATIONS

Some notations used throughout the paper are as follows. The superscript T denotes
transpose. Rn, Rn

+ and Rn
++ denote the set of vectors with n components, the set

of nonnegative vector and the set of positive vectors, respectively. Rm×n is the space
of all m × n matrices. Sn, Sn

+ and Sn
++ denote the cone of symmetric, symmetric

positive semidefinite and symmetric positive definite n × n matrices, respectively. P
and D denote the feasible sets of primal and dual problems respectively. ri (C) denotes
the relative interior of a convex set C. I denotes n × n identity matrix. We use the
classical Löwner partial order � for symmetric matrices. So A � B (A � B) means
that A − B is positive semidefinite (positive definite). The sign ∼ denotes similarity
of two matrices. The matrix inner product is defined by A • B = Tr

(
AT B

)
. For any

symmetric positive definite matrix Q ∈ Sn
++, the expression Q

1
2 denotes the symmetric

square root of Q. For any x = (x1; x2; · · · ; xn) ∈ Rn, xmin = min (x1; x2; · · · ; xn)
and xmax = max (x1; x2; · · · ; xn). For any symmetric matrix G, λmin (G) (λmax (G))
denotes the minimal (maximal) eigenvalue of G. When λ is vector we denote the diagonal
matrix diag (λ) with entries λi by Λ. For any V ∈ Sn

++, we denote by λ (V ) the vector
of eigenvalues of V arranged in non-increasing order, that is, λmax (V ) = λ1 (V ) ≥
λ2 (V ) ≥ · · · ≥ λn (V ) = λmin (V ). The Frobenius and infinity matrix norm are given by
‖U‖2 :=

∑m
i=1

∑n
j=1 Uij = Tr

(
UT U

)
and ‖U‖∞ = max1≤i≤m

∑n
j=1 |uij | , respectively.

For any p× q matrix A, vec (A) denotes the pq-vector obtained by stacking the columns
of A. The Kronecker product of two matrices A and B is denoted by A ⊗ B (we refer
to [3] for a comprehensive treatment on Kronecker products and related topics). F∗
denotes the set of optimal solutions with zero duality gap, i. e.,

F∗ := {(X, y, S) ∈ P ×D : Tr (XS) = 0} .



Full-Newton step infeasible interior-point algorithm for SDO problems 909

2. PRELIMINARIES

We consider the semidefinite optimization (SDO) problem given in the following standard
form:

(P ) min Tr (CX)
s.t Tr (AiX) = bi, i = 1, 2, . . . ,m, X � 0,

and its dual:

(D) max bT y

s.t
∑m

i=1 yiAi + S = C, S � 0,

where each Ai ∈ Sn, b ∈ Rm and C ∈ Sn. Without loss of generality we assume that
the matrices Ai are linearly independent. As usual for infeasible interior-point methods
(IIPMs), we use the starting point as in [11] that one knows a positive scalar ζ such
that X∗ + S∗ � ζI for some optimal solution (X∗, y∗, S∗) of (P ) and (D) such that
Tr (X∗S∗) = 0 and the initial iterates are

(
X0, y0, S0

)
= ζ (I, 0, I), where I denotes

the identity matrix of size n×n. Using Tr
(
X0S0

)
= nζ2, the total number of iterations

in the algorithm of [11] is bounded above by

20 n log
max

{
nζ2,

∥∥r0
b

∥∥ ,
∥∥R0

c

∥∥}
ε

, (1)

where r0
b and R0

c are the initial values of the primal and dual residuals:(
r0
b

)
i

= bi −Ai •X0, i = 1, . . . , m, (2)

R0
c = C −

m∑
i=1

y0
i Ai − S0. (3)

Up to a constant factor, the iteration bound (1) was first obtained by Kojima et al. [5]
and Potra and Sheng [17], and it is still the best-known iteration bound for IIPMs.

