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MOMENT ESTIMATION METHODS FOR STATIONARY
SPATIAL COX PROCESSES – A COMPARISON

Jiř́ı Dvořák and Michaela Prokešová

In the present paper we consider the problem of fitting parametric spatial Cox point pro-
cess models. We concentrate on the moment estimation methods based on the second order
characteristics of the point process in question. These methods represent a simulation-free
faster-to-compute alternative to the computationally intense maximum likelihood estimation.
We give an overview of the available methods, discuss their properties and applicability. Fur-
ther we present results of a simulation study in which performance of these estimating methods
was compared for planar point processes with different types and strength of clustering and
inter-point interactions.
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1. INTRODUCTION

Estimation of parametric models for spatial point processes has been a very active
research area in the last few years. Motivated by the need of analyzing always larger and
more complicated data sets in reasonably short time, several simulation-free estimation
methods based on composite likelihood and/or estimating equations have been deve-
loped as alternatives to the computationally more demanding maximum likelihood and
Bayesian methods, see [21] for a recent overview.

In the present paper we will focus on Cox point processes (sometimes also called dou-
bly stochastic point processes in the literature) ([4, 17]). Cox process is the preferred
point process model when we need to analyze clustered point patterns. It is able to
model clustering of different strength on different scales as well as inhomogeneity de-
pendent on spatial covariates. As such it is used in a large spectrum of applications e. g.
in biology, ecology and epidemiology (see [14] for examples). An important property
of the Cox point process (from the statistical point of view) is the fact that its likeli-
hood is not available in a closed or computationally tractable form whereas the product
densities (i. e. densities of the moment measures) may be tractable. The consequence
is that for performing the (approximate) maximum likelihood estimation computation-
ally demanding Markov chain Monte Carlo simulation methods must be developed for
each particular application (see [20, Chapter 10] for further details). Therefore several
alternative simulation-free estimation methods for the stationary spatial Cox processes
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were proposed in the past few years ([8, Chapter 6], [10, 18, 23]). All of them can be
generalized to two-step estimation procedures applicable also to estimation of nonsta-
tionary Cox processes but in this paper we will consider only the original versions of the
estimators for the stationary case.

All of the introduced estimation methods are based on the second order product den-
sity of the point process (or equivalent characteristics derived from it) and do not use any
information about the moment measures of order higher than two. It follows that the
resulting estimators are consistent but inefficient. Since they were introduced indepen-
dently there exists no comparison of their performance. Therefore we have conducted a
simulation study to compare the performance of the introduced methods in estimation
of a parametric stationary Cox process observed on a medium sized observation window
in R2. The comparison by means of asymptotic variance of the estimators is not feasible
since the formulas for asymptotic variance contain integrals with respect to the third and
fourth order moment measures of the point process we want to estimate. These higher
order moment measures of course differ for different Cox process models we estimate,
but more importantly they are usually too complicated to enable a direct comparison.

The paper is organized as follows. We give the necessary notation and background
information in Section 2 and a discussion of the Cox process model in Section 3. In
Section 4 we give an overview of the available moment estimation methods for stationary
spatial Cox processes and their theoretical properties. Empirical performance of the
estimators is assessed in Section 5 by means of a simulation study. Main results of the
study are summarized in Section 6. We conclude with a discussion in Section 7.

2. BACKGROUND

In this section we first introduce some basic notation from the theory of spatial point
processes. For a detailed introduction into the topic [5] or [8] can be consulted.

Let X denote a simple (i. e. without multiple points) point process in Rd. Let Bd be
the Borel σ-algebra on Rd. For a set B ∈ Bd we denote by |B| its volume and by X(B)
the number of points from X in B. The origin in Rd will be denoted by o, B(x,R) is
the closed ball centered at x ∈ Rd with radius R > 0. The Euclidean norm of the vector
x is denoted by ||x|| and I is the indicator function.

The kth order factorial moment measure α(k) of the point process X is defined as
follows:

α(k)(A) = E

 6=∑
u1,...,uk∈X

I[(u1, . . . , uk) ∈ A]

 , A ∈ Bdk,

where 6= denotes that the sum runs over k-tuples of distinct points of X. Particularly,
α(1)(A) = EX(A) is the mean number of points observed in the set A.

If X is stationary, i. e. its distribution is invariant with respect to translations, we
have α(1)(A) = λ|A| for any A ∈ Bd and the constant λ ≥ 0 is called intensity of X.

We will always assume that factorial moment measures α(k) have densities with re-
spect to Lebesgue measure on Rdk which are denoted by λ(k) and called the kth order
product densities of X or kth order intensity functions of X. In the sequel we will use
mainly the first two intensity functions λ(1) and λ(2).
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Under the assumption of stationarity of X we get λ(x) = const = λ and λ(2)(x, y) =
= λ(2)(0, y − x) = λ(2)(y − x) is effectively a function of one argument only. Moreover,

λ(2)(x, y) = λλ0(y − x), x, y ∈ Rd,

where λ0 is the density of the second order reduced moment measure of the process X.
The function λ0 is also called conditional intensity or Palm intensity in the literature

since λ0 is in fact the intensity function of the Palm distribution P0 of the original point
process X (see [6, Proposition 13.2.VI] for details).

Two popular characteristics of stationary point processes can be defined from λ0,
namely the pair correlation function

g(x, y) = g(y − x) = λ(2)(x, y)/λ2 = λ0(y − x)/λ, x, y ∈ Rd,

and the K-function defined by

λK(R) =
∫

B(o,R)

λ0(u) du = E [X(B(o,R)\{o}) |X({o}) = 1] , R > 0.

Note that λK(R) can be interpreted as the mean number of further points from X in
B(x,R) centered at a typical point x of the point process X.

3. COX PROCESSES

Let D ⊆ Rd and {Ψ(u), u ∈ D} be a non-negative random field. The well-known
definition states that a point process X on D is a Cox point process with the driving
field Ψ if conditionally on Ψ = ψ, X is a Poisson point process with the first order
intensity function ψ. For the intensity functions of X then holds

λ(k)(u1, . . . , uk) = E

[
k∏

i=1

Ψ(ui)

]
.

