
Kybernetika

Yue Ge; Minghao Chen; Hiroaki Ishii
Chance constrained bottleneck transportation problem with preference of routes

Kybernetika, Vol. 48 (2012), No. 5, 958--967

Persistent URL: http://dml.cz/dmlcz/143092

Terms of use:
© Institute of Information Theory and Automation AS CR, 2012

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/143092
http://project.dml.cz


KYB ERNET IK A — VO LUME 4 8 ( 2 0 1 2 ) , NUMBER 5 , PAGES 9 5 8 – 9 6 7

CHANCE CONSTRAINED BOTTLENECK
TRANSPORTATION PROBLEM
WITH PREFERENCE OF ROUTES

Yue Ge, Minghao Chen and Hiroaki Ishii

This paper considers a variant of the bottleneck transportation problem. For each supply-
demand point pair, the transportation time is an independent random variable. Preference
of each route is attached. Our model has two criteria, namely: minimize the transportation
time target subject to a chance constraint and maximize the minimal preference among the
used routes. Since usually a transportation pattern optimizing two objectives simultaneously
does not exist, we define non-domination in this setting and propose an efficient algorithm to
find some non-dominated transportation patterns. We then show the time complexity of the
proposed algorithm. Finally, a numerical example is presented to illustrate how our algorithm
works.

Keywords: bottleneck transportation, random transportation time, chance constraint,
preference of routes, non-domination

Classification: 90C35, 90C15, 90C70, 68Q25

1. INTRODUCTION

The classical transportation problem is defined by minimization of variable transporta-
tion costs while meeting a set of demands from a set of available supplies. It is also known
as the cost minimizing transportation problem, which has been extensively studied in
the literature and several algorithms [4, 6, 7, 12, 14, 17] are available to solve it. One
well studied variant of the classical transportation problem is known as the bottleneck
transportation problem, which determines a single bottleneck for the transportation sys-
tem by minimizing the maximum time for transport of all goods. It is also known as
the time minimizing transportation problem. Similarly, many efficient algorithms have
been proposed by Garfinkel and Rao [8], Hammer [11], Russell et al. [16], Srinivasan and
Thompson [18] and Szwarc [19] for solving it. As for stochastic programming, the basic
properties and algorithms [15], the stability and robustness [3] and the chance constraint
condition [13] are well studied. Recently, Adeyefa and Luhandjulawe [1] presented the
main principle of multiobjective stochastic linear programming. Stochastic versions of
bottleneck transportation problem are considered [9, 10]. Ge and Ishii [9] proposed a
stochastic bottleneck transportation problem with fuzzy supply and demand. Geetha
and Nair [10] presented a single criterion bottleneck transportation problem with ran-
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dom transportation cost. Besides, Chen et al. [5] studied a fuzzy transportation problem
with preference of routes.

The model considered in this paper is an extension of these previous models. We
extend the bottleneck transportation problem by considering randomness of transporta-
tion time and preference of route. Randomness means that the transportation time may
change according to many factors. The preference of route reflects the degree of satis-
faction with respect to the chosen route. So two criteria are taken into account. One is
to minimize the transportation time target subject to a chance constraint. The other is
to maximize the minimal preference among the used routes. But usually a transporta-
tion pattern optimizing two objectives simultaneously does not exist. So we seek some
non-dominated transportation patterns.

The rest of this paper is organized as follows. Our problem is formulated in Section 2,
and then in Section 3 we present an efficient algorithm to find some non-dominated
transportation patterns. Section 4 shows how our algorithm works using a numerical
example. Finally, Section 5 concludes this paper and discusses further research problems.

2. PROBLEM FORMULATION

In this paper, we consider the following bi-criteria bottleneck transportation problem
with randomness of transportation time and preference of route.