To describe the aim of this article, we need to recall the main ideas underlying the
algorithm in [11]. For any ν with 0 < ν ≤ 1, we consider the perturbed problem (Pν),
defined by

(Pν)
min

{(
C − ν

(
C −

∑m
i=1 y0

i Ai − S0
))
•X :

Ai •X = bi − ν
(
bi −Ai •X0

)
, X � 0

}
and its dual problem (Dν), which is given by

(Dν)
max

{∑m
i=1

(
bi − ν

(
bi −Ai •X0

))
yi :

∑m
i=1 yiAi + S = C − ν

(
C −

∑m
i=1 y0

i Ai − S0
)
, S � 0

}
.
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Note that if ν = 1 then X = X0 yields a strictly feasible solution of (Pν), and (y, S) =
(y0, S0) a strictly feasible solution of (Dν). We conclude that if ν = 1 then (Pν) and
(Dν) are strictly feasible, which means that both perturbed problems then satisfy the
well-known interior-point condition (IPC) [19]. More generally one has the following
lemma [11, lemma 4.1 ].

Lemma 2.1. Let the original problems, (P ) and (D), be feasible. Then for each ν
satisfying 0 < ν ≤ 1 the perturbed problems (Pν) and (Dν) are strictly feasible.

Assuming that (P ) and (D) are feasible, it follows from Lemma 2.1 that the problems
(Pν) and (Dν) satisfy the IPC for each ν ∈ (0, 1]. Therefore, their central paths exist.
This means that the system

bi −Ai •X = ν
(
r0
b

)
i
, i = 1, 2, . . . ,m, X � 0 (4)

C −
m∑

i=1

yiAi − S = νR0
c , S � 0 (5)

XS = µI

has a unique solution, for every µ > 0. In the sequel this unique solution is de-
noted as (X(µ, ν), y(µ, ν), S(µ, ν)) for ν ∈ (0, 1). These are the µ-centers of the
perturbed problems (Pν) and (Dν). Note that since X0S0 = µ0I, X0 is the µ0-
center of the perturbed problem (P1) and (y0, S0) the µ0-center of (D1). In other
words, (X(µ0, 1), y(µ0, 1), S(µ0, 1)) = (X0, y0, S0). In the sequel we will always as-
sume µ = ν µ0, and we will accordingly denote (X(µ, ν), y(µ, ν), S(µ, ν)) simply as
(X(ν), y(ν), S(ν)).
We measure proximity of iterates (X, y, S) to the µ-center of the perturbed problems
(Pν) and (Dν) by the quantity δ (X, S; µ), which is defined as follows:

δ (X, S, µ) := δ (V ) :=
1
2

∥∥V −1 − V
∥∥ , where V :=

1
√

µ
D−1XD−1 =

1
√

µ
DSD. (6)

Here D = P
1
2 with

P := X
1
2

(
X

1
2 SX

1
2

)−1
2

X
1
2 = S

−1
2

(
S

1
2 XS

1
2

) 1
2

S
−1
2 , (7)

which is a symmetric nonsingular matrix. For more details see [14, 15].

Initially, we have X0 = S0 = ζI and µ0 = ζ2, where V = I and δ
(
X0, S0; µ0

)
= 0. In

the sequel, we assume that at the start of each iteration, δ
(
X0, S0; µ0

)
is smaller than

or equal to a (small) threshold τ > 0. So, this is certainly true at the start of the first
iteration.

3. AN ITERATION OF THE ALGORITHM

In this section we describe one iteration of our algorithm. As we established above, if
ν = 1 and µ = µ0, then X = X0 is the µ-center of the perturbed problem (Pν) and
(y, S) =

(
y0, S0

)
the µ-center of (Dν). These are our initial iterates. We measure
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proximity to the µ-center of the perturbed problems by the quantity δ (X, S; µ) as
defined in (6). Initially we thus have δ (X, S; µ) = 0. In what follows we assume that
at the start of each iteration, just before the feasibility step, δ (X, S; µ) is smaller than
or equal to a small threshold value τ > 0. So this is certainly true at the start of the the
first iteration. Suppose that for some ν ∈ (0, 1], we have X, y and S, which are strictly
feasible and satisfying the feasibility conditions (4) and (5) and such that