A Cox point process is stationary if and only if the driving field is stationary.
The two most often used classes of spatial Cox point processes are the log-Gaussian

Cox processes ([18]) and the shot-noise Cox processes ([19]). Even though these can be
generalized and unified in the framework of Lévy-based Cox processes ([13]), for ease of
exposition we stick to the two classical models.

A shot noise Cox process X is characterized by the random intensity function

Ψ(u) =
∑

(c,γ)∈Φ

γk(c, u),

where c ∈ Rd, γ > 0,Φ is a Poisson process on Rd × (0,∞) and k is a kernel, i. e. a
measurable, nonnegative function on Rd×Rd such that k(c, ·) is a probability density for
each c. Note that X is distributed as the superposition of independent Poisson processes
X(c,γ) with intensity functions λ(1)(·) = γk(c, ·), (c, γ) ∈ Φ, where we interpret X(c,γ) as
a cluster with center c and mean number of points γ. Thus the shot-noise Cox processes
include several important cluster point process models, e. g. the Poisson Neyman–Scott
processes.
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Example 3.1. (Thomas process in R2) A Thomas process in R2 can be constructed
as follows. Let C be a stationary planar Poisson point process of mother points with
intensity κ > 0. Each mother point c ∈ C produces a random number of daughter
points. Their number has Poisson distribution with mean µ > 0. The daughters around
c are i.i.d. with isotropic Gaussian displacement (with standard deviation σ > 0) from
the mother point c. A realization of the Thomas process is shown in Figure 1.

Fig. 1. Sample realizations of Cox point processes in observation

window W = [0, 1]2 showing different types of clustering.

Left: Thomas process, right: log-Gaussian Cox process.

The intensity of the Thomas process is λ = κµ and the Palm intensity is

λ0(u) = κµ+
µ

4πσ2
exp

{
−||u||

2

4σ2

}
.

Log-Gaussian Cox process is defined by the conditional intensity function Ψ(u) =
exp {Z(u)}, where Z is a Gaussian random field on Rd. Since the distribution of the
Gaussian field Z is completely determined by the mean value field m(u) = EZ(u) and
the covariance function c(u, v) = cov(Z(u), Z(v)), so is the distribution of X. Moreover,
simple relationships hold for the first two intensity functions of X:

λ(1)(u) = exp{m(u) + c(u, u)/2}, λ(2)(u, v) = λ(1)(u)λ(1)(v) exp{c(u, v)}.

Example 3.2. (log-Gaussian Cox process in R2 with exponential covariance function)
Consider a stationary Gaussian random field Z in R2 with constant mean µ and expo-
nential covariance function c(x, y) = σ2 exp{−β||x − y||}, where σ2 > 0 and β > 0 are
parameters. Then the log-Gaussian Cox process X with conditional intensity function
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Ψ(u) = exp {Z(u)} will have the first order intensity function λ = exp
{
µ+ σ2

2

}
and

the Palm intensity function will be

λ0(u) = exp
{
µ+

σ2

2

}
· exp

{
σ2 · exp {−β||u||}

}
.

A realization of such log-Gaussian Cox process is shown in Figure 1.

4. MODEL FITTING FOR COX PROCESSES

Let x = (x1, . . . , xn) denote a point pattern observed in a compact observation window
W , i. e. the realization of the process X ∩W , where xi, i = 1, . . . , n, denote locations
of the observed points. We will assume a parametric model for X and the vector of
unknown parameters will be denoted by θ.

Let us first discuss the classical maximum likelihood estimation. To use this method
we will consider the density fθ(x) of X with respect to the distribution of stationary
unit-rate Poisson process (i. e. λ(1)(u) = 1). The maximum likelihood estimate θ̂ is then
obtained as the value of θ maximizing fθ(x).

For a Poisson process with the intensity function λθ(x) the density is

fθ(x) = exp
{
|W | −

∫
W

λθ(u) du
} n∏

i=1

λθ(xi). (1)

As long as a suitable parametrization of λθ is available the density fθ has a tractable
form and the estimate θ̂ can be easily obtained.

For a Cox process driven by random conditional intensity function Ψθ(u), u ∈W, the
density is

fθ(x) = Eθ

[
exp

{
|W | −

∫
W

Ψθ(u) du
} n∏

i=1

Ψθ(xi)

]
.

In order to obtain the maximum likelihood estimate of θ it is needed to repetitively
evaluate the expectation including a complicated integral term with respect to possible
values of the random conditional intensity function Ψθ. One can of course take advantage
of MCMC or other techniques and use approximations of the likelihood function fθ(x),
(see e. g. [20, Chapter 10]). Nevertheless this approach is usually computationally very
demanding and thus faster, simulation-free alternatives were sought.

Three such methods will be reviewed in the following subsections. They are in fact
second order moment estimation methods because all of them are based on the second-
order moment characteristics of the process X like K, g, λ0 or λ(2). In the following we
will assume that X is a stationary Cox point process characterized by its second-order
intensity function λ(2)(·; θ) or by some of the other above listed characteristics. As was
explained in Section 1 for many Cox process models these characteristics are available in
a reasonably tractable form as functions of the parameter θ and thus the maximization
of the respective estimation criteria is numerically feasible.
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4.1. Minimum contrast

This estimation method was in the context of spatial statistics first introduced in [7,
Chapter 5]. It can be based either on the K-function or the pair correlation function g,
see e. g. [8, Chapter 6]. In the version using the g-function this method requires isotropy
of the process X in addition to its stationarity. In this case the g-function is a function
of a scalar argument.

The vector of parameters θ is estimated by minimizing the discrepancy measure∫ R

r

[K̂c(u)−Kc(u; θ)]2 du or
∫ R

r

[ĝc(u)− gc(u; θ)]2 du (2)

between the nonparametric estimate K̂ or ĝ and its theoretical value K(·; θ) or g(·; θ),
respectively.

Constants c, r and R are used to control the sampling fluctuations in the estimates
of K and g. In [8, Section 6.1.1] it is recommended that for fitting aggregated point
patterns using the K-function the constant c = 0.25 is used and that for data on a unit
square R should be no larger than 0.25. The remaining constant r can be set to 0 or
a small positive value, e. g. the minimum observed interpoint distance. For the pair
correlation function g there is no standard recommendation available.