(C1) There exist m supply points {S1, . . . , Sm} and n demand points {T1, . . . , Tn}. The
total upper limit provided from each supply point Si is ai and the total lower limit
to each demand point Tj is bj . Further, we assume that these ai, bj are positive
integers and

∑m
i=1 ai ≥

∑n
j=1 bj .

(C2) Let (i, j) denote the route from supply point Si to demand point Tj , i = 1, . . . ,m,
j = 1, . . . , n. Preference of route is attached and it is assumed to be measured by
a real number µij between 0 and 1. This number reflects the degree of satisfaction
with respect to the chosen route. The value µij = 1 corresponds to complete sat-
isfaction, while µij = 0 corresponds to complete dissatisfaction. For intermediate
numbers, a higher value corresponds to a higher degree of satisfaction.

(C3) For each route (i, j), the transportation time tij is an independent random variable
according to a normal distribution N(mij , σ

2
ij) with mean mij and variance σ2

ij .
We denote the transportation quantity using the route (i, j) by xij and assume
that these xij are nonnegative decision variables. The following chance constraint
is attached:

Pr{tij ≤ f} ≥ α, (i, j)|xij > 0 (1)

where α > 0.5 and f is also a decision variable denoting the target of bottleneck
transportation time to be minimized.

(C4) We consider two criteria: one is to maximize the minimal preference among the
used routes and the other is to minimize f .
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Under the above setting, our chance constrained bottleneck transportation problem
with preference of routes can be formulated as follows:

TP : minimize f

maximize min
i,j

{µij |xij > 0}

subject to Pr{tij ≤ f} ≥ α, (i, j)|xij > 0, i = 1, . . . ,m, j = 1, . . . , n
n∑

j=1

xij ≤ ai, i = 1, . . . ,m

m∑
i=1

xij ≥ bj , j = 1, . . . , n

xij : nonnegative, i = 1, . . . ,m, j = 1, . . . , n.

In order to solve problem TP, first we introduce the following equivalent parametric
programming formulations.

The chance constraint (1) reduces to:

F

(
f −mij

σij

)
≥ α, (i, j)|xij > 0

where F (·) is the cumulative distribution function of the standard normal distribution
N(0, 1). That is,

(1) ⇐⇒ f −mij

σij
≥ Kα, (i, j)|xij > 0

⇐⇒ f ≥ mij + Kασij , (i, j)|xij > 0

where Kα = F−1(α).
Since f should be minimized, then problem TP reduces to:

P : minimize max
i,j

{mij + Kασij |xij > 0}

maximize min
i,j

{µij |xij > 0}

subject to
n∑

j=1

xij ≤ ai, i = 1, . . . ,m

m∑
i=1

xij ≥ bj , j = 1, . . . , n

xij : nonnegative, i = 1, . . . ,m, j = 1, . . . , n.

Next, we define the bi-objective vector v(x) of a transportation pattern x = (xij)
feasible for P as

v(x) = (v(x)1, v(x)2) =
(
max

i,j
{mij + Kασij |xij > 0},min

i,j
{µij |xij > 0}

)
.

Generally, a transportation pattern optimizing two objectives simultaneously does not
exist. Therefore, we seek some non-dominated transportation patterns, the definition of
which is given as follows.
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Definition 2.1. Let xa, xb be two transportation patterns that are feasible for P. Then,
we say that xa dominates xb, if v(xa)1 ≤ v(xb)1, v(xa)2 ≥ v(xb)2 and (v(xa)1, v(xa)2) 6=
(v(xb)1, v(xb)2). If there exists no transportation pattern dominating x, x is called a
non-dominated transportation pattern.

3. SOLUTION PROCEDURE

Sorting µij , i = 1, . . . ,m, j = 1, . . . , n, and let the result be

0 < µ1 < . . . < µg ≤ 1

where g is the number of different values of them.
Compute mij + Kασij , i = 1, . . . ,m, j = 1, . . . , n, and arrange these values in

ascending order. Let the result be

c1 < . . . < cl

where l is the number of different values of them. Let C
4
= (mij + Kασij)m×n.