Tr (XS) = nµ, and δ (X, S; µ) ≤ τ, (8)

where µ = νζ2. Each main iteration consists of one so-called feasibility step, a µ-update,
and a few centering steps, respectively. First, we find new iterates Xf , yf and Sf that
satisfy equations (4) and (5), with ν replaced by ν+. As we will see, by taking θ small
enough, this can be realized by one feasibility step, as discussed subsequently. Therefore,
as a result of the feasibility step, we obtain iterates that are feasible for (Pν+) and (Dν+).
Then we reduce ν to ν+ = (1− θ) ν, with θ ∈ (0, 1), and apply a limited number of
centering steps with respect to the µ+-centers of (Pν+) and (Dν+). The centering steps
keep the iterates feasible for (Pν+) and (Dν+), their purpose is to get iterates X+, y+

and S+ such that Tr (X+S+) = nµ+, where µ+ = ν+ζ2 and δ (X+, S+; µ+) ≤ τ . This
process is repeated until the duality gap and the norms of residual vectors are less than
some prescribed accuracy parameter ε. Before describing the search directions used in
the feasibility step and the centering step, we give a more formal description of the
algorithm in Algorithm 1.

Algorithm 1 (Primal-dual Algorithm with full-Newton steps)

Input:
Accuracy parameter ε > 0;
barrier update parameter θ, 0 < θ < 1;
threshold parameter τ, 0 < τ ≤ 1√

2
.

begin
X := X0 � 0, S := S0 � 0, y := y0, X0S0 = µ0I, µ = µ0, ν = 1;
while max (Tr (XS) , ‖rb‖ , ‖Rc‖) ≥ ε do
begin

feasibility step:
(X, y, S) := (X, y, S) +

(
∆fX, ∆fy, ∆fS

)
;

µ-update:
µ := (1− θ)µ;

centering steps:
while δ (X, S, µ) ≥ τ do
begin

(X, y, S) := (X, y, S) + (∆X, ∆y, ∆S);
end

end
end
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In this paper, for the feasibility step, we use the search directions ∆fX, ∆fy and ∆fS

Tr
(
Ai∆fX

)
= θν

(
r0
b

)
i
, i = 1, . . . , m, (9)

m∑
i=1

∆fyiAi + ∆fS = θνR0
c , (10)

∆fX + P∆fSPT = (1− θ) µS−1 −X, (11)

where we used the Nesterov-Todd-‘trick’ to symmetrize ∆fX with P as defined in (7).
It is easy to see that if (X, y, S) is feasible for the perturbed problems (Pν) and (Dν),
then after the feasibility step the iterates satisfy the feasibility conditions for (Pν+)
and (Dν+), provided that they satisfy the positive semidfinite conditions. Assuming
that before the step δ (X, S; µ) ≤ τ holds, and by taking θ small enough, it can be
guaranteed that after the step, the iterates

Xf = X + ∆fX, (12)
yf = y + ∆fy,

Sf = S + ∆fS, (13)

are semidefinite and moreover δ
(
Xf , Sf ; µ+

)
≤ 1√

2
, where µ+ = (1− θ) µ. So, af-

ter the µ-update, the iterates are feasible for (Pν+) and (Dν+), and µ is such that
δ
(
Xf , Sf ; µ+

)
≤ 1√

2
.

Remark 3.1. For (11), we use the linearization of XfSf = (1− θ) µI, which means
that we are targeting at the µ+-center of (Pν+) and (Dν+). While in [11], the lineariza-
tion of XfSf = µI is used (targeting at the µ-center). As our aim is to calculate a
feasible solution to (Pν+) and (Dν+), which should also lie in the quadratic convergence
neighborhood to it’s µ+-center, the direction used here is more natural and intuitively
better.

In the centering steps, starting at iterates (X, y, S) =
(
Xf , yf , Sf

)
and targeting at

the µ-centers, the search directions ∆X, ∆y and ∆S are the usual primal-dual Newton
directions, (uniquely) defined by

Ai •∆X = 0, i = 1, 2, . . . , m,
m∑

i=1

∆yiAi + ∆S = 0, (14)

∆X + P∆SPT = µS−1 −X,

where matrix P is defined as in (7). Denoting the iterates after a centering step as
X+, y+ and S+, we recall the following from [4].