Minimum contrast estimators are popular partly due to the fact that they are im-
plemented in the spatstat package for R (see [2]) for three important cluster point
process models: Thomas process, isotropic log-Gaussian Cox process with exponential
covariance function and Matern cluster point process.

The asymptotic properties of the minimum contrast estimators are discussed in [11]
and [12]. In [12] strong consistency and asymptotic normality for minimum contrast
estimates using the K-function was proved for Poisson cluster processes. In [11] asymp-
totic normality for minimum contrast estimates using the K-function was showed under
a strong mixing assumption which is fulfilled also for a broad range of log-Gaussian Cox
processes.

4.2. Composite likelihood

Composite likelihood approach is a general statistical methodology (see [16]). In the
context of point processes it is based on adding together individual log-likelihoods for
single points or pairs of points of the process X to form a composite log-likelihood.
Several versions of composite likelihood have been suggested for estimation of diffe-
rent types of spatial point processes (see [1, 10, 21]). Composite likelihood suitable for
estimation of Cox processes was introduced in [10]. It uses the second-order intensity
function λ(2)(·, θ) to obtain the probability density for two points of X occurring at
locations x and y:

f(x, y; θ) =
λ(2)(x− y; θ)∫

W

∫
W
λ(2)(u− v; θ) dudv

.

After adding the individual log-likelihoods the composite log-likelihood is obtained:

logCL(θ) =
∑

x6=y∈X∩W,||x−y||<R

log
λ(2)(x− y; θ)∫

W

∫
W
I(||u− v|| < R)λ(2)(u− v; θ) dudv

.
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Here only pairs of points within distance R are considered. Disregarding the pairs of
points separated by distance larger than R is motivated by the fact that distant pairs
of points are often nearly independent. They do not carry much information about the
parameters but increase variability of the estimator.

Numerical maximization of logCL(θ) in the form presented above can be computa-
tionally demanding. This issue can be solved by application of the inner region correction
for the edge effects. It leads to a simplified formula

logCL(θ) =
∑

x∈X∩(W	R),y∈X∩W,0<||x−y||<R

log
λ(2)(x− y; θ)

λ2|W 	R|K(R)
, (3)

where W 	R = {w ∈W : B(w,R) ⊂W}, i. e. W 	R is the window W eroded by dis-
tance R. Vector θ̂ maximizing logCL(θ) is then taken for the estimate of θ. Consistency
and asymptotic normality of the composite likelihood estimator are proved in [10] under
suitable mixing assumptions.

4.3. Palm likelihood

Palm likelihood estimator was introduced in [23] and uses a very “geometrical” approach.
It is based on the process of differences among the points of the observed point process
X. Let us start with considering the processes

Yx = {y − x, x 6= y ∈ X ∩W}, x ∈ X ∩W.

Each Yx is again a point process (now inhomogeneous) with intensity function λ0(·; θ)
– the Palm intensity of the original process X (see [22] and [23] for more detailed
explanation).

Now ignoring the interactions in the process Yx, i. e. approximating Yx by a Poisson
process, the log-likelihood of Yx ∩B(o,R) is the following (up to a constant – cf. (1)):∑

y∈X∩W,||x−y||<R

log λ0(x− y; θ))−
∫

R2
I(||u|| < R)λ0(u; θ) du.

Here we consider only pairs of points within distance R following the same reasoning as
in the case of the composite likelihood estimator.

Treating all the Yx, x ∈ X ∩W, as independent, identically distributed replications,
we sum the individual log-likelihoods over x ∈ X ∩W and get the so-called Palm log-
likelihood:

logPL(θ) =
∑

x6=y∈X∩W,||x−y||<R

log λ0(x− y; θ)−X(W )
∫

R2
I(||u|| < R)λ0(u; θ) du.

Applying the inner region correction we get the following expression for the Palm
log-likelihood which is more useful for the estimation in practice:

logPL(θ) =
∑

x∈X∩(W	R),y∈X∩W,0<||x−y||<R

log λ0(x− y; θ))−X(W 	R)λK(R). (4)
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Again, the maximizer of logPL(θ) is taken for the estimate of θ.
Note that even though the Palm likelihood estimation was derived by using the pro-

cess of differences it is a second-order moment method as well because it is based on
the second-order characteristic λ0 of the observed point process X. Let us also remark
that its use is not restricted to simple models such as the Thomas process. If the Palm
intensity function λ0 is in such form that direct maximization of logPL(θ) is not pos-
sible (e. g. for general Neyman–Scott processes), numerical algorithms are available for
finding argmax logPL(θ) (see [23, Section 3]).

Strong consistency and asymptotic normality of the Palm likelihood method are
proved in [22] under suitable mixing assumptions. These are fulfilled for a broad range
of Poisson Neyman–Scott processes and log-Gaussian Cox processes.

Moreover we would like to stress here that since the Palm intensity is defined as a
function of the parameter u ∈ Rd and not just its length, the Palm likelihood estimation
is not restricted to isotropic point processes only. It can be used for estimation of any
suitably parametrized stationary point process Cox model in Rd (the same holds for
the composite likelihood estimation). A worked out example of an anisotropic Thomas
process in R2 can be found in [22].

Example 3.1. (continued) For the stationary Poisson Neyman–Scott processes with
mother intensity κ > 0, mean number of daughter points in the cluster
µ > 0 and the daughter displacement kernel k parametrized by θk, we have λ0(u) =
κµ + µk(u). Thus the score equation we get by differentiation of the log Palm likeli-
hood (4) with respect to µ will yield

µ̂ =
N

κK(R)|X ∩ (W 	R)|
, (5)

where N denotes the number of terms in the sum in (4) and the K-function does not
depend on µ. For the composite likelihood the score equation we get by differentiation
of (3) with respect to µ is identity 2N

µ = 2N
µ and the parameter µ is non-identifiable.

The same applies to the minimum contrast estimation using both the K and g function
because none of them depends on µ. Thus the parameter µ must be estimated from the
known relation between µ, intensity λ of the process and the other estimated parameters,
where we take λ̂ = X(W )/|W |.