For u = 1, . . . , g, k = 1, . . . , l, set

cu,k
ij =

{
0 if µij ≥ µu, mij + Kασij ≤ ck

M otherwise , i = 1, . . . ,m, j = 1, . . . , n,

where M is a sufficiently large value.
For u = 1, . . . , g, k = 1, . . . , l, denote the cost minimizing transportation problem

with the above defined cost values as Pk
u:

Pk
u : minimize

m∑
i=1

n∑
j=1

cu,k
ij xij

subject to
n∑

j=1

xij ≤ ai, i = 1, . . . ,m

m∑
i=1

xij ≥ bj , j = 1, . . . , n

xij : nonnegative, i = 1, . . . ,m, j = 1, . . . , n.

For fixed u ∈ {1, . . . , g} and k ∈ {1, . . . , l}, note that Pk
u is a restricted transportation

problem, therefore it is not always have a feasible solution with optimal value 0. If
it exists a feasible solution, then it is feasible only using the route (i, j) with µij ≥
µu, mij + Kασij ≤ ck.

Denote

S(u) = {(i, j)|µij = µu, i = 1, . . . ,m, j = 1, . . . , n}, u = 1, . . . , g

T (k) = {(i, j)|mij + Kασij = ck, i = 1, . . . ,m, j = 1, . . . , n}, k = 1, . . . , l

p = max

{
t
∣∣ g∑

r=t

|S(r)| ≥ n

}
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q = min

{
t
∣∣ t∑

r=1

|T (r)| ≥ n

}
.

It is obvious that Pk
u is infeasible when u ∈ {p + 1, . . . , g} or k ∈ {1, . . . , q − 1}.

For each u ∈ {1, . . . , p}, we then give the algorithm to find the smallest k ∈ {q, . . . , l}
such that Pk

u is feasible. If such k exists, denote it by ku. Otherwise, see the following
Remark 3.1.

Remark 3.1. If exists u0 ∈ {1, . . . , p}, such that Pk
u0

is infeasible for any k ∈ {q, . . . , l},
then Pk

u, u = u0 + 1, . . . , p are also infeasible for any k ∈ {q, . . . , l}.

For each u ∈ {1, . . . , p}, we need to find the smallest ku such that Pku
u is feasible.

The smallest ku corresponds to the biggest cku , which is the first component of the
bi-objective vector (cku , µu). The main idea to find the smallest ku such that Pku

u is
feasible is based on a binary method, which is given as follows in detail.

Algorithm (To find the smallest k such that Pk
1 is feasible)

Step 1 Set L = q and check whether PL
1 is feasible or not. If feasible, terminate after

setting k1 = L. Otherwise, set U = l and check whether PU
1 is feasible or not.

If feasible, go to Step 2. Otherwise, terminate due to infeasibility.

Step 2 When U −L > 1, set K = b(L+U)/2c and check whether PK
1 is feasible or not,

where b·c denotes the greatest integer not greater than ·. If feasible, set U = K
and repeat Step 2. Otherwise, set L = K and repeat Step 2. When U −L = 1,
go to Step 3.

Step 3 If PL
1 is feasible, set k1 = L. Otherwise, set k1 = U .

For Pk
u, u = 2, . . . , p, the algorithm is very similar to that of Pk

1 ; the only difference
is we first set L = ku−1.

Denote A = {(u, ku)|ku exists, u = 1, . . . , p}. If there exists (u1, ku1) and (u2, ku2)
∈ A such that u1 6= u2 but ku1 = ku2 , then delete (min{u1, u2}, kmin{u1,u2}) from A.
Let obtained set after deletion be B. Note that all elements in B have different first
components and also different second components.

For all (u, ku) ∈ B, solve problems Pku
u ’s, and let denote the optimal transportation

patterns by xku
u ’s. Then we find a set of some non-dominated transportation patterns

and that of the corresponding bi-objective vectors of problem P, denoted by NDT and
NDV respectively.