Lemma 3.2. If δ := δ (X, S; µ) ≤ 1, then the primal-dual Newton-step is feasible, i. e.
X+ and S+ are nonnegative, and Tr (X+S+) = nµ. Moreover, if δ = δ (X, S; µ) ≤ 1√

2
,

then δ = δ (X, S; µ) ≤ δ2.
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The centerting steps serve to get iterates that satisfy Tr (XS) = nµ+ and δ (X, S; µ+) ≤
τ , where τ is much smaller than 1√

2
. By using Lemma 3.2, the required number of

centering steps can easily be obtained. This goes as follows. After µ-update, we have
δ
(
Xf , Sf ; µ+

)
≤ 1√

2
, and hence after k centering steps, the iterates (X, y, S) satisfy

δ
(
X, S; µ+

)
≤
(

1√
2

)2k

.

Just as in [11] this implies that no more than

log2

(
log2

1
τ2

)
(15)

centering steps are needed.

4. AN ANALYSIS OF THE ALGORITHM

Let X, y and S denote the iterates at the start of an iteration with Tr (XS) = nµ and
δ (X, S; µ) ≤ τ . Recall that at the start of first iteration this is certainly true, because
Tr
(
X0S0

)
= nµ0 and δ

(
X0, S0; µ0

)
= 0.

Before dealing with the analysis of the algorithm we recall some lemmas which we use
several times in this paper.

Lemma 4.1. (Lemma A.1 in [4]) Let Q ∈ Sn
++, and let M ∈ Rn×n be skew-symmetric(

M = −MT
)
. One has det (Q + M) > 0. Moreover, if λi (Q + M) ∈ R, (i = 1, . . . , n),

then
0 < λmin (Q) ≤ λmin (Q + M) ≤ λmax (Q + M) ≤ λmax (Q) .

Lemma 4.2. (Lemma 1.2.4 in [2]) Let A, B ∈ Sn
+. Then we have following inequalities

λmin (A) λmax (B) ≤ λmin (A)Tr (B) ≤ Tr (AB) ≤ λmax (A)Tr (B) ≤ nλmax (A) λmax (B) .

Lemma 4.3. (Theorem A.4 in [4]) Let A ∈ Sn
++ and B ∈ Sn

++. Then all the eigenvalues
of AB are real and positive.

4.1. The effect of the feasibility step and the choice of θ

As we established in Section 3, the feasibility step generates new iterates Xf , yf and
Sf that satisfy the feasibility equations for (Pν+) and (Dν+). A crucial element in the
analysis is to show that after the feasibility step δ

(
Xf , Sf ; µ+

)
≤ 1√

2
, i. e., that the

new iterates are within the region where the Newton process targeting at the µ+-centers
of (Pν+) and (Dν+) is quadratically convergent. We define

Df
X :=

1
√

µ
D−1∆fXD−1, Df

S :=
1
√

µ
D∆fSD,

(
V f
)2

:=
1

µ+
D−1XfSfD, (16)
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with D as defined in Section 2. We can now rewrite (9),(10) and (11) as follows.

DAiD •Df
X =

1
√

µ
θν
(
r0
b

)
i
, i = 1, . . . , m,

m∑
i=1

∆yi√
µ

DAiD + Df
S =

1
√

µ
θνDR0

cD, (17)

Df
X + Df

S = (1− θ)V −1 − V.

From the third equation in (17) we obtain, by multiplying both side from the left by V ,

V Df
X + V Df

S = (1− θ)I − V 2. (18)

Using (6), (12), (13) and (16), we obtain

Xf = X + ∆fX =
√

µD
(
V + Df

X

)
D,

Sf = S + ∆fS =
√

µD−1
(
V + Df

S

)
D−1.

Therefore
XfSf = µD

(
V + Df

X

)(
V + Df

S

)
D−1.

The last matrix is similar to µ
(
V + Df

X

)(
V + Df

S

)
. Thus we have

XfSf ∼ µ
(
V + Df

X

)(
V + Df

S

)
.

To simplify the notation in the sequel we introduce

Df
XS :=

1
2

(
Df

XDf
S + Df

SDf
X

)
, (19)

and

M :=
(
Df

XV − V Df
S

)
+

1
2

(
Df

XDf
S −Df

SDf
X

)
. (20)

Note that Df
XS is symmetric and M is skew-symmetric. Now we may write, using (18),(
V + Df

X

)(
V + Df

S

)
= V 2 + V Df

S + Df
XV + Df

XDf
S

= (1− θ)I − V Df
X + Df

XV + Df
XDf

S .