When inserting µ̂ into logPL(θ) we find that logPL(µ̂, κ, θk) treats the observed
process of differences as i.i.d. observations with density f(u) = λ0(u)/(κK(R)), u ∈
B(o,R) and the respective score equations are unbiased estimating equations. Also
logCL(κ, θk) treats the process of differences between pairs of observed points from X
as i.i.d. observations with the same density f and leads to a set of unbiased estimating
equations although the estimating functions are different.

Example 3.2. (continued) For the log-Gaussian Cox process the situation is anal-
ogous. The parameter µ – the mean of the random field Z – cannot be estimated by
the minimum contrast method and the composite likelihood method and has to be cal-
culated from the estimate of intensity by log

(
X(W )
|W |

)
− σ2

2 . For the Palm likelihood
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method we get the estimate

µ̂ = log
N

K(R)|X ∩ (W 	R)|
− σ2

2
, (6)

and after inserting µ̂ into logPL(θ) we get again a sum over the observed process of
differences of likelihoods corresponding to the density λ0(u)/K(R), u ∈ B(o,R) and
leading to a set of unbiased estimating equations. The same holds for logCL(θ−µ),
where θ−µ denotes the parameter vector θ without the parameter µ.

5. SIMULATION STUDY

To compare the empirical performance of the estimators we chose two different types of
cluster processes – the Thomas process and the log-Gaussian Cox process, see Examples
3.1 and 3.2.

To assess the performance of the estimators on middle-sized to large point patterns
exhibiting different degree of clustering we chose eight combinations of parameter values
for the Thomas process (κ = 25 or 50, µ = 4 or 6 and σ = 0.02 or 0.04, representing
relatively strong and weak clustering, respectively) and for the log-Gaussian Cox process
(β = 10 or 20 representing relatively strong and weak dependence, respectively, σ2 = 1
and µ calculated so that the intensity of the process is 100, 150, 200 and 300 as in the
case of the Thomas process).

For each process and each combination of parameters we generated 500 independent
realizations and re-estimated the parameters using the three moment estimation methods
(i. e. using formulas (2), (3) and (4)).

5.1. Parameter estimation – computational details

Realizations of the Thomas process and the log-Gaussian Cox process with appropriate
parameters in a unit square window W were simulated using the package spatstat for
R (for reference see [2]).

When simulating realizations of the log-Gaussian Cox process we need to use a finite
representation of the random field Z in the observation window W . We chose a regular
grid of 25 × 25 points and instead of the Gaussian random field Z we simulated a
Gaussian random vector representing values of Z in the given lattice points. Then we
approximated values of the random field Z in W by the value in the nearest lattice point.

We used the minimum contrast method (MCE) with both the K-function (MCEK)
and the pair correlation function g (MCEg). The tuning parameters in the case of the
K-function were chosen according to the recommendation in [8, Section 6.1.1]. The same
values of parameters were used for the g-function, i. e. c = 0.25, R = 0.25 and r equal
to the minimum interpoint distance observed in the given realization. The estimation
was conducted by the functions provided by spatstat.

The composite likelihood (CLE) and Palm likelihood (PLE) estimation methods have
only one tuning parameter, R, determining the maximum distance of pairs of points that
will be taken into account. The distance R has to be chosen carefully so that the variance
of the estimators is reduced but not much information about the interaction in the point
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pattern is lost. Since the observation window W is a unit square we chose the values of
R to be 0.1, 0.2 and 0.3, respectively.

To take into account the interpoint interactions when choosing the value of R we also
consider R = rdata, where rdata corresponds to a range of correlation. It is determined
as the smallest r for which ĝ(r) < 1 holds, where ĝ is a nonparametric estimate of the
pair correlation function g.

For CLE and PLE we applied the inner region correction for the edge effects, see (3)
and (4). It is straightforward and can be used for data observed in irregular windows.
Other edge corrections could be used as well, for example the torus correction could
perform better in the case of a rectangular window but it is difficult to use in practice
for irregularly shaped windows.

The estimation for CLE and PLE was conducted in software Mathematica 7. Maxi-
mization of the appropriate log-likelihood functions was performed using a combination
of two methods.

First, derivatives of the log-likelihood function with respect to the unknown param-
eters were calculated and a vector of parameter values was found for which all the
derivatives were equal to zero using a default Newton’s method.

Then, if the numerical method diverged (i. e. the estimate lies out of a generously
long interval containing the true value of the parameter), the parameters are estimated
again by direct maximization of the log-likelihood function using simulated annealing.

This procedure is motivated by the fact that the estimation using derivatives is fast
but somewhat numerically unstable, while direct maximization is more computationally
demanding but in general less likely to diverge. The combination of these two methods
was a good compromise between the computational time and numerical stability.

For the minimum contrast methods and the composite likelihood method the value of
the non-identifiable parameter µ was estimated from the observed intensity of the point
process as described in the examples at the end of Section 4.

6. RESULTS

Main results are summarized in Tables 1 and 2 for the Thomas process and the log-
Gaussian Cox process, respectively. They show results for two variants of MCE (based
on K-function and pair correlation function) and for CLE and PLE with different choices
of the tuning parameter R. Complete results are available in [9].

The tables show relative mean biases of the estimators and relative mean squared
errors (MSEs) (by relative we mean divided by the true value of the estimated parameter
or by its square for the MSE). All the statistics were obtained from the middle 95% of
the estimates from 500 replications.

Neglecting the 5% of the most extreme estimates was motivated by the fact that in
certain situations the estimation methods can be numerically unstable, see Section 5.1.
If such a situation was encountered in practice the estimates would easily be identified as
unrealistic and one would alter the parameters of the underlying optimization methods
or opt for an alternative estimation method. However, due to the extent of the com-
putations involved, this was not possible in this simulation study. Note that if all the
estimates were used to calculate the statistics these would be severly distorted by the
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numerical instability and hence completely uninformative for a prospective researchers
willing to find a method of choice for their particular dataset.

6.1. Thomas process

6.1.1. Parameter σ

Among the three parameters of the Thomas process model σ is the one estimated with
most accuracy by any of the compared methods. Particularly MCEg and CLE with
R = 0.1 give very precise estimates. From the two MCE methods MCEK is always
worse than MCE g. PLE with R = 0.1 (as well as CLE with R = 0.2) is comparable
with MCEK for strong clustering. For weak clustering PLE is inferior to the other
methods.