The validity of our solution procedure is shown in the following proposition.

Proposition 3.2. The solution procedure for P is valid.

P r o o f . For each u, the algorithm to find the smallest k such that Pk
u is feasible is a

binary feasibility checking method. For each (u, ku) ∈ A, Pku
u is feasible, conversely, for

each feasible Pk
u, we have (u, k) ∈ A. For each (u, ku) ∈ B, an optimal transportation
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i\j 1 2 3 ai

1 N(3, 0.52) N(7, 0.42) N(4, 1.22) 50
2 N(6, 0.82) N(5, 0.32) N(1, 0.72) 85
3 N(7, 0.32) N(4, 0.62) N(8, 1.02) 30
bj 60 35 55 –

Tab. 1 The values of ai, bj and the distribution of tij .

pattern xku
u of problem Pku

u is a non-dominated transportation pattern of problem P and
(cku , µu) is the corresponding bi-objective vector, that is, NDT = {xku

u |(u, ku) ∈ B},
NDV = {(cku , µu)|(u, ku) ∈ B}. Therefore, our solution procedure is valid. �

Next we show the time complexity of our solution procedure for P.

Theorem 3.3. The time complexity of our solution procedure for P is

O(mn(m + n)3 log(m + n)).

P r o o f . Note that g = l = O(mn), so sorting µij and mij + Kασij both takes at
most O(mn log(mn)) operations. For each u, the time complexity of the algorithm to
find the smallest k ∈ {q, . . . , l} such that Pk

u is feasible follows from the fact that the
binary search over l values has time complexity O(log l), and each feasibility check-
ing takes O(mn) because at most O(mn) elements should be checked. So for each u,
checking totally needs O(mn log(mn)) computational times. The algorithm is executed
at most O(g) times to find the smallest k ∈ {q, . . . , l} such that Pk

u is feasible. So
checking totally needs O((mn)2 log(mn)). Solving each feasible classical transportation
problem takes at most O((m + n)3 log(m + n)) (see [2]) and totally at most O(mn)
classical transportation problems should be solved, therefore this part takes at most
O(mn(m + n)3 log(m + n)) computational times. Consequently, the time complexity is
O(max{(mn)2 log(mn),mn(m + n)3 log(m + n)}) = O(mn(m + n)3 log(m + n)). �

4. NUMERICAL EXAMPLE

Consider problem TP with α = 0.9987, tij ∼ N(mij , σ
2
ij) and the values of ai, bj are

given in Table 1. The preference of routes are given in the following matrix:

U =

 0.5 0.8 0.4
0.75 0.6 0.7
0.85 1 0.6

 .
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Our problem TP reduces to problem P:

P : minimize max
i,j

{mij + 3.0σij |xij > 0}

maximize min
i,j

{µij |xij > 0}

subject to
3∑

j=1

xij ≤ ai, i = 1, 2, 3

3∑
i=1

xij ≥ bj , j = 1, 2, 3

xij : nonnegative, i, j = 1, 2, 3.

Sorting µij , i, j = 1, 2, 3, we obtain

0 < µ1 = 0.4 < µ2 = 0.5 < µ3 = 0.6 < µ4 = 0.7 < µ5 = 0.75

< µ6 = 0.8 < µ7 = 0.85 < µ8 = 1.

Compute mij + 3.0σij , i, j = 1, 2, 3, we obtain

C =

 4.5 8.2 7.6
8.4 5.9 3.1
7.0 5.8 11.0

 .

Arrange these values in ascending order, that is,

c1 = 3.1 < c2 = 4.5 < c3 = 5.8 < c4 = 5.9 < c5 = 7.6 < c6 = 7.9

< c7 = 8.2 < c8 = 8.4 < c9 = 11.0.