By subtracting and adding 1
2Df

SDf
X to the last expression we get(

V + Df
X

)(
V + Df

S

)
= (1− θ)I +

1
2

(
Df

XDf
S + Df

SDf
X

)
+
(
Df

XV − V Df
X

)
+

1
2

(
Df

XDf
S −Df

SDf
X

)
= (1− θ)I + Df

XS + M.
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Using (19) and (20) we obtain

XfSf ∼ µ
(
(1− θ)I + Df

XS + M
)

. (21)

Lemma 4.4. Let X � 0 and S � 0. Then the iterates
(
Xf , yf , Sf

)
are strictly feasible

if
(1− θ)I + Df

XS � 0.

P r o o f . The proof is similar to the proof of Lemma 5.4 in [11], and is therefore

omitted. �

Corollary 4.5. (Corollary 5.5 in [11]) The iterates
(
Xf , yf , Sf

)
are certainly strictly

feasible if ∥∥∥Df
XS

∥∥∥
∞

< 1− θ.

Assuming
∥∥∥Df

XS

∥∥∥
∞

< 1−θ, which guarantees strict feasibility of the iterates
(
Xf , yf , Sf

)
,

we proceed by deriving an upper bound for δ
(
Xf , Sf ; µ+

)
. Recall from definition (6)

that

δ
(
Xf , Sf ; µ+

)
=

1
2

∥∥∥(V f
)−1 − V f

∥∥∥ , (22)

with
(
V f
)2 as defined in (16). In the sequel we denote δ

(
Xf , Sf ; µ+

)
by δ

(
V f
)
.

We proceed to find an upper bound for δ
(
V f
)

in terms of
∥∥∥Df

XS

∥∥∥. To this end we need

some technical results which give information on the eigenvalues and the norm of V f .

Lemma 4.6. One has

λmin

((
V f
)2) ≥ 1−

∥∥∥∥∥Df
XS

1− θ

∥∥∥∥∥
∞

.

P r o o f . The proof is similar to the proof of Lemma 5.7 in [11], and is therefore omitted.
�

Lemma 4.7. One has ∥∥∥I − (V f
)2∥∥∥ ≤ ∥∥∥∥∥Df

XS

1− θ

∥∥∥∥∥ .

P r o o f . Using (21), after division of both sides by µ+ = (1− θ) µ we get

(
V f
)2 ∼ µ

(
(1− θ)I + Df

XS + M
)

µ+
=

(1− θ)I + Df
XS + M

1− θ
.
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By using properties of the Frobenius norm we have

∥∥∥I − (V f
)2∥∥∥2

=
n∑

i=1

λi

(
(1− θ)I + Df

XS + M
)

1− θ
− 1

2

=
1

(1− θ)2

n∑
i=1

(
λi

(
(1− θ)I + Df

XS + M
)
− 1 + θ

)2

=
1

(1− θ)2

n∑
i=1

(
λi

(
Df

XS + M
))2

.

Since
(
λi

(
Df

XS + M
))2

= λi

((
Df

XS + M
)2
)

, for each i, we obtain

∥∥∥I − (V f
)2∥∥∥2

=
1

(1− θ)2
Tr
((

Df
XS + M

)2
)

. (23)

Using the skew-symmetry of M we obtain

Tr
((

Df
XS + M

)2
)

= Tr
((

Df
XS

)2

+ MDf
XS + Df

XSM −MMT

)
.

Since MDf
XS + Df

XSM is skew-symmetric we obtain

Tr
((

Df
XS + M

)2
)

= Tr
((

Df
XS

)2

−MMT

)
≤ Tr

((
Df

XS

)2
)

=
∥∥∥Df

XS

∥∥∥2

,

where the inequality follows since the matrix MMT is positive semidefinite. Substitution
in (23) gives ∥∥∥I − (V f

)2∥∥∥2

≤

∥∥∥∥∥Df
XS

1− θ

∥∥∥∥∥
2

.