The reason for this is the strong positive bias (around 25% for R = 0.1) of PLE
in case of weak clustering. PLE generally overestimates the parameter σ while MCE
always underestimates it. CLE with R = 0.1 is virtually unbiased for strong clustering
and positively biased for weak clustering. For strong clustering CLE with R = 0.1
generally showed the smallest variance followed by MCEg, PLE and MCEK. For weak
clustering variance of CLE and PLE with R = 0.1 becomes larger and MCEg becomes
the most stable estimator.

An important observation is the rapid deterioration of the quality of the CLE and PLE
estimates with increasing value of the tuning parameter R. Increase in the variability of
the estimators with growing R is to be expected, since with the employed inner region
edge correction and with growing R we lose growing percentage of the data. However,
for CLE and R = 0.3 the estimator of σ is not just bad, it is even numerically unstable,
and in case of weak clustering and higher intensity of the point process the same happens
also for R = 0.2.

An explanation for this could be found in the exact form of the score equations for
CLE - the estimating functions as described in Example 3.1 in Section 4 have a steep step
around the correct value of the parameter σ and then become virtually constant (and
nonzero). Thus for a small number of observed pairs of points from X and a clustered
point pattern (with few distant pairs observed) the estimating equation can lead to a
severe overestimation of the parameter σ. Therefore it is extremely important when
estimating the interaction parameters for processes with weaker clustering by CLE or
PLE to choose the tuning constant R not too large. Definitely not larger than the range
of correlation and reasonably small with respect to the size of the observation window
so that not too much data is lost by the edge correction.

6.1.2. Parameter κ

For the other interaction parameter κ estimated directly by all three methods the best
estimates are provided by PLE (with R = 0.1, for weak clustering also with R = 0.2)
in the majority of cases. The exception are processes with low intensity and strong
clustering, i. e. with a few number of tight well defined clusters in the observed point
pattern – here MCEg gives better results. Like with the other parameters the MCEK
method is consistently worse than MCEg and the worst results are generally provided
by CLE (with R = 0.1).
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Note that the good results of PLE (R = 0.1) are mainly caused by the compara-
tively small variability of the estimates because all the PLE estimates with R = 0.1
have considerable negative bias. The bias becomes lower for R = 0.2 and thus the best
estimates for processes with low intensity and weak interaction (i. e. a few loose clusters
in the observation window) are obtained by PLE with R = 0.2. This behaviour is again
implied by the exact form of the estimating functions used. Note that for CLE the
situation is somewhat similar like for the parameter σ – CLE with R = 0.1 provides
nearly unbiased estimates, whereas with R = 0.2 we have considerable positive bias
and with R = 0.3 the estimates become useless. Nevertheless the variability of CLE is
generally higher than variability of the other estimators.

When comparing the MCEg and MCEK methods the main factor is also variability
of the estimators - the MCEg method is consistently less variable than MCEK (the same
situation like with the parameter σ).

6.1.3. Parameter µ

The last parameter µ is by all the methods determined by means of the observed number
of points of X and the values of the already estimated parameters. It is true not just
for the MCE and CLE where µ̂ = X(W )/(|W |κ̂) but also for the PLE method. Namely
(5) is derived just from the comparison of the expected and observed number N of pairs
of points from X.

Thus it is natural that the quality of the estimates of µ for MCE and CLE follows the
pattern from estimation of κ with MCEg being better than MCEK and CLE providing
even worse estimates. The PLE estimator uses mean number of pairs of points from
X which could provide more exact estimates than just X(W ). On the other hand, the
formula (5) includes both of the parameters κ and σ and thus can be influenced more by
the bad quality of those estimates. The simulation study shows that in reality for weak
clustering PLE (with R = 0.1) provides the best estimates of µ – again mainly due to
low variability of the estimates since they are negatively biased. For strong clustering
the estimates provided by MCE are better.

6.1.4. Procedure using rdata

The estimated values of rdata are for strong clustering concentrated around 0.1 as ex-
pected, with a fair proportion being smaller than 0.1 (see [9] for the histograms of rdata).
For CLE the estimates of σ using R = rdata are comparable with those obtained with
R = 0.1; they have only slightly larger bias and variance. The bias is nevertheless still
very small (smaller than for MCE) and the variance is only a bit larger than for MCEg.
Overall, the procedure with rdata for CLE estimation of σ provides very good estimates
– better than for MCEK. Estimates of the other interaction parameter κ by CLE with
rdata are worse but comparable with estimates produced by CLE with R = 0.1.

For PLE the estimates of the interaction parameters with R = rdata are also worse
than for fixed value R = 0.1. By closer inspection of the simulated data we see that
particularly for the parameter κ the cases with rdata < 0.1 produce significantly biased
estimates.
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MCE CLE PLE
κ µ σ K g .1 .2 .3 rdata .1 .2 .3 rdata

Bias σ̂ 25 4 .02 -.044 -.029 .009 -.034 -.019 .028 .068 .023 .086 .118
.04 -.064 -.067 .077 .208 34.7 .188 .287 .494 1.27 1.22

50 6 .02 -.028 -.027 .001 -.045 -.086 .021 .096 .014 .052 .106
.04 -.044 -.047 .093 25.2 160 .238 .233 .849 3.55 2.41

κ̂ 25 4 .02 .103 .070 -.013 .271 .917 -.097 -.143 .083 .161 -.260
.04 .148 .159 .098 .196 .987 -.087 -.331 -.178 .042 -.107

50 6 .02 .060 .022 .071 .318 .818 .004 -.122 .115 .139 -.157
.04 .109 .102 .064 .405 1.02 .075 -.293 -.133 .024 -.087

µ̂ 25 4 .02 -.074 -.067 .101 -.145 -.303 .386 -.416 -.431 -.375 -.365
.04 -.094 -.117 .098 .022 -.187 .896 -.252 -.272 -.289 -.272

50 6 .02 -.054 -.038 -.057 -.199 -.338 -.002 -.405 -.434 -.344 -.378
.04 -.068 -.076 -.035 -.230 -.260 -.011 -.257 -.274 -.254 -.266