For u = 1, . . . , 8, k = 1, . . . , 9, set

cu,k
ij =

{
0 if µij ≥ µu, mij + 3.0σij ≤ ck

M otherwise , i, j = 1, 2, 3,

where M is a sufficiently large value.
It is obvious that p = 6, q = 3.
For u = 1, . . . , 6, k = 3, . . . , 9, problem Pk

u has the following form:

Pk
u : minimize

3∑
i=1

3∑
j=1

cu,k
ij xij

subject to
3∑

j=1

xij ≤ ai, i = 1, 2, 3

3∑
i=1

xij ≥ bj , j = 1, 2, 3

xij : nonnegative, i, j = 1, 2, 3.
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Next we give the solution procedure for problem P.

Find the smallest k ∈ {3, . . . , 9} such that Pk
1 is feasible:

Step 1. Set L = 3 and P3
1 is infeasible. Set U = 9 and P9

1 is feasible. Go to Step 2.
Step 2. U − L = 6 6= 1. Set K = 6 and P6

1 is feasible. Set U = 6, repeat Step 2.
Step 2. U − L = 3 6= 1. Set K = 4 and P4

1 is infeasible. Set L = 4, repeat Step 2.
Step 2. U − L = 2 6= 1. Set K = 5 and P5

1 is infeasible. Set L = 5, repeat Step 2.
Step 2. U − L = 1, so go to Step 3.
Step 3. P5

1 is infeasible, so set k1 = 6.
Find the smallest k ∈ {6, . . . , 9} such that Pk

2 is feasible:
Step 1. Set L = 6 and P6

2 is feasible. Set k2 = 6.
Find the smallest k ∈ {6, . . . , 9} such that Pk

3 is feasible:
Step 1. Set L = 6 and P6

3 is infeasible. Set U = 9 and P9
3 is feasible. Go to Step 2.

Step 2. U − L = 3 6= 1. Set K = 7 and P7
3 is infeasible. Set L = 7, repeat Step 2.

Step 2. U − L = 2 6= 1. Set K = 8 and P8
3 is feasible. Set U = 8, repeat Step 2.

Step 2. U − L = 1, so go to Step 3.
Step 3. P7

3 is infeasible, so set k3 = 8.
Find the smallest k ∈ {8, 9} such that Pk

4 is feasible:
Step 1. Set L = 8 and P8

4 is feasible. Set k4 = 8.
Find the smallest k ∈ {8, 9} such that Pk

5 is feasible:
Step 1. Set L = 8 and P8

5 is infeasible. Set U = 9 and P9
5 is infeasible. Therefore, there

exists no k ∈ {8, 9} such that Pk
5 is feasible. From Remark 3.1, such a case also holds

for Pk
6 .

Therefore B = {(2, 6), (4, 8)}. Solve P6
2 and P8

4, we obtain the optimal transportation
patterns x6

2 and x8
4, respectively:

x6
2 : x11 = 50, x22 = 15, x23 = 55, x31 = 10, x32 = 20, other xij = 0,

x8
4 : x12 = 35, x21 = 30, x23 = 55, x31 = 30, other xij = 0,

which are the non-dominated transportation patterns of problem P, and the correspond-
ing bi-objective vectors are (7.9, 0.5) and (8.4, 0.7), respectively. That is,

NDT = {x6
2,x

8
4},

NDV = {(7.9, 0.5), (8.4, 0.7)}.

5. CONCLUSION

In this paper, we have considered a bi-criteria chance constrained bottleneck trans-
portation problem with preference of routes and developed an algorithm to find some
non-dominated transportation patterns. Further, we have shown the validity and time
complexity of the algorithm. Besides, our algorithm is illustrated using a numerical
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example. As a further research problem, we should consider the flexibility of supply and
demand quantity, which is the case that the total quantity from supplies is less than
that to demand customers. This case makes the problem three criteria one and we are
now attacking this case. Additionally, there remain many other variants of bottleneck
transportation problem to be considered and solved.

(Received August 30, 2011)
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