This completes the proof. �

Lemma 4.8. Let
∥∥∥Df

XS

∥∥∥
∞

< 1− θ. Then one has

4δ
(
V f
)2 ≤

∥∥∥Df
XS

1−θ

∥∥∥2

1−
∥∥∥Df

XS

1−θ

∥∥∥
∞

.

P r o o f . The proof is similar to that of Lemma 5.9 in [11] and is omitted. �

Recall from Section 3 that we need to have δ
(
V f
)
≤ 1√

2
. By Lemma 4.8 it suffices for

this that ∥∥∥Df
XS

1−θ

∥∥∥2

1−
∥∥∥Df

XS

1−θ

∥∥∥
∞

≤ 2. (24)
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As we may easily verify that∥∥∥Df
XS

∥∥∥2

≤
(∥∥∥Df

X

∥∥∥∥∥∥Df
S

∥∥∥)2

≤ 1
4

(∥∥∥Df
X

∥∥∥2

+
∥∥∥Df

S

∥∥∥2
)2

(25)∥∥∥Df
XS

∥∥∥
∞

≤ 1
2

(∥∥∥Df
X

∥∥∥2

∞
+
∥∥∥Df

S

∥∥∥2

∞

)
≤ 1

2

(∥∥∥Df
X

∥∥∥2

+
∥∥∥Df

S

∥∥∥2
)

. (26)

Substituting (25) and (26) in (24) we obtain

1
4

(
‖Df

X‖2
+‖Df

S‖2

1−θ

)2

1− 1
2

(
‖Df

X‖2
+‖Df

S‖2

1−θ

) ≤ 2.

Considering 1
2

(
‖Df

X‖2
+‖Df

S‖2

1−θ

)
as a single term, and by some elementary calculation,

we obtain that (24) holds if ∥∥∥Df
X

∥∥∥2

+
∥∥∥Df

S

∥∥∥2

1− θ
≤ 1.464. (27)

The inequality (27) implies that after the feasibility step
(
Xf , yf , Sf

)
is strictly feasible

and lies in the quadratic convergence neighborhood with respect to the µ+-center of
(Pν+) and (Dν+).

4.2. An upper bound for
∥∥∥Df

X

∥∥∥2

+
∥∥∥Df

S

∥∥∥2

As became clear in (17), the system (9) – (11), which defines the search directions
∆fX, ∆fy and ∆fS, can be expressed in terms of scaled search directions Df

X and
Df

S as follows.

DAiD •Df
X =

1
√

µ
θν
(
r0
b

)
i
, i = 1, . . . , m,

m∑
i=1

∆yi√
µ

DAiD + Df
S =

1
√

µ
θνDR0

cD, (28)

Df
X + Df

S = (1− θ)V −1 − V.

We proceed to finding an upper bound for
∥∥∥Df

X

∥∥∥2

+
∥∥∥Df

S

∥∥∥2

. We define the linear space
L as follows:

L := {ξ ∈ Sn : DAiD • ξ = 0, i = 1, . . . , m} .

Using the linear space L, it is clear from the first equation in (28) that the affine space{
ξ ∈ Sn : DAiD • ξ =

1
√

µ
θν
(
r0
b

)
i
, i = 1, . . . , m

}
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equals Df
X +L. By the second equation in system (28), we have Df

S ∈
1√
µθνDR0

cD+L⊥.

Since L ∩ L⊥ = {0}, the spaces Df
X + L and Df

S + L⊥ meet in a unique matrix. This
matrix is denoted below by Q.

Lemma 4.9. Let Q be the (unique) matrix in the intersection of the affine spaces
DX + L and DS + L⊥. Then∥∥∥Df

X

∥∥∥2

+
∥∥∥Df

S

∥∥∥2

≤ ‖Q‖2 +
(
‖Q‖+

√
4 (1− θ)2 δ2 + θ2n

)2

.