MSE σ̂ 25 4 .02 .035 .014 .016 .032 .094 .023 .031 .045 .135 .051
.04 .050 .034 .061 .317 1·104 .168 .211 .764 6.85 5.47

50 6 .02 .022 .009 .006 .018 .036 .011 .026 .026 .055 .027
.04 .035 .023 .036 2·104 1·105 .332 .077 2.45 32.6 16.8

κ̂ 25 4 .02 .125 .073 .207 .364 3.08 .244 .108 .186 .225 .233
.04 .270 .217 .429 .576 5.67 .321 .170 .085 .192 .186

50 6 .02 .091 .052 .097 .304 1.65 .111 .039 .100 .099 .109
.04 .189 .148 .184 .562 4.48 .268 .093 .039 .145 .150

µ̂ 25 4 .02 .075 .044 .266 .142 .250 1.38 .192 .225 .185 .166
.04 .144 .116 .582 .435 .410 42.0 .076 .112 .159 .133

50 6 .02 .055 .031 .062 .101 .200 .108 .173 .211 .140 .160
.04 .130 .103 .133 .151 .219 .179 .071 .088 .133 .125

Tab. 1. Summary of simulation results – Thomas process.

For weak clustering the estimated value of rdata is scattered between 0.1 and 0.2 with
a few cases taking the value of 0.25 which was the upper bound for the estimated range
of interaction (since the estimate of g function is not very stable for values larger than
0.25). For estimation of σ CLE with R = rdata has significantly larger bias and variance
than with R = 0.1 and PLE produces impractical estimates. For estimation of κ CLE
with R = rdata produces sometimes better estimates than with R = 0.1 but they are
still worse that those produced by any other method. PLE with R = rdata produces
generally worse estimates of κ than with R = 0.1 but these are typically still better than
those produced by the other methods.

In conclusion we can say that the method using R = rdata is not superior to the fixed
value of the tuning parameter R = 0.1 for CLE and PLE. Partially it can be explained
by the larger variability caused by the changing value of R but very often also the bias
of the estimators is larger than with the fixed value of R = 0.1. The question of the
ideal choice of R for a given point process model and a given observation window is
not a simple one. Even the amount of information expressed by the mean number of
observed pairs of points with distance ≤ R for a clustered point process X need not
be a monotone function of R (see [22, Section 3]). More sophisticated methods of the
adaptive choice of R must be used to produce a considerable improvement in the quality
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of the estimates than just a simple choice R = range of interaction.

6.1.5. Overall performance

In conclusion we can say that quality of all the compared estimators improves with higher
intensity of the process X and stronger interactions in the point process (i. e. tighter
clusters). Concerning minimum contrast estimation the version using pair correlation
function always yields better estimates than the version using the K-function. When
using the CLE and PLE methods for estimation of the interaction parameters it is
important to use reasonably small values of the tuning parameter R which provide
reasonably good estimates. High values of R lead to numerical instability of the methods
and impractical estimates – this is especially important for CLE, to a lesser extent also
for PLE.

To address the overall performance, the minimum contrast estimation using the pair
correlation function provides the best (in the sense of the relative MSE) estimates of
the interaction parameters although for point patterns with strong clustering when es-
timating σ CLE (with R = 0.1) yields fully comparable and sometimes better quality
estimates.

For point patterns with weak clustering PLE (with R = 0.2 and R = 0.1) yields
the best estimates of κ. However, this is due to the minimal variability of the PLE
estimator which has a serious negative bias in this case. The second best (according to
MSE) estimator is MCEg which has half-size bias (i. e. acceptable 10%).

Parameter µ is calculated from the intensity (of points or pairs of points) of X and
as such it depends on the quality of the other parameter estimates. The best values of
MSE were achieved for strong clustering by MCEg and for weak clustering by (again
significantly biased) PLE.

6.2. Log-Gaussian Cox process

6.2.1. Parameter β

For the log-Gaussian Cox process from Example 3.2 β is the scale parameter of the
covariance function of the Gaussian driving field and the hardest one to estimate. Unlike
in the case of Thomas process for minimum contrast estimation MCEK showed always
better performance than MCEg. Nevertheless for stronger interaction (β = 10) the
best results are obtained by CLE with R = 0.1 which has both minimal bias and
minimal variability. Also here (as in the case of Thomas process) it is important to have
reasonably small value of the tuning parameter R, i. e. R = 0.1. For larger values of R
the CLE (and also PLE) deteriorates fast and the estimates become useless.

Quality of the estimates of course improves with growing intensity λ; the growing
amount of information seems to be best used by CLE since for high intensity (λ = 300)
CLE (with R = 0.1) outperforms MCEK even in the case of weak dependence. CLE
(with R = 0.1) generally slightly underestimates β but the absolute value of bias is
much smaller than for any other compared estimator and this holds uniformly for any
log-Gaussian Cox process considered in the study. When the variability of this estimator
becomes small enough (thanks to the sufficient amount of data in the large λ case) it
becomes superior to MCE estimation even in the case of weak dependence.
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To understand this results better it is good to note that the case β = 10 which we
call stronger interaction/dependence means that values of g(u)− 1 (where g is the pair
correlation function) are significantly positive for a larger range of values u than for the
case of β = 20. Thus the observed point pattern of X for β = 10 is much more variable
and may contain a few clusters (or sometimes none if λ is low) with large scale and large
number of points (like the one in the upper right corner of the right panel in Figure 1)
whereas for β = 20 the observed point pattern is more homogeneous with large number
of smaller (both in terms of scale and number of points) clusters. The large clusters
from X with β = 10 make the estimation of the functional characteristics K and g less
stable than in the case of β = 20 or the Thomas process, which influences negatively
the quality of the MCE estimation. Obviously the CLE method is less influenced by
occurrence of these large clusters.

The same fact may explain higher efficiency of MCEK when compared with MCEg.
Even in the case of weaker dependence (β = 20) the clusters observed in X are highly
variable in terms of the number of points and there are always some with a fairly high
number of points. In such a situation the estimate of the K-function as a cumulative
function is more stable than the estimate of the g function (which corresponds to the
density of K-function).

The performance of PLE is inferior to the other methods and for weak dependence
(β = 20) the estimator is unusable. For stronger dependence in the point pattern the
performance for PLE with R = 0.1 is comparable with the MCE methods, for larger
values of R the estimator becomes unusable again.

6.2.2. Parameter σ2

The other interaction parameter σ2 is best estimated by the MCE methods. The esti-
mates are only slightly biased and the variance is lower than for the other estimators.
Note that the sign of the bias depends on the value of β – for β = 10 (i. e. point pat-
terns with a few large and heavy clusters) σ2 is underestimated while for β = 20 it is
overestimated by both MCEK and MCEg. The performance of the two MCE methods
is very similar.

Worse but still reasonable results are obtained for PLE with R = 0.1 and strong
dependence in the point pattern. In the case of weak dependence the PLE method needs
higher intensity λ of the point process to provide usable estimates. The worst results
are provided by CLE. Both CLE and PLE have considerable negative bias (larger for
the case of strong dependence) but PLE shows consistently lower variability than CLE
which makes it superior.

As in the case of estimation of β both PLE and CLE perform reasonably well only
with the tuning parameter R = 0.1, for larger values both the bias and variability
increase to impractical values.

6.2.3. Parameter µ

The intensity parameter µ is the easiest one to estimate and it is estimated very well by
any of the compared methods. Remember that MCE and CLE estimate µ by the same
formula (see Example 3.2 in Section 4) which is influenced by the value of the estimated
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parameter σ2. Thus it follows from the properties of the estimates of σ2 that the MCE
estimates of µ has to be superior to the CLE estimates and that MCEK and MCEg
perform equally well. Note moreover that the CLE estimates with R = 0.2, 0.3 are still
very good even though the quality of the estimates of σ2 was not good at all. Since
µ̂ is a linear function of σ̂2 the influence of the quality of the estimates of interaction
parameters on the estimate of the intensity parameter µ is much smaller than for the
Thomas process case.

Another interesting observation is that the efficiency of the PLE estimate which is
determined by formula (6) is worse than for the other methods and improves with larger
value of the tuning parameter R. The formula (6) uses the number of observed pairs
of points with distance smaller than R and provides negatively biased estimates – the
smaller the value of R the larger the bias of the estimates. Although the PLE estimates
of µ are still fairly exact the conclusion is that the intensity parameter µ is better
estimated by the simpler formula using just the observed number of points of the point
process X.

6.2.4. Procedure using rdata

The procedure using R = rdata was even less successfull for the log-Gaussian Cox process
than for the Thomas process. This could be explained partially by a more uniform
distribution of the estimated values of rdata over the whole range between 0 and 0.25
(see [9] for the histograms of rdata). Moreover, when β = 10 we get quite often the
estimate rdata = 0.25 and for such R both CLE and PLE become impractical.

For PLE the use of data dependent R produces impractical estimates of β and esti-
mates of σ2 with larger variance and for strong interaction also with larger bias than
the procedure with fixed R = 0.1.

For CLE the estimate of the interaction parameter β using R = rdata has in case of
strong dependence generally smaller bias than with fixed R = 0.1 but the variance is
larger and in total the estimate is worse than with fixed R = 0.1. Still it is superior to
MCE. In case of weak dependence the small bias is the same like with fixed R = 0.1 and
in total larger variance makes the estimate inferior to MCE. The estimate of σ2 by CLE
with R = rdata is worse than the other estimates and for small values of the intensity it
is even impractical.

6.2.5. Overall performance

The quality of all the compared estimators improves with higher intensity of the point
process X and in the majority of cases also with weaker dependence (i. e. larger value of
the parameter β). However, there is one important exception – the CLE with R = 0.1
provides more precise estimates of β for processes with stronger dependence. And in this
case CLE is much better than the other estimation methods. A plausible explanation is
that the score equations of CLE are less influenced by the high variability of the observed
point pattern (caused by the variability of a few large and heavy clusters) than are the
estimates of the functions K and g used for MCE. For point processes with β = 20
and small enough intensity (λ < 300) the observed clusters in the point pattern are
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MCE CLE PLE
λ β K g .1 .2 .3 rdata .1 .2 .3 rdata

Bias β̂ 100 10 .281 .498 -.070 .190 .645 .087 -.221 1.76 2.44 .747
20 .146 .216 .090 .380 .401 .095 .527 1.80 4.41 .359

300 10 .259 .360 -.143 -.036 .258 -.062 -.224 1.51 2.25 .847
20 .140 .180 -.051 .437 .272 .092 .417 .798 .629 .484

σ̂2 100 10 -.065 -.016 -.311 -.559 -.688 .032 -.218 -.467 -.570 -.357
20 .050 .059 -.140 -.357 -.603 .536 -.295 -.269 -.525 -.122

300 10 -.046 -.023 -.241 -.535 -.722 -.509 -.160 -.384 -.484 -.375
20 .043 .072 -.131 -.336 -.668 -.196 -.131 -.212 -.422 -.129

µ̂ 100 10 -.001 -.006 .026 .047 .064 -.018 -.146 -.052 -.016 -.111
20 -.005 -.006 .017 .042 .068 -.067 -.094 -.079 -.005 -.147

300 10 .000 -.003 .019 .041 .061 .037 -.115 -.043 -.013 -.050
20 -.006 -.008 .012 .027 .059 .014 -.086 -.062 -.011 -.082

MSE β̂ 100 10 .538 .825 .112 .756 2.16 .649 .513 7.59 11.0 3.35
20 .309 .357 .428 .983 .798 .576 2.14 8.67 51.5 2.21

300 10 .235 .299 .085 .206 .566 .089 .268 6.12 14.0 3.57
20 .124 .132 .091 .631 .394 .220 1.13 2.10 2.00 1.24

σ̂2 100 10 .146 .151 .380 .548 .774 2.90 .184 .436 .623 .430
20 .196 .198 .476 .561 .756 4.16 .294 .519 .714 .529

300 10 .060 .058 .184 .485 .736 .480 .132 .267 .450 .285
20 .064 .063 .136 .354 .688 .233 .121 .226 .402 .138

µ̂ 100 10 .005 .005 .007 .008 .012 .054 .038 .012 .011 .041
20 .004 .004 .008 .010 .012 .066 .016 .016 .009 .055

300 10 .002 .002 .003 .006 .007 .006 .021 .006 .005 .009
20 .001 .001 .002 .003 .006 .003 .011 .006 .003 .011

Tab. 2. Summary of simulation results – log-Gaussian Cox process,

σ2 = 1 in all cases.

more homogeneous and the MCEK becomes the best (in the sense of the relative MSE)
estimator of β followed by MCEg.