P r o o f . The proof is similar to the proof of Lemma 5.6 in [18], and is therefore omitted.
�

From (27) we know that we want to have
∥∥∥Df

X

∥∥∥2

+
∥∥∥Df

S

∥∥∥2

≤ 1.464 (1− θ) because then

δ
(
V f
)
≤ 1√

2
. Due to Lemma 4.9 this will hold if ‖Q‖ satisfies

‖Q‖2 +
(
‖Q‖+

√
4 (1− θ)2 δ2 + θ2n

)2

≤ 1.464 (1− θ) . (29)

Before doing this as we mentioned in Section 2 we choose the initial iterates
(
X0, y0, S0

)
as follows:

X0 = S0 = ζI, y0 = 0, µ0 = ζ2, (30)

where ζ > 0 is such that

X∗ + S∗ � ζ I, (31)

for some (X∗, y∗, S∗) ∈ F∗. For the moment, let us write

(rb)i = θν
(
r0
b

)
i
, i = 1, 2, . . . , m, Rc = θνR0

c ,

and let rb be the vector ((rb)1 ; (rb)2 ; . . . ; (rb)m). For any two matrices E (m× n) and
F (p× q) the Kronecker product E ⊗ F is the mp× nq block matrix

E ⊗ F =

E11F · · · E1nF
...

. . .
...

Em1F · · · EmnF

 .

We recall from [3, 9] some properties of Kronecker product and the operator vec (·) that
are useful for our purpose. These properties are

(a) (E ⊗ F )T = ET ⊗ FT .

(b) If E and F are square and nonsingular, then

(E ⊗ F )−1 = E−1 ⊗ F−1.
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(c) For any E (m× n) , F (n× r) and H (r × s), we have

vec (EHF ) =
(
FT ⊗ E

)
vec (H) .

By using these properties and the definition of the inner product of two matrices, the
matrix Q introduced in Lemma 4.9 is the solution of the following system:

vec (Ai)
T (D ⊗D)vec (Q) = 1√

µ (rb)i , i = 1, . . . , m,∑m
i=1

ξi√
µ (D ⊗D)vec (Ai) + vec (Q) = 1√

µ (D ⊗D)vec (Rc) .
(32)

Let AT = [vec (A1) vec (A2) . . . vec (Am)] and ξ = (ξ1; ξ2; . . . ; ξm). One may
easily verify that we can rewrite the system (32) as follows:

A (D ⊗D)vec (Q) = 1√
µrb,

(D ⊗D)AT ξ√
µ + vec (Q) = 1√

µ (D ⊗D)vec (Rc) .
(33)

Lemma 4.10. (Lemma 5.12 in [11]) With
(
X0, y0, S0

)
as defined in (30) and (31), we

have

‖Q‖ ≤ θ
√

ν Tr (P 2 + P−2). (34)

Lemma 4.11. (Lemma 5.13 in [11]) With
(
X0, y0, S0

)
as defined in (30) and (31), we

have

‖Q‖ ≤ θ

ζ λmin (V )
Tr (X + S) . (35)

4.3. Some bounds for Tr (X + S) and λmin (V ). The choice of τ and α

Let X be feasible for (Pν) and (y, S) for (Dν). In the same way as in [11], we can rewrite
δ (V ) in (6) as follows:

4δ (V )2 =
∥∥V − V −1

∥∥2
=

n∑
i=1

(
λi (V )− 1

λi (V )

)2

. (36)

Using this one easily derives the following result, which we state without further proof.

Lemma 4.12. (Cf. Lemma II.60 in [19]) Let δ = δ (V ) be given by (36). Then

1
ρ (δ)

≤ λi (V ) ≤ ρ (δ) , (37)

where

ρ (δ) := δ +
√

1 + δ2. (38)
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Lemma 4.13. (Lemma 5.15 in [11]) Let X and (y, S) be feasible for the perturbed
problems (Pν) and (Dν) respectively and let

(
X0, y0, S0

)
and (X∗, y∗, S∗) ∈ F∗ be as

defined in (30) and (31). Then we have

νζTr (X + S) ≤ S •X + νnζ2.

Lemma 4.14. (Lemma 5.16 in [11]) Using the same notations as in Lemma 4.13, one
has

Tr (X + S) ≤
(
ρ (δ)2 + 1

)
nζ, (39)

where ρ (δ) as defined in (38).

By substituting (37) and (39) into (35) we get

‖Q‖ ≤ nθρ (δ)
(
1 + ρ (δ)2

)
.