The parameter σ2 is best estimated by the minimum contrast methods, which show
very similar performance, followed by PLE with R = 0.1. Like in the other cases small
value of the tuning parameter R is crucial for estimation of the interaction parameters
by both PLE and CLE; for larger R = 0.2, 0.3 both the bias and variability of the PLE
and CLE become too large.

Estimators of the intensity parameter µ are very precise for any of the compared
methods. The important conclusion from the simulation study is that for log-Gaussian
Cox processes a simple estimate by means of the observed (first order) intensity of the
point process is superior to the more complicated estimate provided by PLE which uses
the observed intensity of pairs of points from X.

7. DISCUSSION

We have considered the problem of model fitting for Cox point processes which can be
used to model aggregated point patterns. For Cox processes the classical maximum



1024 J. DVOŘÁK AND M. PROKEŠOVÁ

likelihood estimation must be implemented by the computationally demanding MCMC
simulation methods and an individual numerical algorithm must be developed and tuned
for each particular application. For cluster processes particularly the profile likelihood
for the scale parameter of the cluster distribution must be used, which makes the proce-
dure even more computationally demanding [21, Section 7.3]. Bayesian estimation with
a suitable choice of priors can make use of the demarginalization strategy by treating the
unobserved driving field of the Cox processes as missing data [21, Section 7.4]. But still
the computational load of the MCMC simulation is larger by at least an order of mag-
nitude when compared with the simulation-free moment estimation methods reviewed
in this paper.

Asymptotic results for the maximum likelihood estimation were established in [15]
for certain Cox processes on a real line. However, we are not aware of any such results
for spatial Cox processes.

All of the moment estimation procedures reviewed in this paper besides the MCEg
were proved to be consistent and asymptotically normal under suitable mixing conditions
(see the references in Section 4). However, the theoretical expressions for the asymptotic
variance of the estimators are too complicated to be used for direct comparison of the
efficiency of the estimators. Moreover the convergence may be too slow and the bias
can be a more important issue then the variance for certain point processes observed on
medium sized windows (like in the case of PLE of κ – see Section 6.1.2). Therefore we
assessed the empirical performance of the discussed moment estimation procedures by
a simulation study. To cover different types of clustering in the observed point pattern
both a shot-noise Cox model and a log-Gaussian Cox model with several combinations
of parameter values were used.

A short conclusion of the simulation study is that the minimum contrast method
using the pair correlation function g provides the best estimates in the majority of cases
(see the next paragraph for an exceptional situation). It seems that the functional
criterion (2) is able to get more information from the point pattern than the composite
and Palm likelihood. On the other hand, when it comes to more complicated models
like those considered in [23] where the pair correlation function does not have a closed
form anymore but is expressed by means of an integral the maximization of (2) may
be numerically more demanding. Then the more feasible Palm or composite likelihood
estimation can be a good alternative.

There is one important situation where the estimators’ performance was different. For
the estimation of the interaction range β for log-Gaussian Cox model the best results
were provided by composite likelihood and MCEK was superior to MCEg. A plausible
explanation is that the population of clusters observed in the log-Gaussian Cox process
is much more variable (both in terms of scale and number of points in the clusters) than
the one observed in the Poisson Neyman–Scott processes. A small (and highly variable)
number of large and heavy clusters observed in the point pattern makes the estimates
of the function K and even more so g unstable. In such a case the simpler estimating
equations implied by CLE are probably more stable and provide better estimates of the
interaction range parameter β.

In biological applications which study e. g. the interactions among members of a plant
community or seed dispersal curves the interaction range can be a parameter of primary
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interest. Our results suggest that especially in the case of a nonhomegenous population
of observed clusters composite likelihood should be the preferred estimation method.

Another interesting issue we observed in the simulation study is a rather extreme
version of the bias-variance trade-off when estimating the number of clusters (i. e. pa-
rameter κ) for Thomas process with weak clustering (i. e. loose clusters). Observed
point patterns are very homogeneous in this case and the individual clusters are com-
pletely unrecognisable. Thus it is understandable that for κ we got estimates with the
worst performance (compared to other parameters) and as the results show the amount
of data we used is still not enough to estimate this parameter safely. The smallest MSE
was exhibited by PLE in spite of the heavy bias it had, followed by only slightly biased
MCEg. Thus if one is not prepared to accept the granted serious bias provided by PLE
it is better to prefer MCEg also for the estimation of κ.

The results we obtained about the better efficiency of the MCEg method in compari-
son with the MCEK method for Poisson Neyman–Scott processes are in agreement with
the results published in [3] for the so called G-shot noise Cox processes. Even though
these processes are not distinguishable from the Poisson Neyman–Scott processes by
just the g or K function the MCE method can be used for the parameter estimation of
these models. [3, Section 4.2.1] states that MCEK can be unstable in some cases and
that MCEg should be the preferable method.

Further we experimented with a simple data-based procedure for the choice of the
tuning parameter R for CLE and PLE methods. The conclusion is that such a choice
does not improve the quality of the estimates in comparison with the a priori chosen
fixed value R = 0.1. More sophisticated methods of the adaptive choice of R must be
used to produce a considerable improvement in the quality of the estimates, such as e. g.
the crossvalidation procedure suggested in [10, Section 2.4].
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e-mail: prokesov@karlin.mff.cuni.cz

http://www.karlin.mff.cuni.cz/~dvorak/CoxEstimation/CoxEstimation_SimulationStudy.pdf
http://www.karlin.mff.cuni.cz/~dvorak/CoxEstimation/CoxEstimation_SimulationStudy.pdf

		webmaster@dml.cz
	2013-09-24T12:47:11+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