At this stage we choose

τ =
1
8
. (40)

Since δ ≤ τ = 1
8 and ρ (δ) is monotonically increasing in δ, we have

‖Q‖ ≤ nθρ (δ)
(
1 + ρ (δ)2

)
≤ nθρ

(
1
8

)(
1 + ρ

(
1
8

)2
)

= 2.586 n θ. (41)

By substituting (37) and (41) into (29), we obtain

‖Q‖2 +
(
‖Q‖+

√
4 (1− θ)2 δ2 + θ2n

)2

≤ (2.586 n θ)2

+
(

2.586 n θ +
√

4 (1− θ)2 δ2 + θ2n

)2

. (42)

We have found that δ
(
vf
)
≤ 1√

2
certainly holds if the inequality (29) is satisfied. Then

by (42), inequality (29) holds if

(2.586 n θ)2 +
(

2.586 n θ +
√

4 (1− θ)2 δ2 + θ2n

)2

≤ 1.464 (1− θ) .

Obviously, the left-hand side of the above inequality is increasing in δ, due to the defi-
nition ρ (δ) = δ +

√
1 + δ2. Using this one may easily verify that if τ is chosen as in (40)

and

θ =
1
4n

, (43)

then the above inequality is satisfied for all n ≥ 2. Then, according to (15), with
τ as given, after the feasibility step at most 3 centering steps suffices to get iterates
(X+, y+, S+) that satisfy δ (X+, S+; µ+) ≤ τ .
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5. COMPLEXITY ANALYSIS

In the previous sections we have found that if at the start of an iteration the iterates
satisfy δ (X, S; µ) ≤ τ , with τ as defined in (40), then after the feasibility step, with θ
as defined in (43), the iterates satisfy δ

(
Xf , Sf ; µ

)
≤ 1√

2
.

According to (15), at most 3 centering steps then suffice to get iterates (X+, y+, S+)
that satisfy δ (X+, S+; µ+) ≤ τ again. So each main iteration consists of at most 4
so-called inner iterations, in each of which we need to compute a search direction (for
either a feasibility step or a centering step). It has become a custom to measure the
complexity of an IPM by the required number of inner iterations. In each main iteration
both the duality gap and the norms of the residuals are reduced by the factor 1 − θ.
Hence, Tr

(
X0S0

)
= nζ2, the total number of main iterations is bounded above by

1
θ

log
max

{
nζ2,

∥∥r0
b

∥∥ ,
∥∥R0

c

∥∥}
ε

.

Due to (43) we may take

θ =
1
4n

.

Hence the total number of inner iterations is bounded above by

16 n log
max

{
nζ2,

∥∥r0
b

∥∥ ,
∥∥R0

c

∥∥}
ε

.

Thus we may state without further proof the main result of the paper.

Theorem 5.1. If (P ) and (D) have optimal solutions (X∗, y∗, S∗) ∈ F∗ such that
X∗ + S∗ � ζI, then after at most

16 n log
max

{
nζ2,

∥∥r0
b

∥∥ ,
∥∥R0

c

∥∥}
ε

iterations the algorithm finds an ε-solution of (P ) and (D).

Remark 5.2. The above iteration bound is derived under the assumption that there
exists some optimal solutions of (P ) and (D) with (X∗, y∗, S∗) ∈ F∗ such that X∗+S∗ �
ζI. One might ask what happens if this is not satisfied. In that case, during the course
of the algorithm it may happen that after some main steps the proximity measure δ
(after the feasibility step) exceeds 1√

2
, because otherwise there is no reason why the

algorithm would not generate an ε-solution. So if this happens it tell us that either the
problem (P ) and (D) do not have optimal solutions (with zero duality gap) or the value
of ζ has been too small. In the latter case one might run the algorithm once more with
a larger ζ.
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6. CONCLUDING REMARKS

We presented a new IIPM for SDO; each main iteration consists of a feasibility step and
three centering steps. Our new feasibility step is more natural, as it targets at µ+-center,
which results a better iteration bound in compare with [11]. The ideas underling this
article can be used to extend the algorithm to second-order cone optimization and also
to the symmetric cone optimization.
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